JPH0442965B2 - - Google Patents

Info

Publication number
JPH0442965B2
JPH0442965B2 JP17002584A JP17002584A JPH0442965B2 JP H0442965 B2 JPH0442965 B2 JP H0442965B2 JP 17002584 A JP17002584 A JP 17002584A JP 17002584 A JP17002584 A JP 17002584A JP H0442965 B2 JPH0442965 B2 JP H0442965B2
Authority
JP
Japan
Prior art keywords
inorganic
fibrous reinforcing
reinforcing material
inorganic composition
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17002584A
Other languages
Japanese (ja)
Other versions
JPS6149803A (en
Inventor
Sunao Okamoto
Masahisa Handa
Sumyuki Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Original Assignee
Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd filed Critical Mitsui Construction Co Ltd
Priority to JP17002584A priority Critical patent/JPS6149803A/en
Priority to EP85305790A priority patent/EP0172028B1/en
Priority to DE8585305790T priority patent/DE3581451D1/en
Publication of JPS6149803A publication Critical patent/JPS6149803A/en
Priority to MYPI87001929A priority patent/MY101615A/en
Publication of JPH0442965B2 publication Critical patent/JPH0442965B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば建築材料等として用いられる
繊維質補強材で補強された無機質製品の押出製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an extrusion manufacturing method for an inorganic product reinforced with a fibrous reinforcing material, which is used, for example, as a building material.

(従来の技術) 従来、この種無機質製品の押出製造法として、
例えば特開昭55−85480号公報に示されるように、
セメント、石膏等の無機質組成物に、これと同種
の無機質組成物を含浸させた繊維質補強材を埋入
してこれを同時に押出成形し、次でかかる押出成
形体を硬化させることから成る押出製造法が知ら
れている。
(Prior art) Conventionally, as an extrusion manufacturing method for this type of inorganic product,
For example, as shown in Japanese Patent Application Laid-open No. 55-85480,
Extrusion consisting of embedding a fibrous reinforcing material impregnated with an inorganic composition of the same type in an inorganic composition such as cement or gypsum, extruding the same at the same time, and then curing the extruded product. The manufacturing method is known.

(発明が解決しようとする問題点) 前記従来の無機質製品の押出製造法にあつて
は、繊維質補強材と無機質組成物との結着力がそ
んなに大きくないので、得られる無機質製品の曲
げ強度があまり大きくないという不都合を有して
いる。
(Problems to be Solved by the Invention) In the conventional extrusion manufacturing method of inorganic products, the binding strength between the fibrous reinforcing material and the inorganic composition is not so large, so the bending strength of the obtained inorganic product is low. It has the disadvantage that it is not very large.

(問題点を解決するための手段) 本発明は前記従来法の不都合を解消し、曲げ強
度の優れた無機質製品の押出製造法を提供するこ
とをその目的として、セメント、石膏等の無機質
組成物に、複数本の繊維から成りこれらの繊維同
士を一体に結合すると同時にこれらの繊維を硬化
により無機質組成物と一体に結合する熱硬化性結
合硬化剤を含浸させた繊維質補強材を埋入してこ
れを同時に押出成型し、次でかかる押出成形体の
該無機質組成物と該結合硬化剤を同時に加熱硬化
させることから成る。無機質組成物としては、ポ
ルトランドセメント、アルミナセメント、高炉セ
メント、シリカセメント、フライアツシユセメン
ト等の各種セメント或は石膏等のあらゆる無機質
組成物が含まれる。
(Means for Solving the Problems) The present invention aims to eliminate the disadvantages of the conventional methods and provide an extrusion manufacturing method for inorganic products with excellent bending strength. In this method, a fibrous reinforcing material is embedded, which is made up of a plurality of fibers and is impregnated with a thermosetting bonding curing agent that binds these fibers together and at the same time binds these fibers together with the inorganic composition by curing. The inorganic composition and the bond curing agent of the extruded body are then simultaneously heated and cured. Examples of the inorganic composition include all kinds of inorganic compositions such as various cements such as Portland cement, alumina cement, blast furnace cement, silica cement, and flyash cement, and gypsum.

これらの無機質組成物には粉砕助剤、凝結遅延
剤、硬化促進剤、減水剤、凝固剤、増粘剤、AE
剤等の各種混和剤や適当な粒度の骨材を配合して
おけることは云うまでもない。
These inorganic compositions include grinding aids, setting retarders, hardening accelerators, water reducers, coagulants, thickeners, AE
Needless to say, various admixtures such as additives and aggregates of appropriate particle size can be added.

また、無機質組成物中に石綿、ガラス繊維、炭
素繊維、セラミツク繊維等の無機繊維、芳香族ポ
リアミド、芳香族ポリエーエルアミド、ポリオレ
フイン、ポリビニルアルコール、ポリエステル、
ポリアミド、ポリアクリロニトリル等の有機繊維
等の短繊維を配合して、得られる無機質製品の靱
性を高めるようにしてもよい。
In addition, inorganic compositions include asbestos, inorganic fibers such as glass fibers, carbon fibers, and ceramic fibers, aromatic polyamides, aromatic polyetheramides, polyolefins, polyvinyl alcohol, polyesters,
Short fibers such as organic fibers such as polyamide and polyacrylonitrile may be blended to improve the toughness of the resulting inorganic product.

繊維質補強材としては、炭素繊維、耐アルカリ
性ガラス繊維、セラミツク繊維等の無機繊維、芳
香族ポリアミド、芳香族ポリエーテルアミド、ポ
リエステル、ポリアミド、ポリオレフイン、ポリ
ビニルアルコール、ポリアクリロニトリル等の有
機繊維、ピアノ線、プレストレス用鋼線等の金属
繊維等の各種繊維を例えばロービング、クロス、
ネツト、マツト等の所望形状に構成したものを用
いる。
Examples of fibrous reinforcing materials include inorganic fibers such as carbon fiber, alkali-resistant glass fiber, and ceramic fiber, organic fibers such as aromatic polyamide, aromatic polyetheramide, polyester, polyamide, polyolefin, polyvinyl alcohol, and polyacrylonitrile, and piano wire. , various fibers such as metal fibers such as steel wire for prestressing, for example, roving, cross,
A material constructed into a desired shape such as a net or mat is used.

結合硬化剤としてはエポキシ系、ポリエステル
系、ビニルエステル系、フエノール系、ポリイミ
ド系等の常温或は熱硬化性樹脂、アルカリ金属ケ
イ酸塩系、コロイダルシリカ系、リン酸塩系等の
常温或は加熱硬化型無機材料、常温或は加熱硬化
型有機・無機複合材料等を用いる。
As a bond curing agent, room temperature or thermosetting resin such as epoxy type, polyester type, vinyl ester type, phenol type, polyimide type, etc., room temperature or thermosetting resin such as alkali metal silicate type, colloidal silica type, phosphate type etc. Heat-curable inorganic materials, room temperature or heat-curable organic/inorganic composite materials, etc. are used.

以下、添附図面に従つて本発明無機質製品の押
出製造法の一実施例に付き説明する。
An embodiment of the extrusion manufacturing method for inorganic products of the present invention will be described below with reference to the accompanying drawings.

図中1は本発明製造法に用いられる真空押出機
を示し、真空室2を介して上部スクリユーシリン
ダー3と下部スクリユーシリダー4とを互いに連
通させ、該上部スクリユーシリンダー3の上部一
端に無機質組成物5を供給するためのホツパー6
を設けると共に該下部スクリユーシリンダー4の
端部に繊維質補強材7の導入用アダプター8を介
して所望形状のダイスロ9を備えたダイス10を
連設するものとした。図示のものでは該アダプタ
ー8に、結合硬化剤11の含浸槽12を介して炭
素繊維のロービング13を引き揃えた棒状繊維体
から成る繊維質補強材7を図中その1本のみを示
したが複数本導入するものとした。該ダイス10
の前方には移送コンベアー14を配置し、押出成
形体15をカツター16で所望長さに切断後その
前方のパレツト17上に移送するものとした。
尚、図中18は前記スクリユーシリンダー3,4
内のスクリユーを示す。
In the figure, reference numeral 1 indicates a vacuum extruder used in the production method of the present invention, in which an upper screw cylinder 3 and a lower screw cylinder 4 are communicated with each other via a vacuum chamber 2, and one end of the upper screw cylinder 3 is connected to one end of the upper screw cylinder 3. Hopper 6 for supplying inorganic composition 5
At the same time, a die 10 equipped with a die slot 9 of a desired shape is connected to the end of the lower screw cylinder 4 via an adapter 8 for introducing the fibrous reinforcing material 7. In the illustrated adapter 8, a fibrous reinforcing material 7 consisting of a rod-shaped fibrous body in which carbon fiber rovings 13 are aligned through an impregnating tank 12 with a bond hardening agent 11 is attached, only one of which is shown in the figure. We decided to introduce multiple copies. The dice 10
A transfer conveyor 14 is disposed in front of the conveyor 14, and the extrusion molded product 15 is cut into a desired length by a cutter 16 and then transferred onto a pallet 17 in front of the conveyor 14.
In addition, 18 in the figure is the screw cylinder 3, 4.
Shows the screw inside.

ここで前記真空押出機1による無機質製品の押
出製造の一例を示せば、まずホツパー6に例えば
ポルトランドセメントを主体とする無機質組成物
5を供給する。供給された無機質組成物5は上部
スクリユーシリンダー3内をスクリユー18で小
粒に切断されながら移送されて真空室2へと運ば
れ、該真空室2内で脱気された後下部スクリユー
シリンダー4内を移送され、アダプター8へと導
かれる。
Here, an example of extrusion production of an inorganic product using the vacuum extruder 1 is shown. First, an inorganic composition 5 mainly composed of, for example, Portland cement is supplied to the hopper 6. The supplied inorganic composition 5 is transported inside the upper screw cylinder 3 while being cut into small particles by the screw 18 and transported to the vacuum chamber 2, and after being degassed in the vacuum chamber 2, it is transferred to the lower screw cylinder 4. and is guided to the adapter 8.

これと同時に炭素繊維のロービング13を引き
揃えた棒状繊維体から成る繊維質補強材7の複数
本を熱硬化性樹脂から成る結合硬化剤11の含浸
槽12を通過させて該繊維質補強材7に該結合硬
化剤11を含浸させ、これら繊維質補強材7をア
ダプター8内に導入し、下部スクリユーシリンダ
ー4から押出される前記無機質組成物5内の所望
位置に埋入させる。
At the same time, a plurality of fibrous reinforcing materials 7 made of rod-shaped fibrous bodies made of aligned carbon fiber rovings 13 are passed through an impregnating tank 12 with a bonding hardening agent 11 made of a thermosetting resin. are impregnated with the bond hardening agent 11, and these fibrous reinforcing materials 7 are introduced into the adapter 8 and embedded at a desired position in the inorganic composition 5 extruded from the lower screw cylinder 4.

かくして、該無機質組成物5と該繊維質補強材
7とをダイス10のダイスロ9から所望形状に、
図示のものでは中空角状体に同時に押出し、かか
る押出成形体15を移送コンベアー14によつて
前方に移送しながらカツター16によつて所望長
さに截断し、截断された押出成形体15を該コン
ベアー14の前方のパレツト17に載せて図示し
ないオートクレーブ内に移送し、該押出成形体1
5の無機質組成物5と、繊維質補強材7に含浸さ
せた結合硬化剤11をオートクレーブ養成で同時
に硬化させて無機質製品を得る。
In this way, the inorganic composition 5 and the fibrous reinforcing material 7 are formed into a desired shape through the die slot 9 of the die 10,
In the illustrated example, the extrusion molded body 15 is simultaneously extruded into a hollow square body, and cut into a desired length by a cutter 16 while being transported forward by a transfer conveyor 14, and the cut extrusion molded body 15 is cut into a desired length. The extruded product 1 is placed on a pallet 17 in front of the conveyor 14 and transferred to an autoclave (not shown).
The inorganic composition 5 of No. 5 and the bond hardening agent 11 impregnated into the fibrous reinforcing material 7 are simultaneously cured in an autoclave to obtain an inorganic product.

オートクレーブでの加熱により、無機質組成物
5が乾燥硬化し、この硬化した無機質組成物5に
繊維質補強材7に含浸させた結合硬化剤11が一
体に結合して硬化するので、無機質組成物5と繊
維質補強材7とが強固に結着し、同時に該結合硬
化剤11の硬化で繊維質補強材7の炭素繊維同士
が結着固定化するので、製造された無機質製品に
曲げ応力が加えられても繊維質補強材7がその力
を支え、製品の曲げ強度が増大する。
The inorganic composition 5 is dried and cured by heating in an autoclave, and the bonding curing agent 11 impregnated in the fibrous reinforcing material 7 is bonded to the cured inorganic composition 5 and cured, so that the inorganic composition 5 and the fibrous reinforcing material 7 are strongly bonded together, and at the same time, the carbon fibers of the fibrous reinforcing material 7 are bonded and fixed to each other by curing of the bonding hardening agent 11, so bending stress is applied to the manufactured inorganic product. Even if the product is bent, the fibrous reinforcing material 7 supports that force, increasing the bending strength of the product.

上記の実施例に於いて、繊維質補強材7を直径
1.5ミクロンの炭素繊維40000本を引き揃えたもの
で構成し、この構成の繊維質補強材7を8本使用
し、該繊維質補強材7に含浸させる熱硬化性結合
硬化剤11としてエポキシ樹脂を使用し、外径が
20cm×20cm、肉厚2cm、長さ200cmの角型中空の
無機質製品を作成し、これの曲げ強度を試験した
ところ約150Kg/cm2であつた。これは、従来の繊
維質補強材をセメントに混入して押出成型した同
形同寸法の無機質製品よりも4〜5倍の強度であ
つた。
In the above embodiment, the fibrous reinforcement 7 has a diameter of
It is composed of 40,000 carbon fibers of 1.5 microns arranged in a row, eight fibrous reinforcing materials 7 of this structure are used, and an epoxy resin is used as a thermosetting bond hardening agent 11 to be impregnated into the fibrous reinforcing materials 7. used, and the outer diameter is
A square hollow inorganic product measuring 20 cm x 20 cm, wall thickness 2 cm, and length 200 cm was prepared, and its bending strength was tested and found to be approximately 150 Kg/cm 2 . This was 4 to 5 times stronger than a conventional inorganic product of the same shape and size, which was made by mixing cement with a fibrous reinforcing material and extruding it.

(発明の効果) このように本発明によるときは、セメント、石
膏等の無機質組成物に、結合硬化剤を含浸させた
繊維質補強材を埋入してこれを同時に押出成形
し、次でかかる押出成形体の該無機質組成物と該
結合硬化剤を同時に硬化させるので、該無機質組
成物と繊維質補強材とが互に強固に結着され曲げ
強度に優れた無機質製品を簡単に製造することが
できる効果を有する。
(Effects of the Invention) According to the present invention, a fibrous reinforcing material impregnated with a binding hardening agent is embedded in an inorganic composition such as cement or gypsum, and this is simultaneously extruded. Since the inorganic composition and the bonding hardening agent of the extruded body are simultaneously cured, the inorganic composition and the fibrous reinforcing material are strongly bonded to each other, and an inorganic product having excellent bending strength can be easily produced. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明無機質製品の押出製造法の一実
施例の工程図、第2図は得られた無機質製品の斜
視図である。 5……無機質組成物、7……繊維質補強材、1
1……結合硬化剤、15……押出成形体。
FIG. 1 is a process diagram of an embodiment of the extrusion manufacturing method for inorganic products of the present invention, and FIG. 2 is a perspective view of the obtained inorganic products. 5... Inorganic composition, 7... Fibrous reinforcement material, 1
1... Bond hardening agent, 15... Extrusion molded body.

Claims (1)

【特許請求の範囲】[Claims] 1 セメント、石膏等の無機質組成物に、複数本
の繊維から成りこれらの繊維同士を一体に結合す
ると同時にこれらの繊維を硬化により無機質組成
物と一体に結合する熱硬化性結合硬化剤を含浸さ
せた繊維質補強材を埋入してこれを同時に押出成
型し、次でかかる押出成形体の該無機質組成物と
該結合硬化剤を同時に加熱硬化させることから成
る無機質製品の押出製造法。
1. Impregnating an inorganic composition such as cement or gypsum with a thermosetting bonding hardening agent that is made up of multiple fibers and simultaneously binds these fibers together and simultaneously binds these fibers together with the inorganic composition by curing. A method for producing an inorganic product by extrusion comprising embedding a fibrous reinforcing material and simultaneously extruding the reinforcing material, and then heating and curing the inorganic composition and the bond curing agent of the extruded body at the same time.
JP17002584A 1984-08-16 1984-08-16 Extrusion manufacture of inorganic product Granted JPS6149803A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17002584A JPS6149803A (en) 1984-08-16 1984-08-16 Extrusion manufacture of inorganic product
EP85305790A EP0172028B1 (en) 1984-08-16 1985-08-14 Fibre reinforced inorganic body
DE8585305790T DE3581451D1 (en) 1984-08-16 1985-08-14 FIBER REINFORCED INORGANIC BODY.
MYPI87001929A MY101615A (en) 1984-08-16 1987-09-25 Fibre-reinforced inorganic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17002584A JPS6149803A (en) 1984-08-16 1984-08-16 Extrusion manufacture of inorganic product

Publications (2)

Publication Number Publication Date
JPS6149803A JPS6149803A (en) 1986-03-11
JPH0442965B2 true JPH0442965B2 (en) 1992-07-15

Family

ID=15897202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17002584A Granted JPS6149803A (en) 1984-08-16 1984-08-16 Extrusion manufacture of inorganic product

Country Status (1)

Country Link
JP (1) JPS6149803A (en)

Also Published As

Publication number Publication date
JPS6149803A (en) 1986-03-11

Similar Documents

Publication Publication Date Title
EP2504136B1 (en) Extruded fiber reinforced cementitious products having stone-like properties and methods of making the same
US2850890A (en) Precast element and reinforced facing layer bonded thereto
US20030188667A1 (en) Composite materials using novel reinforcements
US4684567A (en) Reinforced structural material and reinforced fibrous inorganic structure reinforced therewith
KR101668955B1 (en) Manufacturing method of structure with reinforce fiber composite using 3d printer
KR101720467B1 (en) Manufacturing method of structure with reinforce fiber composite using 3d printer
EP0172028B1 (en) Fibre reinforced inorganic body
JPS60162612A (en) Composite pipe and manufacture
JPH0442965B2 (en)
EP0150002B1 (en) Cured extruded articles of metal fiber-reinforced hydraulic materials, and method for production thereof
JPS627655A (en) Fiber reinforced inorganic product and manufacture
JPH0780166B2 (en) Manufacturing method of calcium silicate compact
JPH0617255B2 (en) Manufacturing method of fiber reinforced cement mortar
RU2777817C1 (en) Method for manufacturing reinforced articles
JPH0535099B2 (en)
DE19544429A1 (en) Fibre reinforced rigid polystyrene foam
JP3543880B2 (en) Carbon fiber for reinforcing cement-based inorganic material, molded article of carbon fiber-reinforced cement-based inorganic material, and method for producing the same
JPH0119323B2 (en)
JP3661134B2 (en) Vinylon fiber reinforced lightweight concrete
JPH04344207A (en) Extrusion molding method for reinforcing net-containing inorganic product
JP3018583B2 (en) Extruded body manufacturing method
JP2648183B2 (en) Extrusion molding method of inorganic lightweight plate
JPH07106934B2 (en) Method for producing fiber reinforced inorganic products
JPH08208347A (en) Building fire resistive material and fireproof construction
JPH0631172B2 (en) Extruded product and manufacturing method thereof