JPH0442981B2 - - Google Patents

Info

Publication number
JPH0442981B2
JPH0442981B2 JP59191720A JP19172084A JPH0442981B2 JP H0442981 B2 JPH0442981 B2 JP H0442981B2 JP 59191720 A JP59191720 A JP 59191720A JP 19172084 A JP19172084 A JP 19172084A JP H0442981 B2 JPH0442981 B2 JP H0442981B2
Authority
JP
Japan
Prior art keywords
coil spring
fiber
fibers
composite material
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59191720A
Other languages
Japanese (ja)
Other versions
JPS6169439A (en
Inventor
Shinya Asada
Tsuguhito Takii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP59191720A priority Critical patent/JPS6169439A/en
Publication of JPS6169439A publication Critical patent/JPS6169439A/en
Publication of JPH0442981B2 publication Critical patent/JPH0442981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • B29C53/821Mandrels especially adapted for winding and joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/12Bending or folding helically, e.g. for making springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/10Cords, strands or rovings, e.g. oriented cords, strands or rovings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • B29K2707/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/774Springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、繊維強化複合材料を用いてコイルば
ねを作製するための方法に関するものである。 〔従来の技術〕 従来、繊維強化複合材料を用いてコイルばねを
製造する方法として下記のものが知られている。 繊維強化複合材料を円筒状に成形した後所望
の形状に切断する方法。 予め樹脂含浸した繊維束を溝付の心金に巻回
成形する方法。 予め樹脂含浸した繊維束を可撓性チユーブ内
に入れ成形後チユーブを取り除く方法。 予め樹脂含浸した繊維束を捩つたものを可撓
性の丸棒に巻回後、更に溝付の心金に巻回して
成形する方法。 〔発明が解決しようとする問題点〕 上記従来の繊維強化複合材料を用いたコイルば
ねの各種製造方法には下記の欠点があつた。各番
号は上記製造方法の各番号に対応する。 引張方向に繊維を配向させることが困難であ
り、またそれ故に所望の形状に切断する際、連
続繊維を部分的に切断してしまう危険性大であ
り、強度的に不充分かつ不安定なものしか得ら
れない。また、材料の損失も大きい。 上記のような連続繊維を切断することは無い
が、脱型が非常に困難であり、この脱型時に製
品の破損を伴う危険性大である。このため生産
性が低い製造方法である。 成形時に形状がくずれるため、安定した製品
が得がたい。 成形が非常に煩雑であり、また繊維束を予め
捩ることから、繊維の母材中への配置が不均一
となり、安定した製品が得がたい。また、設備
投資も多大となる。 それ故、本発明の目的は、上記欠点を解消し、 引張方向に繊維を配向でき、強化繊維の有す
る充分なる強度からコイルばねとしても強度的
に従来の金属性のものと比較して充分な強度が
得られ、 円筒状心金上に巻きつけて所望コイルばね形
状を形成し、かつ脱型を容易にし、 一定の張力にて心金に巻回して成形時に繊維
のくずれを無くし、安定した強度を得られるよ
うにし、 従来のフイラメントワインダ機にて容易に製
造でき、安価な設備で工業的製造を可能にする
繊維強化複合材料コイルばねの製造方法を提供
するためにある。 〔問題点を解決するための手段〕 上記目的を達成するため、本発明に係る繊維強
化複合材料コイルばねの製造方法においては、円
筒状心金に所望のコイルばね形状を与える螺旋状
のスペーサを嵌脱自在に嵌挿し、未硬化の熱硬化
性樹脂含浸繊維束を引張方向に配向させながら一
定の張力下に前記円筒状心金外周に形成される前
記スペーサの間〓に巻回してコイルばね形状を形
成し、これを円筒状心金と共に全体を加熱して前
記熱硬化性樹脂を硬化せしめ、前記円筒状心金よ
りスペーサと共に脱型したのちこのスペーサを順
次離脱することにより所望のコイルばねを得るこ
とを特徴とする。 本発明で使用される円筒状心金は第1図参照符
号10で示す金属円筒の両端にはフイラメントワ
インダ機に軸着する軸が装着される。円筒径はコ
イルばねの内径に等しく、一般に鋼材にて作製さ
れる。コイルばねの成形性を向上させるため、円
筒外面にシリコンラバーの均一な外層16を形成
した円筒状心金の別の実施態様が第2図に示さ
れ、この場合コイルばね成形時にシリコンラバー
のもつ高い熱膨張率により、加熱時製品に内側か
ら圧力が加わり、より成形性が良くなる利点が得
られる。 スペーサ12は目的コイルばねと相似形に、一
般に鋼パイプ材の切削加工により作成され、円筒
状心金に嵌脱自在に嵌挿できるよう構成される。 本発明で使用できる繊維は、炭素繊維、ガラス
繊維、ボロン繊維、アラミド繊維またはセラミツ
ク繊維が挙げられ、使用目的、条件に合わせて適
宜選択して使用されるが、炭素繊維とガラス繊維
が広く一般目的に適応でき重要である。 使用される熱硬化性樹脂としては、エポキシ樹
脂、不飽和ポリエステル樹脂、フエノール樹脂、
ビスマレイミド樹脂またはポリイミド樹脂などが
挙げられ、これら樹脂の未硬化プリポリマ溶液を
上記繊維に含浸せしめる。この場合2つの方法が
あり、繊維を心金に巻回する直前に、繊維を樹脂
槽に含浸した後、余分な樹脂をしごきロールを通
して除去し、そのまま心金に巻回するウエツト型
と、心金に巻回する樹脂含浸繊維を予め別工程で
調製するドライ型で、後者の方法は樹脂槽の必要
なく樹脂量を充分に制御したものを使用でき安定
した製品が得られる利点がある。 〔実施例〕 次に、実施例により本発明に係る繊維強化複合
材料コイルばねの製造方法を説明する。 実施例 1 炭素繊維に予め未硬化のエポキシ樹脂を含浸し
たもの(以下プリプレグと称する)を所望のコイ
ルばねの幅に切断する。鋼製の円筒状心金(第1
図、10)に別途作製した鋼製スペーサ12を円
筒状心金10に嵌脱自在に嵌挿する。10Kgの張力
下にプリプレグテープを心金上にかつスペーサ1
2の空〓を埋めるピッチで巻回して所望のコイル
ばね形状になるよう所望の厚みになるまで巻回す
る。第1図参照符号14がこの状態を示す、加圧
テープをプリプレグテープの最上層上に巻回した
後、円筒状心金ごと130℃のオーブンに入れ、90
分間保持して樹脂を硬化させた。冷却後コイルば
ねとスペーサを円筒状心金から脱型した後、スペ
ーサをコイルばねからはずし、所望のコイルばね
を得た。 実施例 2 炭素繊維を所望のコイルばねの幅に配列し、未
硬化エポキシ樹脂溶液に浸漬後しごきロールを通
して余分の樹脂を除去し、そのまま心金にかつス
ペーサの間〓に張力1Kg下に巻回し、所望の厚み
になるまで巻回してコイルばね形状を形成した。
次いで心金ごと130℃のオーブン内に入れ、一定
速度で回転させながら90分間保持して樹脂を硬化
させ、実施例1同様にコイルばねを分離した。 実施例 3 所望のコイルばねの内径より10%小さい外径の
鋼製円筒状心金上にシリコンラバー外層を成形し
て、丁度コイルばねの内径と等しい2重層円筒を
調製した後、実施例1と同様にしてコイルばねを
得た。 実施例 4 ガラス繊維とエポキシ樹脂のプリプレグにつき
実施例1と同様に処理してコイルばねを得た。 実施例 5 実施例1〜4の本発明に係るコイルばねと比較
のためチタン製のコイルばねAと、炭素繊維強化
エポキシ樹脂複合材料を円筒状に成形した後に実
施例1と同じ大きさのコイルばねを切抜いて得た
コイルばねBにつき捩り試験により強度比較をし
た。結果は第1表の通りである。
[Industrial Field of Application] The present invention relates to a method for manufacturing a coil spring using a fiber-reinforced composite material. [Prior Art] Conventionally, the following methods are known as methods for manufacturing coil springs using fiber-reinforced composite materials. A method in which fiber-reinforced composite material is formed into a cylindrical shape and then cut into the desired shape. A method in which a fiber bundle pre-impregnated with resin is wound around a grooved mandrel. A method in which a fiber bundle pre-impregnated with resin is placed inside a flexible tube and the tube is removed after molding. A method in which a twisted fiber bundle pre-impregnated with resin is wound around a flexible round rod, and then further wound around a grooved mandrel. [Problems to be Solved by the Invention] Various methods for manufacturing coil springs using the conventional fiber-reinforced composite materials described above have the following drawbacks. Each number corresponds to each number of the above manufacturing method. It is difficult to orient the fibers in the tensile direction, and therefore there is a high risk of partially cutting the continuous fibers when cutting them into the desired shape, and the strength is insufficient and unstable. I can only get it. Moreover, the loss of material is also large. Although continuous fibers as described above are not cut, demolding is extremely difficult and there is a high risk of damage to the product during demolding. Therefore, this is a manufacturing method with low productivity. It is difficult to obtain a stable product because the shape collapses during molding. Molding is very complicated, and since the fiber bundles are twisted in advance, the fibers are unevenly arranged in the matrix, making it difficult to obtain a stable product. In addition, the capital investment will be large. Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks, to make it possible to orient the fibers in the tensile direction, and to use the sufficient strength of the reinforcing fibers as a coil spring, which has sufficient strength compared to conventional metallic ones. It provides strength, can be wound around a cylindrical mandrel to form the desired coil spring shape, is easy to demold, and is wound around a mandrel with a constant tension to prevent fibers from collapsing during molding, making it stable. The object of the present invention is to provide a method for manufacturing a fiber-reinforced composite material coil spring that has high strength, can be easily manufactured using a conventional filament winder, and can be manufactured industrially with inexpensive equipment. [Means for Solving the Problems] In order to achieve the above object, in the method for manufacturing a fiber-reinforced composite material coil spring according to the present invention, a spiral spacer is provided to give a desired coil spring shape to a cylindrical mandrel. The uncured thermosetting resin-impregnated fiber bundle is removably inserted and wound under constant tension between the spacers formed on the outer periphery of the cylindrical mandrel while orienting the uncured thermosetting resin-impregnated fiber bundle in the tensile direction to form a coil spring. A desired coil spring is formed by forming a shape, heating the whole together with a cylindrical mandrel to harden the thermosetting resin, demolding the cylindrical mandrel together with the spacers, and then sequentially removing the spacers. It is characterized by obtaining. The cylindrical mandrel used in the present invention is a metal cylinder indicated by reference numeral 10 in FIG. 1, and at both ends thereof a shaft is attached to a filament winder. The cylinder diameter is equal to the inner diameter of the coil spring, and is generally made of steel. Another embodiment of a cylindrical mandrel having a uniform outer layer 16 of silicone rubber formed on the outer surface of the cylinder to improve the formability of the coil spring is shown in FIG. The high coefficient of thermal expansion applies pressure to the product from the inside when heated, giving it the advantage of better moldability. The spacer 12 is generally made by cutting a steel pipe material to have a similar shape to the intended coil spring, and is configured to be removably inserted into the cylindrical mandrel. Fibers that can be used in the present invention include carbon fibers, glass fibers, boron fibers, aramid fibers, and ceramic fibers, and are appropriately selected and used depending on the purpose and conditions of use, but carbon fibers and glass fibers are widely used. It is important to be adaptable to the purpose. Thermosetting resins used include epoxy resins, unsaturated polyester resins, phenolic resins,
Examples include bismaleimide resin or polyimide resin, and the fibers are impregnated with uncured prepolymer solutions of these resins. In this case, there are two methods. Immediately before winding the fibers around the mandrel, the fibers are impregnated in a resin bath, the excess resin is removed through ironing rolls, and the fibers are then wound around the mandrel as is, the wet method. The latter method is a dry method in which the resin-impregnated fibers to be wound around the gold are prepared in advance in a separate process.The latter method has the advantage of not requiring a resin bath and allowing the use of well-controlled resin amounts, resulting in a stable product. [Example] Next, a method for manufacturing a fiber-reinforced composite material coil spring according to the present invention will be explained with reference to an example. Example 1 Carbon fibers impregnated with an uncured epoxy resin (hereinafter referred to as prepreg) are cut into the desired width of a coil spring. Steel cylindrical mandrel (first
As shown in FIG. 10), a separately produced steel spacer 12 is removably fitted into the cylindrical mandrel 10. Place the prepreg tape on the mandrel and spacer 1 under a tension of 10Kg.
The coil is wound at a pitch that fills the void in step 2 until it reaches the desired thickness to form the desired coil spring shape. After winding the pressure tape (reference numeral 14 in FIG. 1 indicates this state) on the top layer of the prepreg tape, the cylindrical mandrel was placed in an oven at 130°C and heated to 90°C.
Hold for a minute to cure the resin. After cooling, the coil spring and spacer were demolded from the cylindrical mandrel, and then the spacer was removed from the coil spring to obtain a desired coil spring. Example 2 Carbon fibers were arranged in the desired width of a coil spring, dipped in an uncured epoxy resin solution, passed through an ironing roll to remove excess resin, and then wound around a core metal and between spacers under a tension of 1 kg. , and was wound to a desired thickness to form a coiled spring shape.
Next, the core was placed in an oven at 130° C. and held for 90 minutes while rotating at a constant speed to harden the resin, and the coil spring was separated in the same manner as in Example 1. Example 3 After forming a silicon rubber outer layer on a steel cylindrical mandrel with an outer diameter 10% smaller than the inner diameter of the desired coil spring to prepare a double-layer cylinder exactly equal to the inner diameter of the coil spring, Example 1 was carried out. A coil spring was obtained in the same manner. Example 4 A prepreg of glass fiber and epoxy resin was treated in the same manner as in Example 1 to obtain a coil spring. Example 5 For comparison with the coil springs according to the present invention in Examples 1 to 4, a titanium coil spring A and a coil of the same size as in Example 1 were prepared after molding a carbon fiber reinforced epoxy resin composite material into a cylindrical shape. A coil spring B obtained by cutting out a spring was subjected to a torsion test to compare its strength. The results are shown in Table 1.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明に係る繊維強化複合材料コイルばねの製
造方法によると、従来のフイラメントワインダ機
による安価な設備で工業的に品質が安定し、かつ
円筒状心金に巻き付けて所望のコイルばねを形成
することにより、脱型を容易にした繊維強化複合
材料コイルばねを提供することができ、特に、炭
素繊維強化エポキシ樹脂複合材料コイルばねによ
ると同じ機能下でチタン製コイルばね約1/3重量
ですみ、かつ静的及び疲労強度向上、すなわち耐
久性向上が達成される。
According to the method for manufacturing a fiber-reinforced composite material coil spring according to the present invention, the quality is industrially stable using inexpensive equipment using a conventional filament winder machine, and the desired coil spring can be formed by winding it around a cylindrical core metal. As a result, it is possible to provide a fiber-reinforced composite coil spring that is easy to demold, and in particular, a carbon fiber-reinforced epoxy resin composite coil spring has the same function as a titanium coil spring with a weight that is approximately 1/3 that of a carbon fiber-reinforced epoxy resin composite coil spring. Furthermore, improvement in static and fatigue strength, that is, improvement in durability is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る繊維強化複合材料コイル
ばねの製造に使用される円筒状心金にコイルばね
形状が形成された状態を示す概略縦断面図、第2
図は第1図とは別の円筒状心金を使用する実施態
様を示す概略縦断面図である。 10……円筒状心金、12……スペーサ、14
……繊維強化複合材料、16……シリコンラバー
外層。
FIG. 1 is a schematic longitudinal cross-sectional view showing a state in which a coil spring shape is formed on a cylindrical mandrel used for manufacturing a fiber-reinforced composite material coil spring according to the present invention, and FIG.
The figure is a schematic longitudinal sectional view showing an embodiment using a cylindrical mandrel different from that shown in FIG. 1. 10... Cylindrical mandrel, 12... Spacer, 14
...Fiber-reinforced composite material, 16...Silicone rubber outer layer.

Claims (1)

【特許請求の範囲】 1 円筒状心金に所望のコイルばね形状を与える
螺旋状のスペーサを嵌脱自在に嵌挿し、未硬化の
熱硬化性樹脂含浸繊維束を引張方向に配向させな
がら一定の張力下に前記円筒状心金外周に形成さ
れる前記スペーサの間〓に巻回してコイルばね形
状を形成し、これを円筒状心金と共に全体を加熱
して前記熱硬化性樹脂を硬化せしめ、前記円筒状
心金よりスペーサと共に脱型したのちこのスペー
サを順次離脱することにより所望のコイルばねを
得ることを特徴とする繊維強化複合材料コイルば
ねの製造方法。 2 円筒状心金は金属円筒よりなる特許請求の範
囲第1項記載の繊維強化複合材料コイルばねの製
造方法。 3 円筒状心金は金属円筒とシリコンゴム外層と
より構成される特許請求の範囲第1項記載の繊維
強化複合材料コイルばねの製造方法。 4 繊維強化複合材料の繊維は、炭素繊維、ガラ
ス繊維、ボロン繊維、アラミド繊維またはセラミ
ツク繊維である特許請求の範囲第1項記載の繊維
強化複合材料コイルばねの製造方法。 5 熱硬化性樹脂はエポキシ樹脂、不飽和ポリエ
ステル樹脂、フエノール樹脂、ビスマレイミド樹
脂またはポリイミド樹脂である特許請求の範囲第
1項記載の繊維強化複合材料コイルばねの製造方
法。
[Claims] 1. A spiral spacer that gives a desired coil spring shape is removably inserted into a cylindrical mandrel, and the uncured thermosetting resin-impregnated fiber bundle is oriented in the tensile direction while maintaining a certain shape. Winding under tension between the spacers formed on the outer periphery of the cylindrical mandrel to form a coil spring shape, and heating the whole together with the cylindrical mandrel to harden the thermosetting resin; A method for manufacturing a fiber-reinforced composite material coil spring, characterized in that a desired coil spring is obtained by removing the spacer from the cylindrical mandrel and then sequentially removing the spacer. 2. The method for manufacturing a fiber-reinforced composite material coil spring according to claim 1, wherein the cylindrical mandrel is a metal cylinder. 3. The method for manufacturing a fiber-reinforced composite material coil spring according to claim 1, wherein the cylindrical core is comprised of a metal cylinder and a silicone rubber outer layer. 4. The method for manufacturing a fiber-reinforced composite material coil spring according to claim 1, wherein the fibers of the fiber-reinforced composite material are carbon fibers, glass fibers, boron fibers, aramid fibers, or ceramic fibers. 5. The method for manufacturing a fiber-reinforced composite material coil spring according to claim 1, wherein the thermosetting resin is an epoxy resin, an unsaturated polyester resin, a phenolic resin, a bismaleimide resin, or a polyimide resin.
JP59191720A 1984-09-14 1984-09-14 Manufacture of coiled spring made of fiber reinforced compound material Granted JPS6169439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191720A JPS6169439A (en) 1984-09-14 1984-09-14 Manufacture of coiled spring made of fiber reinforced compound material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191720A JPS6169439A (en) 1984-09-14 1984-09-14 Manufacture of coiled spring made of fiber reinforced compound material

Publications (2)

Publication Number Publication Date
JPS6169439A JPS6169439A (en) 1986-04-10
JPH0442981B2 true JPH0442981B2 (en) 1992-07-15

Family

ID=16279354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191720A Granted JPS6169439A (en) 1984-09-14 1984-09-14 Manufacture of coiled spring made of fiber reinforced compound material

Country Status (1)

Country Link
JP (1) JPS6169439A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710870B1 (en) * 1993-10-08 1995-12-08 Inst Francais Du Petrole Device and method for mass production of fiber-reinforced resin parts.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164126A (en) * 1979-06-06 1980-12-20 Sumitomo Electric Ind Ltd Manufacture of fiber-reinforced plastic coil spring
JPS5664421A (en) * 1979-10-30 1981-06-01 Mitsubishi Electric Corp Manufacture of resin-molded coil
JPS57165233A (en) * 1981-04-07 1982-10-12 Hiroshima Plast Kk Manufacturing device for coil-shaped substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164126A (en) * 1979-06-06 1980-12-20 Sumitomo Electric Ind Ltd Manufacture of fiber-reinforced plastic coil spring
JPS5664421A (en) * 1979-10-30 1981-06-01 Mitsubishi Electric Corp Manufacture of resin-molded coil
JPS57165233A (en) * 1981-04-07 1982-10-12 Hiroshima Plast Kk Manufacturing device for coil-shaped substance

Also Published As

Publication number Publication date
JPS6169439A (en) 1986-04-10

Similar Documents

Publication Publication Date Title
EP3271132B1 (en) A fiber-reinforced composite sports article and its method of manufacture
US2980158A (en) Method and mold for producing an archery bow
US4857124A (en) Fiber-reinforced plastic strut connecting link
US3953637A (en) Slender rod for fishing rods and method of making the same
JPH10510012A (en) Improved braided preforms for composites
US5225016A (en) Method of manufacturing an advanced composite duct having integral ribs
US4770832A (en) Process for manufacturing of structural reinforcing material
JPH0442981B2 (en)
JPS6138021B2 (en)
US4003778A (en) Method of making slender rod for fishing rods
JPH05168375A (en) Material for fishing rod and its production
JPH07329196A (en) Synthetic resin tube reinforced by fiber
JPH07323492A (en) Production of coil spring made of frp
JP3692691B2 (en) Fiber reinforced plastic tubular body
KR20020061885A (en) Tent Pole and Method for Producing Thereof
JPH0320336B2 (en)
JPH01249326A (en) Manufacture of fiber-reinforced resin spring
JPH02255323A (en) Manufacture of substitute material for fiber reinforced resin reinforcing bar
JPS6228232A (en) Manufacture of polygonal angling rod
JPH0615750A (en) Method for molding fiber reinforced resin pipe having bent part and fiber reinforced resin pipe
JPS635247B2 (en)
JPS6120731A (en) Tubular molded body
JPS61220832A (en) Manufacture of curved pipe, made of fiber reinforced plastics and having square section
JPH08141121A (en) Manufacture of golf shaft
JPH0352203B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term