JPH0444136B2 - - Google Patents

Info

Publication number
JPH0444136B2
JPH0444136B2 JP16966684A JP16966684A JPH0444136B2 JP H0444136 B2 JPH0444136 B2 JP H0444136B2 JP 16966684 A JP16966684 A JP 16966684A JP 16966684 A JP16966684 A JP 16966684A JP H0444136 B2 JPH0444136 B2 JP H0444136B2
Authority
JP
Japan
Prior art keywords
groove
variable
pulley
belt
fixed side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16966684A
Other languages
Japanese (ja)
Other versions
JPS6148656A (en
Inventor
Yukyoshi Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16966684A priority Critical patent/JPS6148656A/en
Publication of JPS6148656A publication Critical patent/JPS6148656A/en
Publication of JPH0444136B2 publication Critical patent/JPH0444136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、可変Vプーリー式無段変速機に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a variable V-pulley continuously variable transmission.

〔従来の技術〕[Conventional technology]

可変Vプーリー式無段変速機は、無端状のVベ
ルトがが掛け渡される一対のVプーリーのうち、
少なくとも一方のものにはVベルトの巻き付く径
を無段階に変え得る可変Vプーリーを使用して、
この可変VプーリーにおけるVベルトの巻き付く
径の変化によつて無段階に変速を行うもので、比
較的簡単な構造で無段変速が行えるため、特開昭
58−137663号公報にも記載のように、エンジン出
力が小さい自動二輪車等の変速機として極めて有
効である。
A variable V-pulley continuously variable transmission has a pair of V-pulleys around which an endless V-belt is stretched.
At least one of them uses a variable V pulley that can steplessly change the diameter of the V belt,
The variable speed is changed steplessly by changing the diameter of the V-belt wrapped around the variable V pulley, and since stepless speed change can be achieved with a relatively simple structure,
As described in Japanese Patent No. 58-137663, it is extremely effective as a transmission for motorcycles with low engine output.

第1図は、このような可変Vプーリー式無段変
速機の一従来例を示している。
FIG. 1 shows a conventional example of such a variable V-pulley type continuously variable transmission.

この無段変速機は、変速比の設定範囲を広くす
るために、入力側と出力側との双方に可変Vプー
リー1,2を使用したもので、これらの可変Vプ
ーリー1,2にチエーン式Vベルト3を掛け渡し
ている。
This continuously variable transmission uses variable V pulleys 1 and 2 on both the input and output sides in order to widen the setting range of the gear ratio. V-belt 3 is stretched across it.

このチエーン式Vベルト3は、第2図および第
3図にも示したように、2種類のリンクプレート
4,5を連結ピン6およびブツシユ7によつてチ
エーンの如く無端状に連結するとともに、各リン
グプレート4,5に各プーリー1,2のV溝に係
合する駆動ブロツク8,9を設けたもので、これ
らの駆動ブロツク8,9によりVベルトとしての
機能を得ている。
As shown in FIGS. 2 and 3, this chain type V-belt 3 connects two types of link plates 4 and 5 with a connecting pin 6 and a bush 7 in an endless manner like a chain. Each ring plate 4, 5 is provided with drive blocks 8, 9 that engage with the V grooves of each pulley 1, 2, and these drive blocks 8, 9 provide a function as a V belt.

前記可変プーリー1,2は、第4図に示すよう
に、軸Aに固定される固定側V溝構成盤Bと、こ
の固定溝V溝構成盤Bに対向するとともに、この
固定側V溝構成盤Bに対して軸線方向にのみ移動
自在に設けられて固定側V溝構成盤Bと協働して
V溝Cを形成する勧動側V溝構成盤Dと、この可
動側V溝構成盤Dを固定側V溝構成盤Bに向けて
付勢してV溝CとVベルト3との間に摩擦力を生
ぜしめる付勢手段(図示略)とを備えた構成とさ
れており、前記可動側V溝構成盤Dの軸線方向の
移動によつてVベルト3の巻き付く径を変える。
前記V溝Cを形成する各V溝構成盤B,Dの傾斜
面E,Fは、全域にわたつて略均一に仕上げられ
て所定の摩擦係数が与えられている。
As shown in FIG. 4, the variable pulleys 1 and 2 face a fixed-side V-groove structure plate B fixed to the shaft A, and this fixed-side V-groove structure plate B, and the fixed-side V-groove structure plate B. A movable side V-groove structure board D that is movable only in the axial direction with respect to the board B and cooperates with the fixed side V-groove structure board B to form the V-groove C, and this movable side V-groove structure board The structure includes a biasing means (not shown) that biases D toward the stationary side V-groove configuration board B to generate a frictional force between the V-groove C and the V-belt 3, and By moving the movable V-groove configuration board D in the axial direction, the diameter of the V-belt 3 around which it is wound is changed.
The inclined surfaces E and F of the V-groove constituent plates B and D forming the V-groove C are finished substantially uniformly over the entire area and are given a predetermined coefficient of friction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の可変Vプーリー1,2は、可動側V溝構
成盤Dを付勢する付勢手段によつてV溝CとVベ
ルト3との間に摩擦力を生ぜしめ、この摩擦力に
よつてVプーリー1からVベルト3へ、そしてV
ベルト3からVプーリー2へと順次動力を伝達す
るのであるが、Vベルト3の巻き付く径が変化し
て変速比が変化する場合には、Vベルト3の巻き
付く径の増減に対応してV溝CとVベルト3との
間の接触面積も増減するため、前記付勢手段に可
動側V溝構成盤Dを付勢する力が略一定となる単
純な弾発部材を使用すると、動力伝達に関係する
摩擦力自体が変速比の変化に伴つて増減すること
になつて不都合な問題が生じてしまう。
The aforementioned variable V pulleys 1 and 2 generate a frictional force between the V-groove C and the V-belt 3 by the urging means that urges the movable side V-groove structure plate D, and this frictional force causes From V pulley 1 to V belt 3, and then V
Power is transmitted sequentially from the belt 3 to the V-pulley 2, but when the diameter of the V-belt 3 changes and the gear ratio changes, the power is transmitted sequentially from the belt 3 to the V-pulley 2. Since the contact area between the V-groove C and the V-belt 3 also increases or decreases, if a simple elastic member is used as the biasing means so that the force for biasing the movable side V-groove component plate D is approximately constant, the power An inconvenient problem arises because the frictional force itself related to transmission increases or decreases as the gear ratio changes.

例えば、入力側のVプーリー1では、大きなト
ルクを伝達しなければならない場合に、Vベルト
3の巻き付く径を小さくして変速比を大きくする
が、このVベルト3の巻き付く径の縮小によつて
V溝CとVベルト3との接触面積が小くなり、こ
れによつてVベルト3とV溝Cとの間に生じる摩
擦力が相対的に以前の状態より小さくなつて最大
許容伝達トルクが低下してしまうという問題が生
じる。
For example, when the V-pulley 1 on the input side has to transmit a large torque, the diameter of the V-belt 3 is reduced to increase the gear ratio. Therefore, the contact area between the V-groove C and the V-belt 3 becomes smaller, and as a result, the frictional force generated between the V-belt 3 and the V-groove C becomes relatively smaller than before, resulting in the maximum allowable transmission. A problem arises in that the torque decreases.

この発明は、このような問題を解決すべく提案
されたもので、可変Vプーリーの可動側V溝構成
盤を付勢する付勢手段として付勢する力がほぼ一
定の単純な弾発部材を使用したとしても、動力伝
達に関係するVベルトとV溝との間の摩擦力が変
速比の変化に伴つて増減するようなことがない可
変Vプーリー式無段変速機を得ること、すなわ
ち、変速範囲の全域にわたつて許容伝達トルクを
高く維持でき、しかも部品が安価で済む可変Vプ
ーリー式無段変速機を得ることを目的とする。
This invention was proposed to solve such problems, and uses a simple elastic member with a substantially constant biasing force as a biasing means for biasing the movable V-groove plate of the variable V pulley. To obtain a variable V-pulley type continuously variable transmission in which the frictional force between a V-belt and a V-groove related to power transmission does not increase or decrease with a change in the gear ratio even when used, that is, To provide a variable V-pulley type continuously variable transmission capable of maintaining high allowable transmission torque over the entire speed change range and requiring inexpensive parts.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の可変Vプーリー式無段変速機は、前
述の問題を解決する手段として、可変Vプーリー
を構成する固定側と可動側との各V溝構成盤は、
V溝を形成する傾斜面の摩擦係数を、傾斜面の径
が小さくなるに従つて大きくした。
In the variable V-pulley type continuously variable transmission of the present invention, as a means to solve the above-mentioned problem, each of the V-groove configuration plates on the fixed side and the movable side constituting the variable V-pulley is
The friction coefficient of the sloped surface forming the V-groove was increased as the diameter of the sloped surface became smaller.

〔作 用〕[Effect]

このように、V溝を形成する傾斜面の摩擦係数
を傾斜面の径が小さくなるに従つて大きくする
と、Vベルトの巻き付く径が小くなつてVベルト
とV溝との接触面積が減少しても、この接触面積
の減少によつて減る摩擦力を、増大した摩擦係数
によつて増加する摩擦力で補償することができ
る。したがつて、可変Vプーリーの可動側V溝構
成盤を付勢する付勢手段として、付勢する力が略
一定の単純な弾発部材を使用したとしても、Vベ
ルトとV溝との間に生じる摩擦力が変速比の変化
に伴つて増減するような不都合は生じなくなる。
In this way, if the friction coefficient of the sloped surface forming the V-groove is increased as the diameter of the sloped surface becomes smaller, the diameter around which the V-belt wraps becomes smaller, and the contact area between the V-belt and the V-groove decreases. Even if the frictional force decreases due to the reduction in the contact area, it can be compensated for by the increased frictional force due to the increased friction coefficient. Therefore, even if a simple resilient member with a substantially constant biasing force is used as a biasing means for biasing the movable side V-groove configuration plate of the variable V pulley, the gap between the V-belt and the V-groove This eliminates the problem that the frictional force generated in the transmission increases or decreases as the gear ratio changes.

〔実施例〕〔Example〕

第5図は、本発明を適用したスクータ型自動二
輪車の要部の断面図である。
FIG. 5 is a sectional view of the main parts of a scooter type motorcycle to which the present invention is applied.

図において、10はエンジン、11はケースで
あり、このケース11の後部に後輪12の回転軸
となるフアイナルシヤフト13が支持されてい
る。
In the figure, 10 is an engine, 11 is a case, and a final shaft 13 serving as a rotation axis of a rear wheel 12 is supported at the rear of the case 11.

ケース11は、エンジン10側に変速機室14
を画成し、かつフアイナルシヤフト13側に減速
機室15を画成している。そして変速機室14内
には本発明に係る無段変速機16が内装され、減
速機室15にはクラツチ機構17を介して前記無
段変速機16から回転力を受けるドリブンシヤフ
ト18や該シヤフト18の回転を前記フアイナル
シヤフト13に伝達する歯車19,20,21が
内装されている。
The case 11 has a transmission chamber 14 on the engine 10 side.
A reduction gear chamber 15 is defined on the final shaft 13 side. A continuously variable transmission 16 according to the present invention is housed in the transmission chamber 14, and a driven shaft 18 which receives rotational force from the continuously variable transmission 16 via a clutch mechanism 17 and the shaft are installed in the reduction gear chamber 15. Gears 19, 20, and 21 for transmitting the rotation of 18 to the final shaft 13 are installed inside.

前記無段変速機16は、前記エンジン10のク
ランクシヤフト10aを入力軸とし、かつ前記ド
リブンシヤフト18上にペアリング22,23を
介して回転自在に外嵌された円筒状のドリブンフ
エースボス24を出力軸とし、日この入力軸(ク
ランクシヤフト10a)と出力軸(ドリブンフエ
ースボス24)との双方に可変Vプーリー25,
26を設けるとともに、これらの可変Vプーリー
25,26に無端状のチエーン式Vベルト3を掛
け渡して成る、いわゆる可変Vプーリー式のもの
で、該変速機16によつてクランクシヤフト10
aの回転力がドリブルフエースボス24に伝達さ
れ、該ドリブンフエースボス24の回転力が前記
クラツチ機構17のクラツチアウタ17aを介し
てドリブンシヤフト18に伝達される。
The continuously variable transmission 16 uses the crankshaft 10a of the engine 10 as an input shaft, and has a cylindrical driven face boss 24 rotatably fitted onto the driven shaft 18 via pairings 22 and 23. As an output shaft, a variable V pulley 25 is provided on both the input shaft (crankshaft 10a) and the output shaft (driven face boss 24).
26, and an endless chain type V belt 3 is stretched around these variable V pulleys 25, 26, which is the so-called variable V pulley type.
The rotational force of the driven face boss 24 is transmitted to the dribble face boss 24, and the rotational force of the driven face boss 24 is transmitted to the driven shaft 18 via the clutch outer 17a of the clutch mechanism 17.

それぞれの可変Vプーリー25,26は、前述
したように、軸に固定された固定側V溝構成盤2
5a,26aと、該固定側V溝構成盤25a,2
6aに対向して同軸上に設けられるとともに該固
定側V溝構成盤25a,26aに対して軸線方向
にのみ移動自在に支持された可動側V溝構成盤2
5b,26bとを備えており、これらの両V溝構
成盤によつてVベルト3を巻き掛けるV溝25
c,26cが形成されている。
As described above, each of the variable V pulleys 25 and 26 is connected to the fixed side V groove configuration board 2 fixed to the shaft.
5a, 26a, and the fixed side V-groove configuration board 25a, 2
A movable side V-groove structure board 2 is provided coaxially with the fixed side V-groove structure board 25a, 6a, and is supported movably only in the axial direction with respect to the fixed side V-groove structure boards 25a, 26a.
5b and 26b, and the V-groove 25 around which the V-belt 3 is wound is provided by both of these V-groove configuration boards.
c, 26c are formed.

各可変Vプーリー25,26は、それぞれの可
動側V溝構成盤25b,26bを固定側V溝構成
盤25a,26aに向けて付勢してV溝25c,
26cとVベルト3との間に摩擦力を生ぜしめる
付勢手段27,28を備えている。
Each of the variable V pulleys 25 and 26 biases the respective movable side V-groove configuration plates 25b and 26b toward the fixed side V-groove configuration plates 25a and 26a, and the V-groove 25c,
26c and the V-belt 3 are provided with biasing means 27 and 28 for generating a frictional force.

可変Vプーリー25の付勢手段27は、前記可
動側V溝構成盤25aの背後に配置されるととも
に軸線方向の動きが拘束されて、V溝構成盤25
aの背面との間にクランクシヤフト10aの軸中
心から離れるにしたがつて幅狭になる空所29を
形成したランププレート30と、空所29内に収
容されてクランクシヤフト10aの回転によつて
生じる遠心力で外側に移動するウエイトローラ3
1とを備え、該ウエイトローラ31が遠心力を受
けて外側に移動するときその遠心力によつてV溝
構成盤25aを付勢して釣合う位置までV溝構成
盤25aを移動させる。
The biasing means 27 of the variable V-pulley 25 is disposed behind the movable side V-groove structure plate 25a, and its movement in the axial direction is restrained, so that the biasing means 27 of the variable V-groove structure plate 25
A lamp plate 30 has a space 29 formed between it and the back surface of the crankshaft 10a, the width of which becomes narrower as the distance from the center of the axis of the crankshaft 10a increases. Weight roller 3 moves outward due to the centrifugal force generated
1, and when the weight roller 31 moves outward under centrifugal force, the centrifugal force urges the V-groove structure plate 25a to move the V-groove structure plate 25a to a balanced position.

可変Vプーリー26の付勢手段28は、圧縮コ
イルばねで、この圧縮コイルばね28はドリブン
フエースボス24の端部に固定されたクラツチプ
レート32と可動側V溝構成盤26bとの間に圧
縮状態で装着されてほぼ一定の力でV溝構成盤2
6bを付勢している。
The biasing means 28 of the variable V pulley 26 is a compression coil spring, and the compression coil spring 28 is in a compressed state between the clutch plate 32 fixed to the end of the driven face boss 24 and the movable V groove configuration plate 26b. V-groove configuration board 2 is attached with almost constant force.
6b is energized.

以上説明した可変Vプーリー25,26は、そ
れぞれ動力伝達効率を改善することからV溝25
c,26cを構成する各V溝構成盤の傾斜面に工
夫が凝らしてある。この点について、可変プーリ
ー26を例にとつて説明する。
The variable V pulleys 25 and 26 described above improve the power transmission efficiency, so the V groove 25 and 26 each improve the power transmission efficiency.
The slopes of the V-groove plates that make up parts c and 26c have been carefully designed. This point will be explained using the variable pulley 26 as an example.

可変Vプーリー26の各V溝構成盤26a,2
6bは、第6図に示すように、V溝26cを構成
する傾斜面Sが、溶着層33によつて与えられて
いる。
Each V groove configuration board 26a, 2 of the variable V pulley 26
6b, as shown in FIG. 6, the inclined surface S forming the V-groove 26c is provided by the welding layer 33.

この溶着層33は、各V溝構成盤26a,26
bの地金26d,26e上に微細な金属つぶを溶
着させたもので、金属つぶの大小等の設定によつ
て、径が小さくなるに従つて摩擦係数が大きくな
るように配置されている。
This welding layer 33 is applied to each V-groove configuration board 26a, 26.
Fine metal pieces are welded onto base metals 26d and 26e of b, and are arranged so that the coefficient of friction increases as the diameter decreases by setting the size of the metal pieces.

このように、V溝26cを形成する傾斜面Sの
摩擦係数を傾斜面Sの径が小さくなるに従つて大
きくすると、Vベルト3の巻き付く径が小くなつ
てVベルト3とV溝26cとの接触面積が減少し
ても、この接触面積の減少によつて減る摩擦力
を、増大した摩擦係数によつて増加する摩擦力で
補償することができる。したがつて、可変Vプー
リー26の可動側V溝構成盤26bを付勢する付
勢手段28として、前述の圧縮コイルばねの如く
付勢する力が略一定の単純な弾発部材を使用した
としても、Vベルト3とV溝26cとの間に生じ
る摩擦力が変速比の変化に伴つて増減するような
不都合は生じなくなる。そのため、変速範囲の全
域にわたつて許容伝達トルクを高く維持でき、し
かも部品を安価にすることによつてコスト低減を
図ることも可能になる。
In this way, if the coefficient of friction of the slope S forming the V-groove 26c is increased as the diameter of the slope S becomes smaller, the diameter around which the V-belt 3 is wound becomes smaller, and the V-belt 3 and the V-groove 26c are Even if the contact area is reduced, the reduced frictional force due to the reduced contact area can be compensated for by the increased frictional force due to the increased friction coefficient. Therefore, if a simple elastic member with a substantially constant urging force, such as the aforementioned compression coil spring, is used as the urging means 28 for urging the movable side V-groove configuration plate 26b of the variable V pulley 26, Also, the disadvantage that the frictional force generated between the V-belt 3 and the V-groove 26c increases or decreases as the gear ratio changes does not occur. Therefore, it is possible to maintain a high allowable transmission torque over the entire speed change range, and it is also possible to reduce costs by using cheaper parts.

なお、前記一実施例においては、傾斜面Sを全
て溶着層33によつて得ることとしたが、傾斜面
Sの構造はこれに限らない。例えば、第7図に示
すように、傾斜面Sを径の大きい側の第1の層3
4と径の小さい側の第2の層35との2つの層に
よつて構成し、第1の層34は前述の金属つぶを
溶着させたもの、第2の層35はゴム材やセラミ
ツクを使用したものとすることもでき、さらに多
数の層によつて構成することもできる。ゴム材や
セラミツクで形成した傾斜面は、この実施例のチ
エーン式Vベルト3のようにV溝26cに接触す
る部分が金属である場合に適している。
In addition, in the above-mentioned example, although the slope S was entirely obtained by the welding layer 33, the structure of the slope S is not limited to this. For example, as shown in FIG.
4 and a second layer 35 on the smaller diameter side, the first layer 34 is made of welded metal pieces, and the second layer 35 is made of rubber or ceramic. It can also be constructed with a large number of layers. The inclined surface formed of a rubber material or ceramic is suitable when the portion contacting the V groove 26c is metal, as in the chain type V belt 3 of this embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の可変Vプーリ
ー式無段変速機は、V溝を形成する各V溝構成盤
の傾斜面の摩擦係数を、傾斜面の径が小さくなる
に従つて大きくしている。そのため、可動側V溝
構成盤の移動によつてVベルトの巻き付く径が小
さくなつてVベルトとV溝との接触面積が減少し
ても、この接触面積の減少によつて減る摩擦力
は、増大した摩擦係数によつて増加する摩擦力で
補償してやることができる。したがつて、可変V
プーリーの可動側V溝構成盤を付勢する付勢手段
として、付勢する力がほぼ一定の単純な構造の弾
発部材を使用したとしても、VベルトとV溝との
間に生じる摩擦力が変速比の変化に伴つて増減す
るような不都合は生じなくなる。換言すると、変
速範囲の全域にわたつて許容伝達トルクを高く維
持でき、しかも部品の価格も安価にすることがで
きるようになつている。
As explained above, in the variable V-pulley type continuously variable transmission of the present invention, the coefficient of friction of the slope of each V-groove component plate that forms the V-groove is increased as the diameter of the slope becomes smaller. There is. Therefore, even if the diameter of the V-belt around which the V-belt wraps becomes smaller due to the movement of the movable V-groove configuration board and the contact area between the V-belt and the V-groove decreases, the frictional force that decreases due to this decrease in contact area will decrease. , the increased frictional force can be compensated for by the increased coefficient of friction. Therefore, the variable V
Even if a simple elastic member with a substantially constant biasing force is used as the biasing means for biasing the V-groove component plate on the movable side of the pulley, the frictional force generated between the V-belt and the V-groove The inconvenience of increasing or decreasing the speed change ratio as the gear ratio changes will no longer occur. In other words, it is now possible to maintain a high allowable transmission torque over the entire shift range, and also to reduce the cost of parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の可変Vプーリー式無段変速機の
説明図、第2図および第3図は第1図に使用され
ているチエーン式Vベルトを拡大して示したもの
で、第2図は正面図、第3図は平面図、第4図は
従来の可変Vプーリーの断面図、第5図は本発明
が適用された自動二輪車の要部の断面図、第6図
は本発明の一実施例の要部の拡大断面図、第7図
は本発明の他の実施例の要部の拡大断面図であ
る。 10a……クランクシヤフト、16……無段変
速機、24……ドリブンフエースボス、25,2
6……可変Vプーリー、25a,26a……固定
側V溝構成盤、25b,26b……可動側V溝構
成盤、25c,26c……V溝、26d,26e
……地金、27,28……付勢手段、S……傾斜
面、33……溶着層、34……第1の層、35…
…第2の層。
Figure 1 is an explanatory diagram of a conventional variable V-pulley type continuously variable transmission, Figures 2 and 3 are enlarged views of the chain type V-belt used in Figure 1, and Figure 2 is an illustration of a conventional variable V-pulley type continuously variable transmission. 3 is a front view, FIG. 3 is a plan view, FIG. 4 is a sectional view of a conventional variable V pulley, FIG. 5 is a sectional view of the main parts of a motorcycle to which the present invention is applied, and FIG. FIG. 7 is an enlarged sectional view of the main parts of one embodiment, and FIG. 7 is an enlarged sectional view of the main parts of another embodiment of the present invention. 10a...Crankshaft, 16...Continuously variable transmission, 24...Driven face boss, 25,2
6...Variable V pulley, 25a, 26a...Fixed side V groove configuration board, 25b, 26b...Movable side V groove configuration board, 25c, 26c...V groove, 26d, 26e
... Base metal, 27, 28 ... Biasing means, S ... Inclined surface, 33 ... Welding layer, 34 ... First layer, 35 ...
...Second layer.

Claims (1)

【特許請求の範囲】[Claims] 1 入力軸および出力軸となる一対の軸と、これ
らの軸に取り付けられた一対のVプーリーと、こ
れら一対のVプーリーのV溝に掛け渡される無端
状のVベルトとを備え、かつ前記一対のVプーリ
ーのうち少なくとも一方のものには、軸に固定さ
れる固定側V溝構成盤と、該固定側V溝構成盤に
対向するとともに該固定側V溝構成盤に対して軸
線方向にのみ移動自在に設けられて、固定側V溝
構成盤と協働して前記V溝を形成する可動側V溝
構成盤と、この可動側V溝構成盤を固定側V溝構
成盤に向けて付勢してV溝とVベルトとの間に摩
擦力を生ぜしめる付勢手段とを備えた構成の可変
Vプーリーが使用され、この可変Vプーリーの可
動側V溝構成盤の軸線方向への移動によつてVベ
ルトの巻き付く径を変えて所望の変速比を得る可
変Vプーリー式無段変速機において、前記可変V
プーリーの各V溝構成盤は、V溝を形成する傾斜
面の摩擦係数が、径が小さくなるに従つて大きく
設定されていることを特徴とする可変プーリー式
無段変速機。
1 comprising a pair of shafts serving as an input shaft and an output shaft, a pair of V pulleys attached to these shafts, and an endless V belt stretched across the V grooves of the pair of V pulleys, and At least one of the V pulleys has a fixed side V-groove structure plate fixed to the shaft, and a fixed side V-groove structure plate facing the fixed side V-groove structure plate and only in the axial direction with respect to the fixed side V-groove structure plate. a movable side V-groove configuration board that is movably provided and forms the V-groove in cooperation with a fixed side V-groove configuration board; and a movable side V-groove configuration board that is attached toward the fixed side V-groove configuration board. A variable V pulley is used, which includes a biasing means for generating friction between the V groove and the V belt.The variable V pulley is moved in the axial direction of the movable V groove configuration plate. In a variable V pulley type continuously variable transmission that obtains a desired gear ratio by changing the winding diameter of the V belt, the variable V
A variable pulley type continuously variable transmission characterized in that each V-groove forming plate of the pulley has a friction coefficient set to be larger as the diameter of the inclined surface forming the V-groove becomes smaller.
JP16966684A 1984-08-14 1984-08-14 Variable v pulley type continuously variable transmission Granted JPS6148656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16966684A JPS6148656A (en) 1984-08-14 1984-08-14 Variable v pulley type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16966684A JPS6148656A (en) 1984-08-14 1984-08-14 Variable v pulley type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS6148656A JPS6148656A (en) 1986-03-10
JPH0444136B2 true JPH0444136B2 (en) 1992-07-20

Family

ID=15890668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16966684A Granted JPS6148656A (en) 1984-08-14 1984-08-14 Variable v pulley type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS6148656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251578A (en) * 2011-06-01 2012-12-20 Nissan Motor Co Ltd Chain type stepless variable speed transmission mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076889A1 (en) * 2003-02-28 2004-09-10 Yamaha Hatsudoki Kabushiki Kaisha Belt-type continuos stepless speed changer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251578A (en) * 2011-06-01 2012-12-20 Nissan Motor Co Ltd Chain type stepless variable speed transmission mechanism

Also Published As

Publication number Publication date
JPS6148656A (en) 1986-03-10

Similar Documents

Publication Publication Date Title
JP3061130U (en) Gearing
JPH02154848A (en) Belt type continuously variable transmission
CA2434229A1 (en) Dual cam surface clutch
US5601507A (en) Mechanical gearing
JP3792199B2 (en) Belt drive ring CVT coupler
JP3683532B2 (en) Drive ring CVT belt
JPH0444136B2 (en)
AU2001273547A1 (en) Belt drive ring CVT coupler
AU2001245820A1 (en) Drive ring CVT belt
RU2012833C1 (en) Mechanism for stepless automatic controlling of gear ratio
JPS6182061A (en) V belt transmission device
US8790199B2 (en) Radial diaphragm spring clutch
JP4809526B2 (en) Belt type continuously variable transmission
JPS63120950A (en) Continuously variable transmission
JPH02173447A (en) Continuously variable transmission
JPH0135973Y2 (en)
JPH05296306A (en) Continuously variable transmission
JPS6213854A (en) V belt driven continuously variable transmission
JPH0514714U (en) Torque cam of continuously variable transmission
JP3186650B2 (en) V-belt continuously variable transmission
JPH10196748A (en) Continuously variable transmission
KR100591102B1 (en) Drive ring cvt coupler
JP2004286046A (en) Continuously variable transmission
JPH01238760A (en) Transmission
JPS6316912Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term