JPH0443208B2 - - Google Patents

Info

Publication number
JPH0443208B2
JPH0443208B2 JP60063386A JP6338685A JPH0443208B2 JP H0443208 B2 JPH0443208 B2 JP H0443208B2 JP 60063386 A JP60063386 A JP 60063386A JP 6338685 A JP6338685 A JP 6338685A JP H0443208 B2 JPH0443208 B2 JP H0443208B2
Authority
JP
Japan
Prior art keywords
rolling mill
thickness gauge
detector
radiographic
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60063386A
Other languages
Japanese (ja)
Other versions
JPS61223508A (en
Inventor
Jiro Katayama
Asao Monno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Kawasaki Steel Corp filed Critical Fuji Electric Co Ltd
Priority to JP60063386A priority Critical patent/JPS61223508A/en
Publication of JPS61223508A publication Critical patent/JPS61223508A/en
Publication of JPH0443208B2 publication Critical patent/JPH0443208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • G01B15/025Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness by measuring absorption

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 板厚測定に使用する放射線透過式厚さ計の改良
に関し、この明細書で述べる技術内容は、圧延機
放射線透過式厚さ計を取付けて板厚測定を行つて
も、圧延機より発生する振動衝撃に影響されるこ
となく正確に板厚測定することの可能な放射線透
過式厚さ計を得るための開発成果を提案するとこ
ろにある。 (従来の技術) 放射線透過式厚さ計の厚板圧延機における適用
は、従来圧延機から10m以上離れた位置に放射線
透過式厚さ計専用のC形フレームを設置し、この
C形フレームに放射線透過式厚さ計を取付け、圧
延機で発生する振動衝撃の影響を除外するように
配慮されていた。 放射線透過式厚さ計は、本来厚板のような熱間
で圧延される被圧延材の絶対板厚を、被圧延材全
長にわたり非接触連続測定することができるた
め、目標とする板厚に板厚修正する場合など
AGC制御(Automatic Gauge Control)によつ
て効果的な圧延に利用することができる。 ところが上述したように、圧延機から10m以上
離れた位置にて板厚測定を行うときは、被圧延材
が圧延機を出てから放射線透過式厚さ計に到達す
るまでの時間遅れが著しいのでAGC制御に不適
合であつた。 一方先行技術として実開昭57−65709号公報で
は、放射線厚み計(X線厚み計)により板厚測定
する際、圧延中に破断した被圧延材から放射線厚
み計を保護するための仕組みについて開示されて
いる。 ところが、とくに放射線透過式厚さ計の検出器
は、シンチレータ、光電子増倍管を主要部とする
電子回路構造体であつて、その固有振動数が通常
100〜500Hz程度であり、圧延時に発生する振動衝
撃(60〜600Hz)の影響を受けると共振し、正確
な板厚測定ができず、また短期間で故障するうれ
いがあつたので、放射線透過式厚さ計は従来圧延
機のハウジングの近傍に設置することができなか
つたのである。 (発明が解決しようとする問題点) 上述したように、従来板厚測定に用いる放射線
透過式厚さ計の難点を解消し、圧延機に放射線透
過式厚さ計を設置して板厚測定を行つても、圧延
機から受ける振動・衝撃に影響されることなく正
確に板厚測定することの可能な放射線透過式厚さ
計を得ることがこの発明の目的である。 (問題点を解決するための手段) この発明は、放射線源を格納する線源容器と、
放射線強度を検出する検出器とを、圧延機の操作
側、駆動側の両ハウジング間にわたつて被圧延材
を上下に挟む一対の連結枠片にそれぞれ取付け、 このうち放射線強度を検出する検出器は、該枠
片との間に、振動・衝撃の軽減特性の異なる緩衝
機構を組み合わせた高周波減衰型の緩衝装置を介
装して成る放射線透過式厚さ計であり、 また、上記緩衝装置は、圧延機固有の振動周波
数成分60〜600Hzに対し、十分低い50Hz以下の共
振周波数特性を有する高周波減衰型の減衰機構と
している。 第1図は上記放射線透過式厚さ計を厚板圧延機
に取付けた状態の1例を示すもので、図中1は被
圧延材、2a,2bは圧延機の操作側、駆動側の
ハウジング、3a,3bは圧下スクリユー、4は
上バツクアツプロール、5a,5bは上バツクア
ツプロールチヨツク、6は上ワークロールで、7
は下バツクアツプロール、8a,8bは下バツク
アツプロールチヨツク、9は下ワークロールであ
る。また10a,bは圧延機ハウジング2a,2
b間にわたつて被圧延材を上下に挟む連結枠片で
あり、11は線源容器、12は検出器、そして1
3は緩衝装置である。 ここで圧延機に放射線透過式厚さ計を設置して
板厚測定を行つても圧延機の振動衝撃に影響され
ない放射線透過式厚さ計を得るには、以下に説明
する緩衝装置13で検出器12を保持することが
有効である。 第2図および第3図は検出器12を保持する緩
衝装置13の側面図、および平面図である。 第2図に示す側面図からも明らかなように、こ
の緩衝装置13は、防振ゴム13a、ダンパー1
3b、およびスプリング13cからなり、防振ゴ
ム13aでは数百Hzの振動を吸収し、ダンパー1
3bでは圧延機の振動を短時間内におさえ、そし
てスプリング13cによつて振動衝撃の伝達を極
度に低減する機能をもつている。 さらに、この緩衝装置13は、第3図の平面図
に示すように、検出器12を3点以上(この例で
は4点保持)で固定するため、圧延機で発生する
垂直・水平方向の振動衝撃の吸収に加え、放射線
透過式厚さ計の回転運動も防止できる構造となつ
ている。 従つて圧延機に放射線透過式厚さ計を設置して
も振動・衝撃に影響されることなく正確に板厚測
定を行うことができる。 なお上述した放射線透過式厚さ計は、圧延機の
操作側・駆動側のハウジング2a,2bに、連結
枠片10a,bを用いて取付けたが、この他圧延
機周辺の既設設備、例えばストリツパーガイドな
どを用いて保持することも可能である。またここ
では検出器12を連結枠片10a,bの上部、線
源容器11を連結枠片10aの下部に取付けた
が、この設置位置は互いに逆配置してもなんら問
題はない。 (実施例) 以下実施例について説明する。 この発明による放射線透過式厚さ計(γ線厚み
計を用いた)を第1図に示すように、厚板圧延機
(4重可逆転式:バツクアツプロールφ2400×
5390mm、ワークロールφ1200mm×5490mm)のハウ
ジング間に取付け、圧延機ハウジングで発生する
振動・衝撃とγ線厚み計(緩衝装置で保持した検
出器)に受ける振動・衝撃とを測定した。 γ線厚み計の取付位置はミルセンターから1500
mm、パスライン上1000mm(検出器)、パスライン
下400mm(線源器)、とした。 第4図a及びbは鉛直方向及び水平方向の圧延
機連結枠片10aの振動データと、本発明に係わ
る検出器12の振動データとを上下に並べて対比
して示したものである。 圧延機連結枠片10aにて測定した振動・衝撃
は、鉛直方向で60〜300Hz、5〜10G、水平方向
で60〜600Hz、1〜5Gであるのに対し、本発明に
よる検出器12は鉛直方向で20〜50Hz、0.5G以
下、水平方向で18〜28Hz、0.5G以下であつた。 第5図は、検出器12に組込まれる電子部品と
して代表される光電子増倍管の固有振動データの
一例を示す。 通常、上記光電子増倍管は、430Hz近傍の固有
振動数をもつているが、検出器12を緩衝装置1
3で固定したγ線厚み計を用いれば、圧延機で発
生する振動衝撃を十分低減することができる。 表−1にγ線厚み計の耐久性を比較して示し
た。
(Industrial Application Field) Regarding the improvement of the radiographic thickness gauge used for plate thickness measurement, the technical content described in this specification is applicable even when plate thickness is measured by installing a rolling mill radiographic thickness gauge. This paper proposes the development results for obtaining a radiographic thickness gauge that can accurately measure plate thickness without being affected by the vibration shock generated by a rolling mill. (Prior technology) The application of a radiographic thickness gauge to a plate rolling mill is to install a C-shaped frame exclusively for the radiographic thickness gauge at a position of 10 m or more from the rolling mill, and to A radiographic thickness gauge was installed to eliminate the effects of vibration and shock generated by the rolling mill. Radiographic thickness gauges can continuously measure the absolute thickness of hot-rolled materials, such as thick plates, over the entire length of the rolled material without contact, making it easy to reach the target thickness. When modifying plate thickness, etc.
It can be used for effective rolling through AGC control (Automatic Gauge Control). However, as mentioned above, when measuring plate thickness at a location more than 10m away from the rolling mill, there is a significant time delay from when the rolled material leaves the rolling mill until it reaches the radiographic thickness gauge. It was incompatible with AGC control. On the other hand, as a prior art, Japanese Utility Model Application Publication No. 57-65709 discloses a mechanism for protecting the radiation thickness meter from a rolled material that breaks during rolling when measuring plate thickness using a radiation thickness meter (X-ray thickness meter). has been done. However, the detector of a radiographic thickness gauge in particular is an electronic circuit structure whose main parts are a scintillator and a photomultiplier tube, and its natural frequency is usually
It is around 100 to 500 Hz, and if affected by the vibration shock (60 to 600 Hz) that occurs during rolling, it will resonate, making it impossible to accurately measure the plate thickness, and there was a risk of failure in a short period of time. Conventionally, type thickness gauges could not be installed near the housing of the rolling mill. (Problems to be Solved by the Invention) As mentioned above, the problems of conventional radiographic thickness gauges used for plate thickness measurements have been solved, and plate thickness can be measured by installing a radiographic thickness gauge in a rolling mill. An object of the present invention is to obtain a radiation transmission type thickness gauge that can accurately measure plate thickness without being affected by vibrations and shocks received from a rolling mill. (Means for Solving the Problems) This invention provides a radiation source container for storing a radiation source;
A detector for detecting radiation intensity is attached to a pair of connecting frame pieces that vertically sandwich the material to be rolled between the housings on the operating side and drive side of the rolling mill. is a radiographic thickness gauge that is constructed by interposing a high-frequency damping type shock absorber that combines shock absorbing mechanisms with different vibration and shock reduction characteristics between the frame piece, and the above-mentioned shock absorber is The damping mechanism is a high-frequency damping type having a resonance frequency characteristic of 50 Hz or less, which is sufficiently low compared to the vibration frequency component of 60 to 600 Hz, which is unique to the rolling mill. Figure 1 shows an example of the radiographic thickness gauge installed in a plate rolling mill. , 3a, 3b are the lowering screws, 4 is the upper back up roll, 5a, 5b are the upper back up roll yoke, 6 is the upper work roll, 7
is the lower back up roll, 8a and 8b are the lower back up roll yoke, and 9 is the lower work roll. Further, 10a, b are rolling mill housings 2a, 2
b is a connecting frame piece that sandwiches the material to be rolled vertically between
3 is a buffer device. Here, in order to obtain a radiographic thickness gauge that is not affected by the vibration shock of the rolling mill even if a radiographic thickness gauge is installed in the rolling mill and the plate thickness is measured, detection is performed using the shock absorber 13 described below. It is effective to hold the container 12. 2 and 3 are a side view and a plan view of the buffer device 13 that holds the detector 12. FIG. As is clear from the side view shown in FIG.
3b and a spring 13c, the vibration isolating rubber 13a absorbs vibrations of several hundred Hz, and the damper 1
3b has the function of suppressing the vibration of the rolling mill within a short period of time, and extremely reducing the transmission of vibration shock by means of the spring 13c. Furthermore, as shown in the plan view of FIG. 3, this shock absorber 13 fixes the detector 12 at three or more points (in this example, four points are held), so that vibrations in the vertical and horizontal directions generated in the rolling mill are prevented. In addition to absorbing shock, the structure also prevents rotational movement of the radiographic thickness gauge. Therefore, even if a radiographic thickness gauge is installed in a rolling mill, plate thickness can be accurately measured without being affected by vibrations or shocks. The above-mentioned radiographic thickness gauge was attached to the housings 2a and 2b on the operation side and the drive side of the rolling mill using the connecting frame pieces 10a and 10b, but it was also possible to attach the thickness gauge to the housings 2a and 2b on the operating side and drive side of the rolling mill using the connecting frame pieces 10a and b. It is also possible to hold it using a ripper guide or the like. Further, here, the detector 12 is attached to the upper part of the connecting frame pieces 10a and 10b, and the radiation source container 11 is attached to the lower part of the connecting frame piece 10a, but there is no problem even if the installation positions are reversed. (Example) Examples will be described below. As shown in Fig. 1, a radiographic thickness gauge (using a γ-ray thickness gauge) according to the present invention is used on a plate rolling mill (4-fold reversible type: back-up roll φ2400 x
It was installed between the housings of a rolling mill housing (5390 mm, work roll φ1200 mm x 5490 mm), and measured the vibrations and shocks generated in the rolling mill housing and the vibrations and shocks received by the gamma ray thickness meter (detector held by a shock absorber). The installation position of the gamma ray thickness gauge is 1500 from the mill center.
mm, 1000 mm above the pass line (detector), and 400 mm below the pass line (source). FIGS. 4a and 4b show vertical and horizontal vibration data of the rolling mill connecting frame piece 10a and vibration data of the detector 12 according to the present invention, arranged vertically and in comparison. The vibration/shock measured at the rolling mill connecting frame piece 10a is 60-300Hz, 5-10G in the vertical direction, and 60-600Hz, 1-5G in the horizontal direction, whereas the detector 12 according to the present invention It was 20-50Hz and 0.5G or less in the direction, and 18-28Hz and 0.5G or less in the horizontal direction. FIG. 5 shows an example of natural vibration data of a photomultiplier tube, which is a typical electronic component incorporated into the detector 12. Normally, the photomultiplier tube has a natural frequency around 430Hz, but the detector 12 is connected to the buffer device 1.
If the gamma ray thickness gauge fixed at 3 is used, the vibration shock generated in the rolling mill can be sufficiently reduced. Table 1 shows a comparison of the durability of the gamma ray thickness gauges.

【表】 なお実施例では、厚板圧延機にγ線厚み計を取
付た場合について述べたが、厚板圧延機のみに限
定されるものではない。またγ線厚み計の代りに
X線厚み計を取付けても良い。 (発明の効果) 以上この発明によれば、圧延機にγ線厚み計を
取付けて板厚測定しても、圧延機で発生する振動
衝撃の影響を極力低減することができるため、正
確な測定値を得ることができる。またこの発明に
より応答性の高いAGC制御が可能となり、所望
の板厚精度を大幅に向上させることができる。
[Table] In the example, a case where a gamma ray thickness meter is attached to a thick plate rolling mill is described, but the present invention is not limited to a thick plate rolling mill. Moreover, an X-ray thickness gauge may be attached instead of the γ-ray thickness gauge. (Effects of the Invention) According to the present invention, even if a γ-ray thickness meter is attached to a rolling mill to measure plate thickness, the influence of vibration and shock generated in the rolling mill can be reduced as much as possible, so accurate measurement can be achieved. value can be obtained. Furthermore, the present invention enables AGC control with high responsiveness, making it possible to significantly improve the desired plate thickness accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は厚板圧延機の要部外観図、第2図は、
検出器12を保持する緩衝装置13の側面図、第
3図は平面図、第4図は、圧延機ハウジングに生
じる振動の測定データを示すオシロ波形写真、第
5図は、光電子増倍管の固有振動の測定データを
示すオシロ波形写真である。 1……被圧延材、2a,2b……操作側・駆動
側の圧延機ハウジング、3a,3b……圧下スク
リユー、4……上バツクアツプロール、5a,5
b……上バツクアツプロールチヨツク、6……上
ワークロール、7……下バツクアツプロール、8
a,8b……下バツクアツプロールチヨツク、9
……下ワークロール、10……連結枠片、11…
…線源容器、12……検出器、13……緩衝装
置。
Figure 1 is an external view of the main parts of a plate rolling mill, and Figure 2 is:
FIG. 3 is a side view of the buffer device 13 holding the detector 12, FIG. 3 is a plan view, FIG. 4 is an oscilloscope waveform photograph showing measurement data of vibrations occurring in the rolling mill housing, and FIG. This is an oscilloscope waveform photograph showing measurement data of natural vibration. 1... Material to be rolled, 2a, 2b... Rolling machine housing on operation side/drive side, 3a, 3b... Rolling screw, 4... Upper back up roll, 5a, 5
b...Upper back up roll, 6...Upper work roll, 7...Lower back up roll, 8
a, 8b...Lower backup roll check, 9
...Lower work roll, 10...Connection frame piece, 11...
...Radiation source container, 12...Detector, 13...Buffer device.

Claims (1)

【特許請求の範囲】 1 放射線源を格納する線源容器と、放射線強度
を検出する検出器とを、圧延機の操作側、駆動側
の両ハウジング間にわたつて被圧延材を上下に挟
む一対の連結枠片にそれぞれ取付け、 このうち放射線強度を検出する検出器は該枠片
との間に、振動・衝撃の軽減特性の異なる複数の
緩衝機構を組み合わせた高周波減衰型の緩衝装置
を介装して成る放射線透過式厚さ計。 2 緩衝装置が、圧延機固有の振動周波数成分60
〜600Hzに対し、十分低い50Hz以下の共振周波数
を有する高周波減衰型の減衰機構から成る特許請
求の範囲第1項記載の放射線透過式厚さ計。
[Claims] 1. A radiation source container that stores a radiation source and a detector that detects radiation intensity are placed between housings on the operation side and drive side of a rolling mill, sandwiching the material to be rolled above and below. A high-frequency damping type shock absorber that combines multiple shock absorbing mechanisms with different vibration and shock reduction characteristics is interposed between the detector for detecting radiation intensity and the frame pieces. A radiographic thickness gauge made of 2 The shock absorber absorbs vibration frequency components unique to the rolling mill60
The radiographic thickness gauge according to claim 1, comprising a high frequency attenuation type damping mechanism having a resonance frequency of 50Hz or less, which is sufficiently low compared to 600Hz.
JP60063386A 1985-03-29 1985-03-29 Radiation transmission type thickness meter Granted JPS61223508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063386A JPS61223508A (en) 1985-03-29 1985-03-29 Radiation transmission type thickness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063386A JPS61223508A (en) 1985-03-29 1985-03-29 Radiation transmission type thickness meter

Publications (2)

Publication Number Publication Date
JPS61223508A JPS61223508A (en) 1986-10-04
JPH0443208B2 true JPH0443208B2 (en) 1992-07-15

Family

ID=13227805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063386A Granted JPS61223508A (en) 1985-03-29 1985-03-29 Radiation transmission type thickness meter

Country Status (1)

Country Link
JP (1) JPS61223508A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715988B2 (en) * 2001-09-04 2011-07-06 東洋製罐株式会社 Can body pinhole inspection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797800A (en) * 1980-12-10 1982-06-17 Matsushita Electric Ind Co Ltd Ultrasonic wave transmitter and receiver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797800A (en) * 1980-12-10 1982-06-17 Matsushita Electric Ind Co Ltd Ultrasonic wave transmitter and receiver

Also Published As

Publication number Publication date
JPS61223508A (en) 1986-10-04

Similar Documents

Publication Publication Date Title
US5105455A (en) X-ray diagnostic apparatus
US7764767B2 (en) Device and method for adjusting a diagnostic unit
US5125017A (en) Compton backscatter gage
CN109030267A (en) A kind of friction test device and its test method
JPH0443208B2 (en)
US2586708A (en) Torque testing instrument for selflocking nuts, etc.
US4615220A (en) Method and device for measuring small forces and small movements in a materials testing machine or other loading device
US5763788A (en) Portable device for counting and sorting load cycles in supporting structures with various loads
CN208636169U (en) A kind of friction test device
CN109827728B (en) Damping structure noise reduction performance test support, test device and method
Rosenberg Dynamic uniaxial stress experiments on alumina with in‐material Manganin gauges
US4471662A (en) Non-destructive door frame tester
CN219389275U (en) Support for hospital ionizing radiation detection equipment
CN218765976U (en) Automatic torsion testing machine for micro torsion spring
CN220721841U (en) Metering device preservation device
CN212110092U (en) Keyless entry system calibration equipment based on upper computer control
CN216449383U (en) Building engineering quality detection device
CN221078303U (en) Pressure testing machine for wall quality detection
CN210375479U (en) Anchor rod dynamometer for tunnel construction
CN212779147U (en) Cylindrical part detection measuring tool
CN203908763U (en) A portable elevator landing door loading tester
CN218547520U (en) Utensil is examined to spring number of turns
CN220305030U (en) Host shell performance detection structure
KR100471803B1 (en) Slide measurement jig for side door strength measurement
CN115367998B (en) Protective device for TFT glass production liquid level measurement system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees