JPH0443300A - Dual-effect warhead - Google Patents
Dual-effect warheadInfo
- Publication number
- JPH0443300A JPH0443300A JP14737190A JP14737190A JPH0443300A JP H0443300 A JPH0443300 A JP H0443300A JP 14737190 A JP14737190 A JP 14737190A JP 14737190 A JP14737190 A JP 14737190A JP H0443300 A JPH0443300 A JP H0443300A
- Authority
- JP
- Japan
- Prior art keywords
- explosive
- detonation
- velocity
- density
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000009977 dual effect Effects 0.000 title claims description 14
- 239000002360 explosive Substances 0.000 claims abstract description 144
- 238000005474 detonation Methods 0.000 claims abstract description 81
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 230000000694 effects Effects 0.000 abstract description 18
- 238000004880 explosion Methods 0.000 abstract description 12
- 239000012634 fragment Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 238000013467 fragmentation Methods 0.000 description 15
- 238000006062 fragmentation reaction Methods 0.000 description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- UZGLIIJVICEWHF-UHFFFAOYSA-N octogen Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UZGLIIJVICEWHF-UHFFFAOYSA-N 0.000 description 7
- 229920002635 polyurethane Polymers 0.000 description 7
- 239000004814 polyurethane Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- XTFIVUDBNACUBN-UHFFFAOYSA-N 1,3,5-trinitro-1,3,5-triazinane Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1 XTFIVUDBNACUBN-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 1
- 239000000026 Pentaerythritol tetranitrate Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229960004321 pentaerithrityl tetranitrate Drugs 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007582 slurry-cast process Methods 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は弾頭において破片及び爆風による効果をより強
力にし得るデュアルエフェクト弾頭に関するものである
。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a dual-effect warhead that can make the effects of fragmentation and blast waves more powerful in the warhead.
〈従来の技術〉
弾頭の破片速度は、基本的に弾頭内部に含まれる炸薬の
爆速並びに炸薬重量と破片となる金属部の重量との比率
によって左右され、同じ弾殻を用いて破片速度を速くす
るためには速い爆速の炸薬を用いるか、もしくは炸薬重
量を多(するかのどちらかしか方法が無い。又、爆風の
強さを太き(するためには同様に炸薬重量を太き(する
か、もしくは爆速を犠牲にして爆風効果の大きい炸薬を
使うしか方法が無い。<Prior art> The fragmentation speed of a warhead is basically determined by the detonation speed of the explosive charge contained inside the warhead and the ratio of the weight of the explosive charge to the weight of the metal part that becomes fragments. The only way to do this is to use explosives with a high velocity or increase the weight of the explosives.Also, to increase the strength of the blast, similarly increase the weight of the explosives. Otherwise, the only option is to sacrifice explosive speed and use explosives with a large blast effect.
〈発明が解決しようとする課題〉
炸薬の爆速は炸薬の原材料である爆薬成分の性能によっ
て一義的に決まってしまうため、弾頭の破片速度にはお
のずと限界がある。<Problem to be solved by the invention> Since the detonation speed of an explosive charge is primarily determined by the performance of the explosive components that are the raw materials for the charge, there is naturally a limit to the fragmentation speed of a warhead.
又、爆風効果を強くするためにはアルミ粉等の成分を炸
薬中に加える必要があり、この場合は爆速は低下する。Furthermore, in order to strengthen the blast effect, it is necessary to add ingredients such as aluminum powder to the explosive, and in this case, the blast speed decreases.
つまり、一つの炸薬で破片速度を速くするのも爆風効果
を大きくするのにも限界があり、新しい画期的な技術が
現在型まれている。In other words, there are limits to how much a single explosive can increase the fragmentation velocity or the blast effect, and new, groundbreaking technologies are currently being developed.
〈課題を解決するための手段〉
そこで、本発明者らは前記の要望に応するため研究した
結果、炸薬を二種類組合わせることにより目的を達し得
ること、具体的には高爆速の炸薬に、該炸薬より低爆速
又は高密度、又は低爆速かっ高密度の炸薬を組合わせる
ことによって高爆速の炸薬のみを有する弾頭と比較して
破片速度がより高速となり、かつ爆風効果も大きくなる
との知見を得、この知見に基すいて、破片速度がより高
速となり、かつ爆風効果の大きいデュアルエフェクト弾
頭を発明した。<Means for Solving the Problem> Therefore, as a result of research to meet the above-mentioned request, the present inventors found that the objective could be achieved by combining two types of explosives, specifically, by combining two types of explosives. , the knowledge that by combining explosives with a lower detonation velocity or higher density, or a combination of lower detonation velocity and higher density, the fragmentation velocity becomes higher and the blast effect becomes greater, compared to a warhead with only a high detonation velocity explosive. Based on this knowledge, they invented a dual-effect warhead with higher fragmentation velocity and greater blast effect.
即ち本発明は、金属ケース、高爆速の炸薬及び同炸薬よ
り、低爆速の炸薬又は高密度の炸薬、又は低爆速且つ高
密度の炸薬とよりなり、高爆速の炸薬より低爆速、又は
高密度又低爆速かつ高密度の炸薬が、金属ケースに接し
て配!され、その内部に高爆速の炸薬が配置され、かつ
起爆手段を有することを特徴とするデュアルエフェクト
弾頭に関する。That is, the present invention consists of a metal case, a high detonation velocity explosive, and a low detonation velocity or high density explosive, or a low detonation velocity and high density explosive, which has a lower detonation velocity or higher density than a high detonation velocity explosive. Also, a low explosive velocity and high density explosive charge is placed in contact with the metal case! The present invention relates to a dual-effect warhead, which is characterized by having a high-velocity explosive charge disposed therein, and having a detonation means.
次に本発明のデュアルエフェクト弾頭の好適な構成の縦
断面図を示す第1図、第2図及び第3図に基ずいて説明
する。Next, a description will be given based on FIGS. 1, 2, and 3 showing longitudinal cross-sectional views of a preferred configuration of the dual-effect warhead of the present invention.
図中、A、B、Cは本発明のデュアルエフェクト弾頭で
あり、該弾頭は金属ケース2.12.22、該金属ケー
スの内壁に接して設けられた中空円柱状の低爆速の炸薬
3又は高密度の炸薬13又は低爆速かつ高密度の炸薬2
3、及び円柱状の高爆速の炸薬1.11.21とにより
構成され、高爆速の炸薬にはブースタ4.14.24、
雷管5.15.25が図示のように設けられている。In the figure, A, B, and C are dual-effect warheads of the present invention, which include a metal case 2, 12, and 22, a hollow cylindrical low-explosion explosive charge 3 provided in contact with the inner wall of the metal case, or High density explosive charge 13 or low detonation velocity and high density explosive charge 2
3, and a cylindrical high detonation velocity explosive charge 1.11.21, and the high detonation velocity explosive charge has a booster 4.14.24,
A detonator 5.15.25 is provided as shown.
本発明に用いる高爆速の炸薬としては、例えばシクロテ
トラメチレンテトラニトラミン(HMX)或いはシクロ
トリメチレントリニトラミン(RDX)等の二次爆薬を
主成分とする炸薬であり、低爆速の炸薬又は高密度の炸
薬又は低爆速かつ高密度の炸薬としては例えば上記と同
様の主成分からなり、主成分とバインダーとの配合比を
変えることにより爆速、密度を変化させた炸薬、上記と
同様の主成分にアルミ粉等の発熱剤を加えた炸薬、過塩
素酸アンモニウム及びアルミ粉等の酸化剤及び発熱剤を
主成分とする炸薬等である。The high detonation velocity explosive used in the present invention is, for example, an explosive whose main component is a secondary explosive such as cyclotetramethylenetetranitramine (HMX) or cyclotrimethylene trinitramine (RDX), and a low detonation velocity explosive or Examples of high-density explosives or low-detonation-velocity, high-density explosives include explosives consisting of the same main components as above, with the detonation velocity and density changed by changing the blending ratio of the main component and binder; These include explosives that contain exothermic agents such as aluminum powder, and explosives whose main ingredients are oxidizing agents and exothermic agents such as ammonium perchlorate and aluminum powder.
これらの炸薬の組合わせのうち、特に破片速度が速くか
つ爆風圧力の大であるのはHMXを主成分とする爆速8
000m/s以上の高爆速の炸薬と、過塩素酸アンモニ
ウムを40重量%以上、アルミ粉を20重量%以上含有
する炸薬との組合わせである。Among these explosive combinations, the one with particularly high fragmentation velocity and high blast pressure is the explosive 8, which has HMX as its main component.
It is a combination of an explosive with a high detonation velocity of 000 m/s or more and an explosive containing 40% by weight or more of ammonium perchlorate and 20% by weight or more of aluminum powder.
炸薬が爆轟することによって金属ケースは破片として高
速で飛散するが、一種の炸薬のみを用いた弾頭の場合、
この破片の飛翔速度は金属ケースに内接する炸薬の爆速
にはf比例する。When the explosive charge detonates, the metal case is scattered at high speed as fragments, but in the case of a warhead that uses only one type of explosive charge,
The flying speed of this fragment is proportional to f to the detonation speed of the explosive charge inscribed in the metal case.
ところが本発明のデュアルエフェクト弾頭の場合、金属
ケースに内接する低爆速の炸薬はその内側にある高爆速
の炸薬の爆速で爆轟が進行していくため、低爆速の炸薬
中にスーパーデトネーション(爆薬がチャップマンジュ
ゲー条件で与えられる定常状態の爆速よりも速くなる爆
轟の状況)が生じ、発生する爆轟圧はその炸薬固有の爆
轟圧はもちろん高爆速の炸薬固有の爆轟圧よりも高くな
り、それに伴って破片速度は高爆速の炸薬のみを用いた
弾頭よりも速くなることになる。However, in the case of the dual-effect warhead of the present invention, the detonation of the low-detonation explosive charge inscribed in the metal case progresses at the detonation speed of the high-detonation velocity explosive charge inside, so super detonation (explosive is faster than the steady-state detonation velocity given by the Chapmanjuguet condition), and the detonation pressure generated is not only the detonation pressure specific to the explosive but also the detonation pressure specific to the high detonation velocity explosive. As a result, the fragmentation velocity will be higher than that of warheads using only high-velocity explosives.
一方、金属ケースに内接する炸薬に高密度の炸薬を適用
した場合、高密度の炸薬はその内側にある高爆速の炸薬
の爆速で爆轟が進行していくことと、高密度であること
ゆえに爆轟圧は高くなる(爆轟圧=密度×爆速×爆速÷
4で与えられる)。それに伴って破片速度は高爆速の炸
薬のみを用いた弾頭よりも速くなることになる。On the other hand, when a high-density explosive is applied to the explosive that is inscribed in the metal case, the detonation of the high-density explosive proceeds at the detonation speed of the high-detonation explosive inside the metal case, and because of its high density, The detonation pressure increases (detonation pressure = density x detonation velocity x detonation velocity ÷
4). As a result, the fragmentation velocity will be higher than that of a warhead that uses only high-velocity explosives.
更、に、金属ケースに内接する炸薬に低爆速かつ高密度
の炸薬を適用した場合、上記2通りの効果が重なり爆轟
圧は更に高(なる。それに伴って破片速度は高爆速の炸
薬のみを用いた弾頭よりも速くなる。Furthermore, when a low detonation velocity and high density explosive charge is applied to the explosive charge inscribed in the metal case, the above two effects overlap and the detonation pressure becomes even higher. faster than warheads using
上記3種類の場合のいずれにおいても、同様な理由によ
り爆風効果が増強される。In any of the above three cases, the blast effect is enhanced for the same reason.
又、外側の低爆速の炸薬、高密度の炸薬又は低爆速かつ
高密度の炸薬に、爆轟時に高温を発生する成分、例えば
アルミ粉等が含まれる場合、填実効果も期待できる。Further, if the outer low detonation velocity explosive, high density explosive, or low detonation velocity and high density explosive contains a component that generates high temperature during detonation, such as aluminum powder, a filling effect can be expected.
加えて、外側の低爆速の炸薬、高密度の炸薬又は低爆速
かつ高密度の炸薬に衝撃等に対して感度の低いものを適
用すれば弾頭自体の低感度化にもつながるものである。In addition, if the outer low-detonation-velocity explosive, high-density explosive, or low-detonation-velocity, high-density explosive has low sensitivity to impact, etc., this will lead to a decrease in the sensitivity of the warhead itself.
弾頭の破片速度の増加を目的とする場合、金属ケースに
内接する炸薬の厚みはその内側にある高爆速の炸薬の爆
轟が進行していく速度によって影響を受けるべく適正な
厚みは通常20mm以下である。但し破片速度よりも爆
風の効果を重視する場合にはこの限りではない。When the purpose is to increase the fragmentation velocity of a warhead, the appropriate thickness is usually 20 mm or less, as the thickness of the explosive charge inscribed in the metal case is influenced by the speed at which the detonation of the high-velocity explosive charge inside it progresses. It is. However, this does not apply if the blast effect is more important than the fragmentation speed.
金属ケースの材質は弾頭の使用目的によって決定され通
常破片の生成が良好な、例えば炭素鋼、高張力鋼等が使
用される。The material of the metal case is determined by the purpose of use of the warhead, and is usually made of carbon steel, high-strength steel, etc., which have good fragmentation properties.
雷管及びブースタによって炸薬を起爆する位置は高爆速
の炸薬に接していても、低爆速の炸薬に接していてもど
ちらでもよく同様な効果が得られる。The same effect can be obtained regardless of whether the detonator and booster are in contact with a high-velocity explosive or a low-velocity explosive.
〈作 用〉
一種の炸薬のみを用いた弾頭の場合、炸薬が爆轟するこ
とによって金属ケースは破片として高速で飛散するが、
この破片の飛翔速度は金属ケースに内接する炸薬の爆速
にはf比例することになる。<Function> In the case of a warhead that uses only one type of explosive charge, the metal case is scattered at high speed as fragments due to the detonation of the explosive charge, but
The flying speed of this fragment is proportional to f to the detonation speed of the explosive charge inscribed in the metal case.
一方、本発明のデュアルエフェクト弾頭を適用した場合
は下記作用により、一種の炸薬のみを用いた弾頭とは異
なる効果が現われる。On the other hand, when the dual-effect warhead of the present invention is applied, the effects described below are different from those of a warhead using only one type of explosive.
雷管5.15.25によって起爆したブースタ4.14
.24の爆轟により、高爆速の炸薬1.11.21並び
に低爆速の炸薬3、高密度の炸薬13、又は低爆速かつ
高密度の炸薬23が反応を開始する。外周の金属ケース
2.12.22は内側の高爆速の炸薬の爆轟によって影
響を受け、より高い爆轟圧となった低爆速の炸薬、高密
度の炸薬、又は低爆速かつ高密度の炸薬の爆轟によって
、高爆速の炸薬のみを使用した弾頭よりも、より高速な
破片として飛散し、同時により強力な爆風を外部に放出
する。Booster 4.14 detonated by detonator 5.15.25
.. Due to the detonation of 24, the high detonation velocity explosive 1, 11, 21, the low detonation velocity explosive 3, the high density explosive 13, or the low detonation velocity and high density explosive 23 start to react. The outer metal case 2.12.22 is affected by the detonation of the inner high-velocity explosive, resulting in a higher detonation pressure of a low-detonation velocity explosive, a high-density explosive, or a low-detonation velocity and high-density explosive. The detonation causes the warhead to scatter at higher speeds than a warhead that uses only high-velocity explosives, and at the same time emit a more powerful blast wave to the outside.
〈発明の効果〉
本発明のデュアルエフェクト弾頭を適用することによっ
て、通常の1種類の炸薬を使った弾頭に比較して、より
強力な破片の効果と爆風の効果が発現される。<Effects of the Invention> By applying the dual-effect warhead of the present invention, more powerful fragmentation effects and blast effects are achieved compared to warheads using a single type of explosive charge.
又、外側の低爆速の炸薬又は高密度の炸薬又は低爆速か
つ高密度の炸薬にアルミ粉等の爆轟時に高温を発生する
成分が含まれる場合、填実効果が期待できる。Further, if the outer low detonation velocity explosive, high density explosive, or low detonation velocity and high density explosive contains a component that generates high temperature during detonation, such as aluminum powder, a filling effect can be expected.
加えて、外側の低爆速の炸薬又は高密度の炸薬又は低爆
速かつ高密度の炸薬に衝撃等に対して感度の低いものを
適用すれば弾頭自体の低感度化につながるものである。In addition, if the outer low detonation velocity explosive charge, high density explosive charge, or low detonation velocity and high density explosive charge has low sensitivity to impact etc., this will lead to a decrease in the sensitivity of the warhead itself.
〈実施例〉
実施例 1〜6
第1.2.3図に示す本発明の弾頭を表1に示す炸薬を
用いて製造した。炸薬は通常のスラリーキャスト法によ
って製造したものである。尚、金属ケースとしてSTK
MI 7A炭素鋼からなる外形89.1mm、内径80
.3mm、長さ120mmの形状のものを使用した。<Examples> Examples 1 to 6 The warhead of the present invention shown in FIG. 1.2.3 was manufactured using the explosives shown in Table 1. The explosive charge was manufactured using a conventional slurry casting method. In addition, STK is used as a metal case.
Made of MI 7A carbon steel, outer diameter 89.1 mm, inner diameter 80
.. A piece with a shape of 3 mm and a length of 120 mm was used.
製造した弾頭をR1して、通常の箔的を用いて3mの距
離における平均破片速度と通常のピエゾ圧力素子を用い
て3mの距離における爆風圧力を測定した。尚、測定値
は比較例1を1.00とした場合の相対比として求めた
。The manufactured warhead R1 was used to measure the average fragmentation velocity at a distance of 3 m using a conventional foil tester and the blast pressure at a distance of 3 m using a conventional piezo pressure element. In addition, the measured value was determined as a relative ratio when Comparative Example 1 was set to 1.00.
結果を表2に示す。The results are shown in Table 2.
比較例 l及び2
表1に示すように実施例に用いた高爆速の炸薬のみを実
施例と同様の金属ケースに充填した以外、実施例と同様
に弾頭を製造した。Comparative Examples 1 and 2 As shown in Table 1, warheads were manufactured in the same manner as in the examples except that only the high detonation velocity explosive used in the examples was filled in the same metal case as in the examples.
この弾頭について実施例と同じ試験を行なった。面、測
定値は比較例1を1.00とし比較例2はその相対比と
して求めた。The same tests as in the example were conducted on this warhead. The measured value of Comparative Example 1 was set to 1.00, and the measured value of Comparative Example 2 was determined as a relative ratio thereof.
結果を表2に示す。The results are shown in Table 2.
5)、HMXを70%、アルミ粉10%、残部がポリウ
レタン系バインダーからなり爆速7900111/S
、密度1.81g/cm”の炸薬6)、HMXを56%
、アルミ粉24%、残部がポリウレタン系バインダーか
らなり爆速7900m/s 、密度1.89g/am”
の炸薬7);過塩素酸アンモニウム42%、アルミ粉2
6%、残部がポリウレタン系バインダーからなり爆速6
000m/s 、密度1.95g/am”の炸薬1)、
HMXを80%、残部がポリウレタン系バインダーから
なり爆速8300111/S 、密度1.74g/cm
″の炸薬2);RDXを75%、残部がポリウレタン系
バインダーからなり爆速7900Ia/s、密度1.6
4g/c♂の炸薬3)、RDXを60%、アルミ粉16
%、残部がポリウレタン系バインダーからなり爆速73
0001/S 、密度1.74g/cm”の炸薬4);
過塩素アンモニウム40%、アルミ粉20%、残部がポ
リブタジェン系バインダーからなり爆速6000m/s
、密度1.74g/♂の炸薬実施例7及び8
低感度化への効果を把握するため、表3に示す試料を作
成し、カードギャップ試験法により感度を測定した。尚
、測定値は比較例1を1.00とした場合の相対比とし
て求めた。結果を表3に示す。5), 7900111/S made of 70% HMX, 10% aluminum powder, and the rest polyurethane binder.
, explosive charge with a density of 1.81 g/cm"6), 56% HMX
, 24% aluminum powder, the rest is polyurethane binder, explosive speed 7900 m/s, density 1.89 g/am"
Explosive charge 7); Ammonium perchlorate 42%, aluminum powder 2
6%, the rest is polyurethane binder, making it extremely fast 6
000 m/s, explosive charge with a density of 1.95 g/am"1),
80% HMX, the rest is polyurethane binder, explosion speed 8300111/S, density 1.74g/cm
Explosive charge 2): 75% RDX, the rest is polyurethane binder, explosion speed 7900 Ia/s, density 1.6
4g/c♂ explosive 3), 60% RDX, aluminum powder 16
%, the remainder is made of polyurethane binder and has an explosive speed of 73.
0001/S, explosive charge with a density of 1.74 g/cm"4);
40% ammonium perchlorate, 20% aluminum powder, the balance is polybutadiene binder, explosive speed 6000m/s
, Explosives Examples 7 and 8 with a density of 1.74 g/male In order to understand the effect on lowering sensitivity, the samples shown in Table 3 were prepared, and the sensitivity was measured by the card gap test method. In addition, the measured value was determined as a relative ratio when Comparative Example 1 was set to 1.00. The results are shown in Table 3.
次に第4図に示す装置に基づいてカードギャップ試験法
について説明する。Next, a card gap test method will be explained based on the apparatus shown in FIG.
図において41は雷管、42はベントライト(ペンタエ
リスリトールテトラナイトレート50ニトリニトロトル
エン50)、43はカードギャップであるアクリル樹脂
板、44は鋼管45に填薬された試料、46は鉄板であ
る。ベントライトは30mmφX30mm、アクリル樹
脂板は50mmX50mmで厚さ5mm又は10mmの
ものを用いる。In the figure, 41 is a detonator, 42 is bentolite (pentaerythritol tetranitrate 50, nitrinitrotoluene 50), 43 is an acrylic resin plate serving as a card gap, 44 is a sample filled in a steel pipe 45, and 46 is an iron plate. The bentrite used is 30 mmφ x 30 mm, and the acrylic resin plate is 50 mm x 50 mm and 5 mm or 10 mm thick.
又鋼管は外径42.7mm、厚さ3.5mm。The steel pipe has an outer diameter of 42.7mm and a thickness of 3.5mm.
長さ50mmであり、試料はbが高爆速の炸薬、aが該
炸薬より低爆速又は高密度又は低爆速かつ高密度の炸薬
である。試験は雷管によってベントライトを起爆し、カ
ードギャップである樹脂板を隔てて設けられた試料爆薬
が爆轟するか否かを調べ、鉄板に生じた爆痕で判定する
。ギャップ長さを変化させて試験を行ない起爆する確立
が50%のギャップ長を50%起爆ギャップ長とする。The sample has a length of 50 mm, and b is an explosive with a high detonation velocity, and a is an explosive with a lower detonation velocity or higher density than the above explosive, or an explosive with a lower detonation velocity and higher density. In the test, a ventrite is detonated using a detonator, and a sample explosive placed across a resin plate (card gap) is examined to see if it detonates, and judgment is made based on the detonation marks created on the steel plate. A test is conducted by varying the gap length, and the gap length at which there is a 50% probability of detonation is defined as the 50% detonation gap length.
比較例3
表3に示す′炸薬を用いて、即ち高爆速の炸薬を用いて
、実施例に準じて試料を作成し、実施例と同じ試験を行
なった。Comparative Example 3 Using the explosives shown in Table 3, that is, using explosives with high detonation velocity, samples were prepared according to the example, and the same tests as in the example were conducted.
結果を表3に示す。The results are shown in Table 3.
系バインダーからなり爆速6000m/s 、密度1.
95g/口3の炸薬2)、HMXを80%、残部がポリ
ウレタン系バインダーからなり爆速8300m/s 、
密度1.74g/am”の炸薬表2は本発明の炸薬を有
する弾頭は、単一の炸薬を有する弾頭に比し、破片速度
、爆風圧力が大であり、表3は単一の炸薬に比し、本発
明の複数の炸薬を用いた場合はギャップ長の短いこと、
即ち衝撃に対して起爆しに(いことを示す。It consists of a binder with an explosive speed of 6000 m/s and a density of 1.
Explosive charge 2) of 95g/mouth 3), 80% HMX, the rest made of polyurethane binder, explosive speed 8300m/s,
Explosive charge with a density of 1.74 g/am'' Table 2 shows that a warhead with the explosive charge of the present invention has a higher fragmentation velocity and blast pressure than a warhead with a single explosive charge; In contrast, when multiple explosives of the present invention are used, the gap length is short;
In other words, it shows that it does not detonate upon impact.
第1.2.3図は本発明のデュアルエフェクト弾頭の一
例を示す断面図である。
第4図はカードギャップ試験法を示す該略図である。
図中、A、B、C,本発明のデュアルエフェクト弾頭、
1,11,21.高爆速の炸薬、2゜12.22.金属
ケース、3;低爆速の炸薬、13;高密度の炸薬、23
;低爆速かつ高密度の炸薬、4.14,24.ブースタ
、5,15゜25;雷管、41:雷管、42;ベントラ
イト、43;アクリル樹脂板、44;炸薬、45;鋼管
、46;鉄板を示す。
第3図FIG. 1.2.3 is a cross-sectional view showing an example of the dual-effect warhead of the present invention. FIG. 4 is a diagram illustrating the card gap test method. In the figure, A, B, C, dual effect warhead of the present invention,
1, 11, 21. High velocity explosive, 2°12.22. Metal case, 3; Low explosive velocity, 13; High density explosive, 23
; low detonation velocity and high density explosive, 4.14, 24. Booster, 5,15° 25; Detonator, 41: Detonator, 42; Bent light, 43; Acrylic resin plate, 44; Explosive charge, 45; Steel pipe, 46; Iron plate. Figure 3
Claims (3)
の炸薬とよりなり、低爆速の炸薬が金属ケースに接して
配置され、高爆速の炸薬は該低爆速の炸薬の内部に配置
され、かつ起爆手段を有することを特徴とするデュアル
エフェクト弾頭。(1) Consisting of a metal case, a high detonation velocity explosive, and a lower detonation velocity explosive, the low detonation velocity explosive is placed in contact with the metal case, and the high detonation velocity explosive is placed inside the low detonation velocity explosive. , and a dual-effect warhead characterized by having a detonator.
の炸薬とよりなり、高密度の炸薬が金属ケースに接して
配置され、高爆速の炸薬は該高密度の炸薬の内部に配置
され、かつ起爆手段を有することを特徴とするデュアル
エフェクト弾頭。(2) Consisting of a metal case, a high-detonation velocity explosive, and a higher-density explosive, the high-density explosive is placed in contact with the metal case, and the high-detonation-velocity explosive is placed inside the high-density explosive. , and a dual-effect warhead characterized by having a detonator.
かつ高密度な炸薬とよりなり、低爆速かつ高密度な炸薬
が金属ケースに接して配置され高爆速の炸薬は該低爆速
かつ高密度な炸薬の内部に配置され、かつ起爆手段を有
することを特徴とするデュアルエフェクト弾頭。(3) Consisting of a metal case, a high detonation velocity explosive, and a lower detonation velocity and higher density explosive than the same explosive; the low detonation velocity and high density explosive is placed in contact with the metal case, and the high detonation velocity explosive is A dual-effect warhead that is placed inside a dense explosive charge and has a detonator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14737190A JP2671564B2 (en) | 1990-06-07 | 1990-06-07 | Dual effect warhead |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14737190A JP2671564B2 (en) | 1990-06-07 | 1990-06-07 | Dual effect warhead |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0443300A true JPH0443300A (en) | 1992-02-13 |
JP2671564B2 JP2671564B2 (en) | 1997-10-29 |
Family
ID=15428721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14737190A Expired - Fee Related JP2671564B2 (en) | 1990-06-07 | 1990-06-07 | Dual effect warhead |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2671564B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101930499B1 (en) * | 2018-02-23 | 2018-12-19 | 주식회사 한화 | Warhead with improved power and gunpowder structure |
KR20230040045A (en) | 2021-09-15 | 2023-03-22 | 국방과학연구소 | Dual-explosive charged structures |
-
1990
- 1990-06-07 JP JP14737190A patent/JP2671564B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2671564B2 (en) | 1997-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5597974A (en) | Shaped charge for a perforating gun having a main body of explosive including TATB and a sensitive primer | |
Matyáš et al. | Explosive Properties of Primary Explosives | |
Zou et al. | Explosives | |
US5417160A (en) | Lead-free priming mixture for percussion primer | |
US2972948A (en) | Shaped charge projectile | |
US20160161236A1 (en) | Device for the controlled initiation of the deflagration of an explosive charge | |
JP2003508721A (en) | Detonator | |
US2325064A (en) | Explosive composition | |
US3528864A (en) | High impulse explosives containing tungsten | |
JPH0443300A (en) | Dual-effect warhead | |
US6352029B1 (en) | Thermally actuated release mechanism | |
JPH06144982A (en) | Pyrotechnic delay composition | |
Trzciński | Study of Shock Initiation of an NTO‐Based Melt‐Cast Insensitive Composition | |
US3742859A (en) | Explosive charge | |
US3557698A (en) | Photoflash bomb | |
US3604354A (en) | Explosive booster for relatively insensitive explosives | |
GB144736A (en) | Improvements in incendiary shells | |
WO2000026603A1 (en) | Non-primary detonators | |
US2487317A (en) | Explosive cartridge for plaster shooting | |
US2863392A (en) | Delay electric initiators | |
JP2678500B2 (en) | Dual effect warhead | |
JP2678517B2 (en) | Dual effect warhead | |
JPH04227499A (en) | Low-sensitive explosive ammunition member | |
JPH028697A (en) | Multi-way initiating method and device for explosive | |
US2499321A (en) | Explosive composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080711 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090711 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |