JPH044338A - Vibration control device - Google Patents

Vibration control device

Info

Publication number
JPH044338A
JPH044338A JP10395790A JP10395790A JPH044338A JP H044338 A JPH044338 A JP H044338A JP 10395790 A JP10395790 A JP 10395790A JP 10395790 A JP10395790 A JP 10395790A JP H044338 A JPH044338 A JP H044338A
Authority
JP
Japan
Prior art keywords
coil
compressor
permanent magnet
main coil
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10395790A
Other languages
Japanese (ja)
Inventor
Akira Nishinaka
西中 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10395790A priority Critical patent/JPH044338A/en
Publication of JPH044338A publication Critical patent/JPH044338A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce vibration transferred to the floor from a vibrator by controlling current energizing the coil of a magnetic cylinder while being synchronized with the displacement of the vibrator. CONSTITUTION:The vertical movement of a permanent magnet 8 which is vibrated monolithically with a compressor 19 acting as a vibrator, is detected by a sensor coil 7 as current signals. The detected signals are amplified by a power supply 14 so as to be supplied to a main coil 6 fixed on the floor plate 16, so that force is imparted to the permanent magnet 8 from the main coil 6 while the main coil is being synchronized. Since the compressor is indirectly supported by the electomagnetic force of the immovable main coil 6 fixed on the floor plate 16, vibration transferred to the floor plate can thereby be reduced to a great extent as compared with passive vibration prevention means such as single rubber or springs which is formerly used.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、空気調和装置の圧縮機などの振動体とこれを
支持する床との間に設けられる振動防止装置に関する。
The present invention relates to a vibration prevention device provided between a vibrating body such as a compressor of an air conditioner and a floor supporting the vibrating body.

【従来の技術】[Conventional technology]

従来、この種の振動防止装置として、例えば第5−に示
すようなものが知られている。この装置は、圧縮機19
を支持する床板16」二に取付ポル)+7を立設し、こ
の取付ボルト17、に図中左側に示すように下部ゴム盤
31.スプリング32゜」二部ゴム盤33を順次外嵌し
、さらに圧縮機19の下面外周に等間隔に3本突設した
脚部20の取付穴20aを挿通して、取付穴20aから
突出する取付ボルト17の先端にナツト21を螺着して
なり、ナツト2Iにより上下のゴム盤33.31を介し
て圧縮されるスプリング32で圧縮機19を支持してい
る。あるいは、上記床板16上の取付ボルト17に、図
中右側に示すように円柱状の吸振ゴム体34および上記
脚部20の取付穴20aを挿通し、同様にナツト21を
螺着して圧縮される吸振ゴム体34で圧縮機19を支持
している。 そして、上記スプリング32あるいは吸振ゴム体34に
より圧縮機19の運転に伴う振動を吸収し、床板16に
伝わる振動を低減するようになっている。
Conventionally, as this type of vibration prevention device, for example, the one shown in No. 5- is known. This device has a compressor 19
A mounting bolt 17 is erected on the floor plate 16" supporting the floor plate 16", and a lower rubber disc 31. The two-part rubber disc 33 of the spring 32° is sequentially fitted onto the outer circumference of the compressor 19, and the legs 20 are inserted through the mounting holes 20a of the legs 20, which are provided at equal intervals on the outer periphery of the lower surface of the compressor 19. A nut 21 is screwed onto the tip of a bolt 17, and the compressor 19 is supported by a spring 32 compressed by the nut 2I via upper and lower rubber discs 33,31. Alternatively, as shown on the right side of the figure, the mounting bolts 17 on the floor plate 16 are inserted through the mounting holes 20a of the cylindrical vibration-absorbing rubber body 34 and the leg portions 20, and the nuts 21 are screwed in the same manner. The compressor 19 is supported by a vibration absorbing rubber body 34. The spring 32 or the vibration-absorbing rubber body 34 absorbs vibrations caused by the operation of the compressor 19, thereby reducing vibrations transmitted to the floorboard 16.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところが、上記従来の振動防止装置は、圧縮機19と床
板16の間に介設した柔らかい材料からなるゴム盤3]
、33とスプリング32または吸振ゴム体34などのい
わゆるパッシブな部材により圧縮機19の振動を吸収す
るものであるため、インバータによって低い周波数で駆
動される最近の圧縮機が頻繁に発生ずる低周波数の振動
に適合するように上記パッシブな部材を設計すると、高
周波数の振動を吸収しきれない。そのため、床板16に
高周波数の振動が伝わり、圧縮機I9に付属するパイプ
類等に繰返し応力が加わって機器に損傷が生じ、ひいて
は運転不能に陥るという欠点がある。 そこで、本発明の目的は、圧縮機などの振動体の底面と
床の間に永久磁石とコイルからなる新規な支持手段を設
け、支持手段の動きを振動体の振動に同期させることに
よって、床に振動を伝えず、振動体の付属機器に損傷を
生じさせない振動防止装置を提供することにある。
However, the conventional vibration prevention device described above has a rubber disk 3 made of a soft material interposed between the compressor 19 and the floor plate 16.
, 33 and the spring 32 or the vibration-absorbing rubber body 34 to absorb the vibrations of the compressor 19. Therefore, the vibrations of the compressor 19 are absorbed by so-called passive members such as the spring 32 or the vibration-absorbing rubber body 34. If the passive member is designed to be compatible with vibrations, it will not be able to fully absorb high frequency vibrations. As a result, high-frequency vibrations are transmitted to the floor plate 16, and repeated stress is applied to pipes and the like attached to the compressor I9, resulting in damage to the equipment and, as a result, a drawback that it becomes inoperable. Therefore, an object of the present invention is to provide a new support means consisting of a permanent magnet and a coil between the bottom of a vibrating body such as a compressor and the floor, and to synchronize the movement of the support means with the vibration of the vibrating body, thereby vibrating the floor. To provide a vibration prevention device that does not transmit vibration and cause no damage to attached equipment of a vibrating body.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、本発明の振動防止装置は、振
動体の底部と床との間に、コイルと永久磁石を有して、
」−記載動体を支える磁気ンリノダと、−上記振動体を
支えるコイルスプリングを配置して、」1記磁気シリン
グのコイルに通電する電流を上記振動体の変位に同期し
て制御して、床に振動体より伝わる振動を低減するよう
にしたことを特徴とする振動防止装置を備えたことを特
徴とする。
In order to achieve the above object, the vibration prevention device of the present invention includes a coil and a permanent magnet between the bottom of the vibrating body and the floor.
``--a magnetic reinoder that supports the moving body described above, and a coil spring that supports the vibrating body described above, and ``1, the current flowing through the coil of the magnetic sill is controlled in synchronization with the displacement of the vibrating body, and the floor The present invention is characterized by comprising a vibration prevention device that reduces vibrations transmitted from the vibrating body.

【作用】[Effect]

振動時の振動体は、磁気ンリンダの通電されるコイルと
永久磁石の相互作用によって主として支えられ、スプリ
ングによって殆んど支えられない。 そして、上記コイルに通電される電流が振動体の変位に
同期して制御される。つまり、振動体は、従来のように
床上に固定されて伸縮するゴムやスプリングによってで
はなく、床上に固定された不動のメインコイルの電磁石
によって間接的に支持される。従って、振動体から床に
伝わる振動が低減ずろ。
The vibrating body during vibration is mainly supported by the interaction between the energized coil of the magnetic cylinder and the permanent magnet, and is hardly supported by the spring. The current applied to the coil is controlled in synchronization with the displacement of the vibrating body. In other words, the vibrating body is supported indirectly by the electromagnet of the immovable main coil, which is fixed on the floor, rather than by elastic rubber or springs that are fixed on the floor as in the past. Therefore, the vibration transmitted from the vibrating body to the floor will be reduced.

【実施例】【Example】

以下、本発明を図示の実施例により詳細に説明する。 第1図は本発明の振動防止装置の一実施例を示す斜視図
であり、この振動防止装置は、3個の磁気シリンダlを
備え、各磁気ンリンダlの静止部2の固定ベース3を、
床板16に立設したスタッドボルト17.17にナツト
+ 8.18で固定する一方、磁気シリンダlの可動部
4に突設したボルト5を、振動体としての圧縮機19の
脚部20の取付穴20aに挿通してナツト2Iで固定し
ている。 」1記磁気シリンダ1の静止部2は、第2図に示すよう
に、固定ベース3」−に固定した円筒状のメインコイル
6とその下面に同心円状に設けた巻数の少ないセンサコ
イル7で構成され、可動部4は、」−記メインコイル6
に上下動自在に内嵌した略等しい高さを有する円柱状の
永久磁石8とこの」二面に順次設けたつば部9.ゴム盤
IOおよびポルト5で構成される。そして、第3図(a
)に示すように、可動部4のゴム盤10J:に圧縮機1
9の脚部20を載せ、つば21 a(;Iのナツト2I
て固定する一方、可動部4の永久磁石8の下面と静止部
2の固定ベース3の上面の間に両端を夫々」二記下面と
上面に固定したスプリング11を縮装して、圧縮機I9
と一体になった永久磁石8を、無通電時のメインコイル
6に一致するような位置に支持している。なお、スプリ
ング11は、その固有振動数が例えば1〜2H2と圧縮
機I9の振動数の例えば60Hz、にりも遥かに低く、
圧縮機の振動に殆んど応答しないものである。 上記センサコイル7は、メインコイル6と同一方向に巻
回され、リード線12とコネクタ+3(第1図参照)を
介して電源装置14に接続される。 電源装置14は、圧縮機I9と一体に振動する永久磁石
8により電磁誘導(レンツの法則)で上記センサコイル
7に誘起される電流信号を増幅し、増幅した電流をコネ
クタ+3(第1図参照)とリード線15を介してメイン
コイル6の終端6b(第4図(a)参照)から始端6a
に向けて逆方向に供給するようになっている。従って、
第4図(a)に示すように、例えば圧縮機19と一体の
永久磁石8(第4図(b)のような磁力線をもつ)が、
矢印への如くスプリング+1に抗して下降すると、S極
が近づいてセンサコイル7の磁束は減少し、レンツの法
則によりこの減少を妨げる方向即ち矢印Bの方向に電流
が誘起される。そして、誘起された電流が電源装置14
で増幅され、矢印Cの如く逆方向にメインコイル6に供
給され、この電流によってメインコイル6から永久磁石
8に矢印Aと同方向の力が作用する。逆に、永久磁石8
が上昇すると、同様にしてメインコイル6から永久磁石
8に」−昇方向の力が作用するのである。 上記構成の振動防止装置の動作について次に述べる。 圧縮機19が運転されず、振動していない場合、圧縮機
19の下端の脚部20に一体に固定された永久磁石8は
、第3図(a)に示すように、下部のスプリングI+に
よって床板+6J二のメインコイル6に一致する位置に
支持されて静止している。 従って、センサコイル7には、振動する永久磁石の電磁
誘導による電流信号は全く誘起されず、永久磁石8と圧
縮機19は静止状態を維持する。 次に、圧縮機19が運転され、60Hz程度の周波数で
」−下に振動し始めると、脚部20と一体をなす永久磁
石8は、第3図(b)の曲線Aの如く正弦波状に」二下
動する。このとき、仮りに周囲のメインコイル6とセン
サコイル7がないとすると、永久磁石8の」1記正弦波
状の上下動は、固有振動数が遥かに低く殆んど応答しな
いスプリング11を介して床板16に伝わり、」−1下
動に応じて床面を引き上げ、押し下げるような力を床板
I6に作用させる。 しかし、実際には、正弦波状に振動する永久磁石8によ
る電磁誘導(レンツの法則)でセンサコイル7に電流が
誘起され、誘起された電流信号は、電源装置I4により
増幅されて、前述のように永久磁石8をその振動方向と
同じ方向に駆動するようにメインコイル6に供給される
。従って、メインコイル6から永久磁石8にその」二下
動に同期する、即ち第3図(b)の曲線へと略同位相か
ら同波形の曲線Bに示すような力が作用し、圧縮機19
は、この力によって主として支えられ、スプリング11
の力によって殆んど支えられない。つまり、圧縮機19
は、従来のように(第5図参照)床板16」二に固定さ
れて伸縮するスプリング32や吸振ゴム体34によって
ではなく、床上に固定された不動のメインコイル6によ
って間接的に支持される。従って、床板16には第3図
(b)の曲線Cに示ずようにセンサコイル7.電源装置
14.メインコイル6からなるフィードバック系の信号
遅れによる僅かな偏差分の振動だけが伝わり、床板16
は殆んど振動しなくなる。 このように、上記実施例を含む本発明では、振動体たる
圧縮機19と一体をなして振動する永久磁石8の上下動
を、センサコイル7により電流信号として検出し、この
検出信号を電源装置14で増幅して床板16に固定され
たメインコイル6に供給して、永久磁石8にその振動に
同期させてメインコイル6から力を与え、床板16上に
固定された不動のメインコイル6の電磁力によって間接
的に支持されるので、床板に伝わる振動を従来の単なる
ゴムやスプリングなどのパッンブな防振手段によるより
も大幅に低減でき、新規な防振手段として顕著な効果を
奏する。 なお、本発明が図示の実施例に限られないのはいうまで
もない。
Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments. FIG. 1 is a perspective view showing an embodiment of the vibration prevention device of the present invention.
While fixing bolts 17.17 upright on the floor plate 16 with nuts +8.18, the bolts 5 protruding from the movable part 4 of the magnetic cylinder l are attached to the legs 20 of the compressor 19 as a vibrating body. It is inserted into the hole 20a and fixed with a nut 2I. As shown in FIG. 2, the stationary part 2 of the magnetic cylinder 1 consists of a cylindrical main coil 6 fixed to a fixed base 3 and a sensor coil 7 with a small number of turns concentrically arranged on the lower surface of the main coil 6. The movable part 4 includes a main coil 6
A cylindrical permanent magnet 8 having approximately the same height is fitted inside the magnet so as to be able to move up and down, and a collar portion 9 is provided sequentially on two sides of the permanent magnet 8. Consists of rubber disk IO and Porto 5. And Figure 3 (a
), the compressor 1 is attached to the rubber disc 10J of the movable part 4.
Place the legs 20 of 9, and attach the brim 21 a (;
At the same time, springs 11 are installed between the lower surface of the permanent magnet 8 of the movable part 4 and the upper surface of the fixed base 3 of the stationary part 2, with both ends fixed to the lower and upper surfaces of the compressor I9.
A permanent magnet 8 integrated with the main coil 6 is supported at a position that corresponds to the main coil 6 when no current is applied. The spring 11 has a natural frequency of, for example, 1 to 2H2, and the frequency of the compressor I9 is, for example, 60Hz, which is much lower.
It hardly responds to the vibrations of the compressor. The sensor coil 7 is wound in the same direction as the main coil 6, and is connected to a power supply device 14 via a lead wire 12 and a connector +3 (see FIG. 1). The power supply device 14 amplifies the current signal induced in the sensor coil 7 by electromagnetic induction (Lenz's law) by a permanent magnet 8 that vibrates together with the compressor I9, and sends the amplified current to the connector +3 (see Fig. 1). ) and the lead wire 15 from the terminal end 6b (see FIG. 4(a)) of the main coil 6 to the starting end 6a.
It is designed to be supplied in the opposite direction. Therefore,
As shown in FIG. 4(a), for example, a permanent magnet 8 (having magnetic lines of force as shown in FIG. 4(b)) integrated with the compressor 19,
When the sensor coil 7 descends against the spring +1 as shown by the arrow, the south pole approaches and the magnetic flux of the sensor coil 7 decreases, and a current is induced in a direction that prevents this decrease, that is, in the direction of arrow B, according to Lenz's law. Then, the induced current flows into the power supply device 14.
The current is amplified and supplied to the main coil 6 in the opposite direction as shown by arrow C, and this current causes a force in the same direction as arrow A to act on the permanent magnet 8 from the main coil 6. On the contrary, permanent magnet 8
When , the main coil 6 similarly acts on the permanent magnet 8 in the upward direction. The operation of the vibration prevention device having the above configuration will be described next. When the compressor 19 is not operating and is not vibrating, the permanent magnet 8, which is integrally fixed to the leg 20 at the lower end of the compressor 19, is moved by the lower spring I+, as shown in FIG. 3(a). It is supported and stationary at a position corresponding to the main coil 6 on the floor plate +6J2. Therefore, no current signal due to electromagnetic induction of the vibrating permanent magnet is induced in the sensor coil 7, and the permanent magnet 8 and the compressor 19 remain stationary. Next, when the compressor 19 is operated and begins to vibrate downward at a frequency of about 60 Hz, the permanent magnet 8 that is integral with the leg 20 vibrates in a sine wave shape as shown by curve A in FIG. 3(b). ”Move down two times. At this time, if there were no surrounding main coil 6 and sensor coil 7, the sinusoidal vertical movement of the permanent magnet 8 would be caused by the spring 11, which has a much lower natural frequency and hardly responds. The force is transmitted to the floor plate 16 and acts on the floor plate I6 to raise and push down the floor surface in response to the -1 downward movement. However, in reality, a current is induced in the sensor coil 7 by electromagnetic induction (Lenz's law) caused by the permanent magnet 8 vibrating in a sinusoidal manner, and the induced current signal is amplified by the power supply device I4, as described above. is supplied to the main coil 6 so as to drive the permanent magnet 8 in the same direction as its vibration direction. Therefore, a force is applied to the permanent magnet 8 from the main coil 6 in synchronization with the downward movement of the permanent magnet 8, that is, a force as shown in curve B having the same waveform and approximately the same phase as the curve in FIG. 3(b) is applied to the compressor. 19
is mainly supported by this force, and the spring 11
can hardly be supported by the force of In other words, the compressor 19
is supported indirectly by the immovable main coil 6 fixed on the floor, rather than by the spring 32 and vibration absorbing rubber body 34 which are fixed to the floorboard 16'' and expand and contract as in the conventional case (see Fig. 5). . Therefore, the sensor coil 7. is attached to the floor plate 16 as shown by curve C in FIG. Power supply device 14. Only the vibration of a slight deviation due to the signal delay of the feedback system consisting of the main coil 6 is transmitted, and the floor plate 16
almost no longer vibrates. As described above, in the present invention including the above embodiments, the vertical movement of the permanent magnet 8, which vibrates integrally with the compressor 19, which is a vibrating body, is detected as a current signal by the sensor coil 7, and this detection signal is transmitted to the power supply device. 14 and supplies it to the main coil 6 fixed on the floor plate 16, and gives force from the main coil 6 to the permanent magnet 8 in synchronization with the vibration of the main coil 6 fixed on the floor plate 16. Since it is indirectly supported by electromagnetic force, the vibrations transmitted to the floorboard can be significantly reduced compared to conventional vibration-proofing means such as simple rubber or springs, and it has a remarkable effect as a new vibration-proofing means. It goes without saying that the present invention is not limited to the illustrated embodiment.

【発明の効果】【Effect of the invention】

以上の説明で明らかなように、本発明の振動防止装置は
、振動体の底部と床との間に、コイルと永久磁石を有し
て、上記振動体を支える磁気シリンダと、上記振動体を
支えるコイルスプリングを配置して、」−記磁気シリン
ダのコイルに通電する電流を上記振動体の変位に同期し
て制御するようにしているので、振動体を床上に固定さ
れた不動のコイルの電磁力によって間接的に支持するこ
とによって伸縮するゴムやスプリングを介して床に伝わ
っていた振動を大幅に低減できる。
As is clear from the above description, the vibration prevention device of the present invention includes a magnetic cylinder that has a coil and a permanent magnet between the bottom of the vibrating body and the floor, and supports the vibrating body, and a magnetic cylinder that supports the vibrating body. A supporting coil spring is arranged to control the current flowing through the coil of the magnetic cylinder in synchronization with the displacement of the vibrating body. By indirectly supporting the floor with force, it is possible to significantly reduce the vibrations that would otherwise be transmitted to the floor via elastic rubber and springs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の振動防止装置−の一実施例を示す斜視
図、第2図は第1図の磁気シリンダの詳細図、第3図は
上記実施例の主要部の動作を説明する図、第4図は上記
動作の原理を示す図、第5図は従来の振動防止装置の斜
視図である。 1 ・磁気シリンダ、2・・・静止部、3・固定ベース
、4 ・可動部、訃・・ボルト、6・・メインコイル、
7 ・センザコイル、8・・・永久磁石、11・・・ス
プリング、14・・・電源装置、16・・床板、192
0・脚部、21・・・ナツト。 ・圧縮機、
Fig. 1 is a perspective view showing an embodiment of the vibration prevention device of the present invention, Fig. 2 is a detailed view of the magnetic cylinder shown in Fig. 1, and Fig. 3 is a diagram explaining the operation of the main parts of the above embodiment. , FIG. 4 is a diagram showing the principle of the above operation, and FIG. 5 is a perspective view of a conventional vibration prevention device. 1.Magnetic cylinder, 2.Stationary part, 3.Fixed base, 4.Movable part, Bolt, 6.Main coil,
7 - Sensor coil, 8... Permanent magnet, 11... Spring, 14... Power supply device, 16... Floor plate, 192
0. Legs, 21...Natsuto.・Compressor,

Claims (1)

【特許請求の範囲】[Claims] (1)振動体の底部と床との間に、コイルと永久磁石を
有して、上記振動体を支える磁気シリンダと、上記振動
体を支えるコイルスプリングを配置して、上記磁気シリ
ンダのコイルに通電する電流を上記振動体の変位に同期
して制御して、床に振動体より伝わる振動を低減するよ
うにしたことを特徴とする振動防止装置。
(1) A magnetic cylinder having a coil and a permanent magnet and supporting the vibrating body, and a coil spring supporting the vibrating body are disposed between the bottom of the vibrating body and the floor, and the coil of the magnetic cylinder is connected to the coil of the magnetic cylinder. A vibration prevention device characterized in that the applied current is controlled in synchronization with the displacement of the vibrating body to reduce vibrations transmitted from the vibrating body to the floor.
JP10395790A 1990-04-19 1990-04-19 Vibration control device Pending JPH044338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10395790A JPH044338A (en) 1990-04-19 1990-04-19 Vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10395790A JPH044338A (en) 1990-04-19 1990-04-19 Vibration control device

Publications (1)

Publication Number Publication Date
JPH044338A true JPH044338A (en) 1992-01-08

Family

ID=14367881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10395790A Pending JPH044338A (en) 1990-04-19 1990-04-19 Vibration control device

Country Status (1)

Country Link
JP (1) JPH044338A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681891A (en) * 1992-09-07 1994-03-22 Matsushita Electric Ind Co Ltd Vibration absorber
US5487533A (en) * 1993-06-04 1996-01-30 Shinko Electric Co., Ltd. Automatic transport vehicle with three-axis motion sensing and vibration damping
KR20000065577A (en) * 1999-04-07 2000-11-15 전주범 Vibration absorbing structure for a compressor of an outdoor unit of an air conditioner
US6505718B2 (en) * 2000-07-11 2003-01-14 Delta Tooling Co., Ltd. Vibration damping apparatus using magnetic circuit
US7412852B2 (en) * 2004-02-23 2008-08-19 Lg Electronics Inc. Washer damper thereof, and control method thereof
JP2016080042A (en) * 2014-10-15 2016-05-16 日産自動車株式会社 Vibration-proof device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217839A (en) * 1982-06-14 1983-12-17 Matsushita Electric Ind Co Ltd Vibration insulating device
JPS595401A (en) * 1982-07-02 1984-01-12 Matsushita Electric Ind Co Ltd Vibration preventing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217839A (en) * 1982-06-14 1983-12-17 Matsushita Electric Ind Co Ltd Vibration insulating device
JPS595401A (en) * 1982-07-02 1984-01-12 Matsushita Electric Ind Co Ltd Vibration preventing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681891A (en) * 1992-09-07 1994-03-22 Matsushita Electric Ind Co Ltd Vibration absorber
US5487533A (en) * 1993-06-04 1996-01-30 Shinko Electric Co., Ltd. Automatic transport vehicle with three-axis motion sensing and vibration damping
KR20000065577A (en) * 1999-04-07 2000-11-15 전주범 Vibration absorbing structure for a compressor of an outdoor unit of an air conditioner
US6505718B2 (en) * 2000-07-11 2003-01-14 Delta Tooling Co., Ltd. Vibration damping apparatus using magnetic circuit
US7412852B2 (en) * 2004-02-23 2008-08-19 Lg Electronics Inc. Washer damper thereof, and control method thereof
JP2016080042A (en) * 2014-10-15 2016-05-16 日産自動車株式会社 Vibration-proof device

Similar Documents

Publication Publication Date Title
EP0767320B1 (en) Vibration damping apparatus
US5973422A (en) Low frequency vibrator
US5285995A (en) Optical table active leveling and vibration cancellation system
KR20010075573A (en) lsolation system for lsolation tables
US5042784A (en) Damping support structure
JPH044338A (en) Vibration control device
US20020005069A1 (en) Six degree of freedom magnetically levitated vibration table
JP2012041107A (en) Vibration-type component conveying device
JPH04229061A (en) Large amplitude low frequency vibrator
JP2005337497A (en) Active damper
JPH1144341A (en) Fixing method for base isolation device
CN110286553A (en) The screen and screen system of laser speckle can be eliminated
KR960008123Y1 (en) Vibrating device of element arranging plate
US5483225A (en) Structure of a shock device of a shock sensor of a burglar alarm
JPH08270726A (en) Low frequency vibration control device
JP2003194139A (en) Controllable mount
JPH02204209A (en) Straight line vibration feeder
JP2668476B2 (en) Anti-vibration device
JP2012121660A (en) Vibration type parts conveying device
JP2008072438A (en) Magnetostriction actuator
JPH06117487A (en) Vibration control device for machinery
JPH0662244U (en) Magnetically levitated dynamic damper
JPH05231471A (en) Vibration isolator
JPS63130946A (en) Vibration isolator
JPH0512793U (en) Equipment