JPH0443935A - Measuring method for laying length of optical fiber cable - Google Patents

Measuring method for laying length of optical fiber cable

Info

Publication number
JPH0443935A
JPH0443935A JP14991390A JP14991390A JPH0443935A JP H0443935 A JPH0443935 A JP H0443935A JP 14991390 A JP14991390 A JP 14991390A JP 14991390 A JP14991390 A JP 14991390A JP H0443935 A JPH0443935 A JP H0443935A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber cable
length
cable
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14991390A
Other languages
Japanese (ja)
Inventor
Hajime Kato
一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP14991390A priority Critical patent/JPH0443935A/en
Publication of JPH0443935A publication Critical patent/JPH0443935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To accurately measure the laying length of the optical fiber cable from length information on the cable itself by generating a temperature difference at a known position of the fiber cable and measuring the laying length while setting the position as a measurement reference point. CONSTITUTION:While the temperature difference is generated at the start part A of a laying route, an OTDR device 3 makes a light pulse incident on an optical fiber of the optical fiber cable 2 from one end and when backward RAMAN scattered light which is generated in the optical fiber is photodetected, the intensity levels of Stokes light and anti-Stokes light which are two components of the Raman scattered light are detected as a function of the distance from the optical fiber incidence end to calculate their intensity ratio. Then the distance from the point (start part A) where temperature is maximum or minimum in this temperature distribution to the tip of the optical fiber cable 2 is found to obtain the wiring length l.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバケーブルの布設長さを計尺する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the installation length of an optical fiber cable.

[従来の技術] 一般に、光ファイバケーブルを布設した場合、その布設
長さを具体的に知る必要がある。従来、光ファイバケー
ブルの製造時点で、予めそのケーブルに長さを示すマー
キングをつけておき、布設時にそのマーキングを読み取
り、その読み値から布設長さを求める方法は知られてい
る。
[Prior Art] Generally, when an optical fiber cable is installed, it is necessary to specifically know the length of the installation. Conventionally, a method is known in which a marking indicating the length is attached to the optical fiber cable in advance at the time of manufacturing the cable, the marking is read at the time of installation, and the installation length is determined from the read value.

[発明が解決しようとする課題] しかしながら、光ファイバケーブルには、布設時に付与
される張力によって、伸びが発生することが避けられな
い。このため、上記のようなマーキングによる布設長の
測定方法では、このケーブルの伸びに起因してマーキン
グの読み値がくるってしまい、正確な布設長さの測定を
行うことが困難である。勿論、メジャー等により実測す
ることも考えられるが、この方法では測定に手間がかか
る。
[Problems to be Solved by the Invention] However, optical fiber cables inevitably elongate due to tension applied during installation. For this reason, in the method of measuring the installation length using markings as described above, the reading value of the markings is distorted due to the elongation of the cable, making it difficult to accurately measure the installation length. Of course, it is also possible to actually measure using a measuring tape or the like, but this method requires a lot of effort.

本発明の目的は、OTDRの手法を用いて、前記した従
来技術の欠点を解消し、布設された光ファイバケーブル
の布設長さを、正確に且つ容易に測定する方法を捷供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for accurately and easily measuring the length of a laid optical fiber cable by using an OTDR technique, which eliminates the drawbacks of the prior art described above.

[課題を解決するための手段1 本発明は、上記目的を達成するために、布設された光フ
ァイバケーブルの既知の位置に温度差を与えた状態で、
OTDR装置により、上記温度差を与えた位Iを測定基
点として、上記光ファイバケーブルの布設長さを測定す
るものである。
[Means for Solving the Problems 1] In order to achieve the above-mentioned object, the present invention provides an optical fiber cable with a temperature difference applied to a known position of the installed optical fiber cable.
The installation length of the optical fiber cable is measured using the OTDR device using the position I where the temperature difference is given as a measurement reference point.

[作用コ 布設された光ファイバケーブルの既知の位置に温度差を
与えることで、その既知の位置を測定基点として用いる
ことができ、OTDR法による布設長さの測定が可能と
なる。OTDR法によれば、光ファイバケーブルの布設
長さを、光ファイバケーブル自身の長さ情報で測定でき
、ケーブルが伸縮しても、その伸縮量を含んだ状態で高
精度に測定できる。また、光ファイバケーブル自身を、
長さ計測用センサとして使用できるため、メジャー等の
計測装置を別途に用意する必要がなく、容易に布設長さ
を知ることができる。
[Operation] By applying a temperature difference to a known position of a laid optical fiber cable, the known position can be used as a measurement reference point, and the length of the laid optical fiber cable can be measured by the OTDR method. According to the OTDR method, the installed length of an optical fiber cable can be measured using the length information of the optical fiber cable itself, and even if the cable expands or contracts, it can be measured with high accuracy, including the amount of expansion or contraction. In addition, the optical fiber cable itself
Since it can be used as a length measurement sensor, there is no need to separately prepare a measurement device such as a tape measure, and the installation length can be easily determined.

〔実施例〕〔Example〕

以下に、本発明の実施例を添付図面に基づいて説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において、1は地表面から上方に立設された鉄塔
・電柱などの支持構造体、2はその構造体1に支持され
て布設される光ファイバケーブル、3はそのケーブル2
の光ファイバに光パルスを入射すると共に、その中で発
生した後方散乱光を利用して光ファイバケーブル2に沿
う温度分布を測定するOTDR装置、4は光ファイバケ
ーブル2をその外周から加熱或いは冷却して、外気温度
に対して温度差を付与する温度差付与装置である。
In Fig. 1, 1 is a support structure such as a steel tower or telephone pole that is erected above the ground surface, 2 is an optical fiber cable that is supported by the structure 1, and 3 is the cable 2
4 is an OTDR device that measures the temperature distribution along the optical fiber cable 2 by injecting a light pulse into the optical fiber and using the backscattered light generated therein, 4 heating or cooling the optical fiber cable 2 from its outer circumference; This is a temperature difference providing device that provides a temperature difference with respect to the outside air temperature.

光ファイバケーブル2は、予めドラム等に巻き取られて
おり、その巻取部2aから一端側が順に送り出され、布
設ルートに沿って支持構造体1.1・・間に掛は渡され
ていく、このため、実測すべき光ファイバケーブル2の
布設長さは、巻fi部2aよりのケーブル2送出部すな
わち布設ルートの起点部Aから、布設された光ファイバ
ケーブル2の先端までとなる。
The optical fiber cable 2 is wound on a drum or the like in advance, and one end side is sent out in sequence from the winding part 2a, and a hook is passed between the support structures 1.1 and 1.1 along the installation route. Therefore, the actual installation length of the optical fiber cable 2 to be measured is from the cable 2 delivery part from the winding fi section 2a, that is, the starting point A of the installation route, to the tip of the installed optical fiber cable 2.

本実施例では、この光ファイバケーブル2の布設長さを
、そのケーブル2自身のスケールで測定するために、O
TDR手法を採用している。しかし、OTDR法にて得
られる距離の情報は、光ファイバケーブル2の端部を基
準として表現されるものであり、何等、この距離情報と
上記起点部Aとの対応付けができていない、そのため、
未だ巻取部2aにある光ファイバケーブル2と、既に布
設された光ファイバケーブル2とを区別できず、布設長
さを測定することはできない、そこで、本発明では、上
記布設ルートの起点部Aに対して既知の位置(本実施例
では起点部A上)に温度差付与装置4を設けて、ケーブ
ル2に温度差を付与することにより、上記距離情報と起
点部2aとの対応付けを行い、OTDR法により布設長
さを測定する場合の測定基点を作り出している。
In this embodiment, in order to measure the installation length of this optical fiber cable 2 on the scale of the cable 2 itself, O
The TDR method is adopted. However, the distance information obtained by the OTDR method is expressed with the end of the optical fiber cable 2 as a reference, and for some reason this distance information cannot be correlated with the starting point A above. ,
It is not possible to distinguish between the optical fiber cable 2 that is still in the winding section 2a and the optical fiber cable 2 that has already been laid, and the laying length cannot be measured.Therefore, in the present invention, the starting point A of the laying route is By providing a temperature difference applying device 4 at a known position (in this embodiment, on the starting point A) and applying a temperature difference to the cable 2, the distance information and the starting point 2a are associated with each other. , creates a measurement reference point when measuring the installation length using the OTDR method.

今、布設ルートの起点部Aに温度差を付与した状態で、
OTDR装置3により、光ファイバケーブル2の光ファ
イバにその一端から光パルスを入射し、その中で発生し
た後方ラマン散乱光を受光すると、まず、そのラマン散
乱光の2成分であるストークス光およびアンチストーク
ス光それぞれの強度レベルが、上記光フアイバ入射端か
らの距離の関数として検出され、これらの強度比が算出
される0通常、このストークス光とアンチストークス光
との強度比は純粋に温度のみの関数であるので、次に、
この強度比に基づいて、光ファイバケーブル2に沿う温
度分布が求められる。このとき、上述したように起点部
Aにおいてケーブル2に温度差が付与されているため、
OTDR装置3にて得られる温度分布は第2図(b)に
示す如くなる。すなわち、起点部Aにあるケーブル2の
温度が、他の領域の温度に比して大きくあるいは小さく
変化して現れる。そのため、次に、この温度分布におい
て、温度が極大あるいは極小となる位置(起点部A)か
ら光ファイバケーブル2先#itで距離が求められ、布
設長さΔjが得られる4このように、光ファイバケーブ
ル2の布設開始点である起点部Aに温度差を与えて、そ
こに測定基点を作り出していると共に、OTDR法によ
り光ファイバケーブル2に沿う温度分布を求め、その分
布から布設長さΔノを測定したので、光ファイハゲ−プ
ル2自体の距離情報により、布設長さΔjを求めること
ができる。よって、布設時或いは布設後に光ファイバケ
ーブル2に伸びが生じた場合でも、その伸びを含めた形
で布8長さΔjを測定でき、測定の高精度化が図れる。
Now, with a temperature difference being applied to the starting point A of the installation route,
When the OTDR device 3 inputs a light pulse into the optical fiber of the optical fiber cable 2 from one end and receives the backward Raman scattered light generated therein, the two components of the Raman scattered light, Stokes light and anti- The intensity level of each Stokes beam is detected as a function of the distance from the input end of the optical fiber, and the intensity ratio of these is calculated.Normally, the intensity ratio of the Stokes beam and the anti-Stokes beam is determined purely by temperature. Since it is a function, then
Based on this intensity ratio, the temperature distribution along the optical fiber cable 2 is determined. At this time, since a temperature difference is applied to the cable 2 at the starting point A as described above,
The temperature distribution obtained by the OTDR device 3 is as shown in FIG. 2(b). That is, the temperature of the cable 2 at the starting point A appears to change more or less than the temperature in other areas. Therefore, in this temperature distribution, the distance from the position where the temperature is maximum or minimum (starting point A) to the end of the optical fiber cable #it is determined, and the installation length Δj is obtained. A temperature difference is given to the starting point A, which is the starting point of the fiber cable 2, to create a measurement reference point there, and the temperature distribution along the optical fiber cable 2 is determined by the OTDR method, and from that distribution, the laying length Δ is determined. Since the distance is measured, the installation length Δj can be determined from the distance information of the optical fiber pull 2 itself. Therefore, even if the optical fiber cable 2 is stretched during or after installation, the length Δj of the cloth 8 can be measured in a manner that includes the stretch, and high accuracy of measurement can be achieved.

しかも、上述のような布設長さΔjの測定は、光ファイ
バケーブル2の巻取部2a(tl端部にOTDR装置3
を、布設ルートの起点部Aに温度差付与装置4をそれぞ
れ設けるのみで行えるので、既に布設された光ファイバ
ケーブル2の部位を別途の計測用装置により測定する必
要がなく、布設される前のケーブル2への働きかけのみ
によって、布設長さΔ1を容易に知ることができる。ま
た、どのようなルートで布設された光ファイバケーブル
2についても、その布設長さΔJを容易に測定できる。
Moreover, the measurement of the installation length Δj as described above is performed using the OTDR device 3 at the winding part 2a (tl end) of the optical fiber cable 2.
This can be done by simply installing the temperature difference imparting devices 4 at the starting point A of the installation route, so there is no need to measure the part of the optical fiber cable 2 that has already been installed using a separate measurement device, and it is possible to Only by acting on the cable 2, the installation length Δ1 can be easily determined. Moreover, the installation length ΔJ of the optical fiber cable 2 installed along any route can be easily measured.

布設長測定の時期としては、光ファイバケーブル2の布
設作業が終了した時点で行ってもよいし、あるいは布設
作業の進行に伴って、適宜に行ってもよい。
The measurement of the installation length may be carried out at the time when the installation work of the optical fiber cable 2 is completed, or may be carried out at an appropriate time as the installation work progresses.

第2図は、光ファイバケーブル2の布設に伴って、その
ケーブル2の温度分布が随時変化する様子を示す、第2
図(a)はケーブル2を布設する直前での温度分布図で
あり、この状態から光フアイバグープル2の布設を開始
すると、上記装置4により温度差が付与される箇所がケ
ーブル2の内側に移動し、第2図(b)に示すように変
化する。
FIG. 2 shows a second diagram showing how the temperature distribution of the optical fiber cable 2 changes over time as the optical fiber cable 2 is laid.
Figure (a) is a temperature distribution diagram just before laying the cable 2. When the installation of the optical fiber group 2 is started from this state, the location where the temperature difference is applied by the device 4 moves to the inside of the cable 2. , changes as shown in FIG. 2(b).

なお、上記実施例では、温度差付与装置4を布設ルート
の起点部Aに設けたが、それを設ける位置は任意である
。要は、温度差を付与した位置をOTDR測定時に測定
基点として用いることができるように、布設ルートの起
点部Aに対して既知であればよい。
In the above embodiment, the temperature difference imparting device 4 was provided at the starting point A of the installation route, but it may be provided at any position. In short, it suffices if the position to which the temperature difference is applied is known with respect to the starting point A of the installation route so that it can be used as a measurement reference point during OTDR measurement.

[発明の効果] 以上要するに本発明によれば、次のごとく優れた効果を
発揮する。
[Effects of the Invention] In summary, according to the present invention, the following excellent effects are achieved.

光ファイバケーブルの既知の位置に温度差を与え、その
位置を測定基点としてOTDR法により布設長さを測定
したので、光フアイバクープルの布設長さを、そのケー
ブル自身の長さ情報から正確に測定できると共に、ケー
ブル自身をセンサとして容易に測定できる。
By applying a temperature difference to a known position on the optical fiber cable and measuring the installation length using the OTDR method using that position as the measurement reference point, it is possible to accurately determine the installation length of the optical fiber couple from the length information of the cable itself. Not only can it be measured, but it can also be easily measured using the cable itself as a sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光ファイバケーブルの布設長測定方法
を実施するための測定システムの一例を示す図、第2図
はOTDR装置で得られる光ファイバケーブルの温度分
布特性を示す図で、(a)は光ファイバケーブル布設直
前のもの、(b)は光ファイバケーブル布設後のもので
ある。 図中、1は支持構造体、2は光ファイバケーブル、3は
OTDR装置、4は温度差付与装置、Aは布設ルートの
起点部、Δjは布設長さである。 特許出願人  日立電線株式会社 代理人弁理士  絹 谷 信 雄 (Q) (b) 第2図
FIG. 1 is a diagram showing an example of a measurement system for implementing the optical fiber cable installation length measurement method of the present invention, and FIG. 2 is a diagram showing the temperature distribution characteristics of an optical fiber cable obtained by an OTDR device. A) shows the image immediately before the optical fiber cable is laid, and (b) shows the image after the optical fiber cable is laid. In the figure, 1 is a support structure, 2 is an optical fiber cable, 3 is an OTDR device, 4 is a temperature difference imparting device, A is the starting point of the installation route, and Δj is the installation length. Patent applicant: Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinutani (Q) (b) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、布設された光ファイバケーブルの既知の位置に温度
差を与えた状態で、OTDR装置により、上記温度差を
与えた位置を測定基点として、上記光ファイバケーブル
の布設長さを測定することを特徴とする光ファイバケー
ブルの布設長測定方法。
1. With a temperature difference applied to a known position of the installed optical fiber cable, the installed length of the optical fiber cable is measured using the OTDR device using the position where the temperature difference is applied as a measurement reference point. A method for measuring the installation length of optical fiber cables.
JP14991390A 1990-06-11 1990-06-11 Measuring method for laying length of optical fiber cable Pending JPH0443935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14991390A JPH0443935A (en) 1990-06-11 1990-06-11 Measuring method for laying length of optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14991390A JPH0443935A (en) 1990-06-11 1990-06-11 Measuring method for laying length of optical fiber cable

Publications (1)

Publication Number Publication Date
JPH0443935A true JPH0443935A (en) 1992-02-13

Family

ID=15485330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14991390A Pending JPH0443935A (en) 1990-06-11 1990-06-11 Measuring method for laying length of optical fiber cable

Country Status (1)

Country Link
JP (1) JPH0443935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543199B1 (en) 1998-04-30 2003-04-08 Uniroyal Chemical Company, Inc. Roof sheeting
GB2446986A (en) * 2006-02-15 2008-08-27 Schlumberger Holdings Determining the length of an electrical cable deployed into a well
WO2008104896A1 (en) * 2007-02-28 2008-09-04 Schlumberger Canada Limited Determining a length of a carrier line deployed into a well based on an optical signal
CN111043967A (en) * 2019-12-13 2020-04-21 北京航天控制仪器研究所 Method and device for monitoring optical fiber length of distributed optical fiber temperature sensing system in real time

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543199B1 (en) 1998-04-30 2003-04-08 Uniroyal Chemical Company, Inc. Roof sheeting
GB2446986A (en) * 2006-02-15 2008-08-27 Schlumberger Holdings Determining the length of an electrical cable deployed into a well
GB2446986B (en) * 2006-02-15 2009-02-11 Schlumberger Holdings Well depth measurement
US8269647B2 (en) 2006-02-15 2012-09-18 Schlumberger Technology Corporation Well depth measurement using time domain reflectometry
WO2008104896A1 (en) * 2007-02-28 2008-09-04 Schlumberger Canada Limited Determining a length of a carrier line deployed into a well based on an optical signal
US7593115B2 (en) 2007-02-28 2009-09-22 Schlumberger Technology Corporation Determining a length of a carrier line deployed into a well based on an optical signal
CN111043967A (en) * 2019-12-13 2020-04-21 北京航天控制仪器研究所 Method and device for monitoring optical fiber length of distributed optical fiber temperature sensing system in real time
CN111043967B (en) * 2019-12-13 2021-10-01 北京航天控制仪器研究所 Method and device for monitoring optical fiber length of distributed optical fiber temperature sensing system in real time

Similar Documents

Publication Publication Date Title
CN109297662B (en) Vibration test device and test method for overhead cable
JPH0921661A (en) Apparatus for monitoring underground state of anchor construction part
JP3668199B2 (en) Tunnel deformation measurement method
CN110319862B (en) A helical structure device for distributed optical fiber sensing among civil engineering
JP6346852B2 (en) Optical fiber bending shape measuring apparatus and bending shape measuring method thereof
JP4005708B2 (en) PC material with strain detection
US10378971B2 (en) Temperature sensor
JPH0443935A (en) Measuring method for laying length of optical fiber cable
JP2000039309A (en) Method and device for deformation inspection
JP3758905B2 (en) Optical fiber laying method and strain detection apparatus using optical fiber
EP1496352B1 (en) Method and apparatus for temperature monitoring of a physical structure
JP3553374B2 (en) Structural deformation measuring device
JPH11287650A (en) Measuring device for deformation of internal space of tunnel by use of optical fiber
JPH09318352A (en) Apparatus and method for measuring hollow displacement in tunnel
JP2000046528A (en) Distortion measuring method using optical fiber sensor
JP4105123B2 (en) Structure displacement / deformation detection system using optical fiber sensor
JP3120539B2 (en) Method and apparatus for equalizing the lengths of various strands constituting a cable stayed cable
JP2001241925A (en) Method and system for detecting strain, using optical fiber
JPH0712655A (en) Measurement system
JPH0587007U (en) Cable temperature measuring device
JP2004053437A (en) Instrument for measuring displacement
JP2693746B2 (en) measuring device
KR100326796B1 (en) The gauge wire for setting the suspending bridge cable and its manufacturing equipment
JP5613371B2 (en) Test method, apparatus and system for optical fiber cord control
WO2024075153A1 (en) Stake position change detection system and stake position change detection method