JPH0442707A - Travel control method for mobile vehicle - Google Patents

Travel control method for mobile vehicle

Info

Publication number
JPH0442707A
JPH0442707A JP2148133A JP14813390A JPH0442707A JP H0442707 A JPH0442707 A JP H0442707A JP 2148133 A JP2148133 A JP 2148133A JP 14813390 A JP14813390 A JP 14813390A JP H0442707 A JPH0442707 A JP H0442707A
Authority
JP
Japan
Prior art keywords
vehicle
distance
speed
preceding vehicle
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2148133A
Other languages
Japanese (ja)
Other versions
JP2727370B2 (en
Inventor
Yoshitaka Watanabe
義孝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Original Assignee
Daifuku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd filed Critical Daifuku Co Ltd
Priority to JP2148133A priority Critical patent/JP2727370B2/en
Publication of JPH0442707A publication Critical patent/JPH0442707A/en
Application granted granted Critical
Publication of JP2727370B2 publication Critical patent/JP2727370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To perform acceleration/deceleration control of a travel drive motor so that the relative speed to a preceding vehicle will be zero by mounting a distance sensor outputting the distance to the preceding vehicle as a distance data and a microcomputer and then operating the relative speed to the preceding vehicle based on the distance data. CONSTITUTION:Each mobile vehicle 1 traveling on a same track takes in a distance data to a preceding vehicle from a distance sensor 3 and operates a relative speed 8V to the preceding vehicle. The relative speed 8V is then added to a current speed V1 thus operating a target speed V2 corresponding to the traveling speed of the preceding vehicle. The target speed V2 is then compared with the current speed V1. If V2=V1, traveling is sustained with the current speed V1 whereas if V2<V1, a deceleration command is provided to a motor controller 5 in order to start deceleration control and if V2>V1, an acceleration command is provided to the motor controller 5 in order to start acceleration control. Consequently, the distance between mobile vehicles is maintained approximately constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、組立作業ライン等の一定経路上を自走する複
数台の自走台車を、各台車間の車間距離を一定に保つよ
うに走行させるだめの走行制御方法に関するものである
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a system for maintaining a constant inter-vehicle distance between a plurality of self-propelled carts that run on a fixed route such as an assembly work line. This invention relates to a traveling control method for driving.

(従来の技術及びその問題点) 組立等を行う作業ラインに於いては、ワークを搭載した
複数台の搬送用自走台車を、搭載ワークの全長等に応じ
た車間距離を保たせて所定速度で走行させる必要がある
。このような場合の走行制御方法としては、各自走台車
に共通の信号線より速度指令パルス信号を与え、このパ
ルス信号のパルス周波数に比例した速度て各自走台車を
同期走行させる制御方法か知られている。
(Prior art and its problems) In a work line that performs assembly, etc., multiple self-propelled transport carts loaded with workpieces are moved at a predetermined speed while maintaining an inter-vehicle distance according to the total length of the loaded workpieces. You need to run it. In such a case, a known method for controlling running is to give a speed command pulse signal to each self-propelled bogie from a common signal line, and to make each self-propelled bogie run synchronously at a speed proportional to the pulse frequency of this pulse signal. ing.

このパルス指令方式の走行制御方法では、予め設定され
た車間距離を保たせて複数台の自走台車を同期走行させ
ることは出来るか、前記のような作業ラインでは、作業
遅れの自走台車を作業者か人為的に一時減速停止させる
場合がある。このような場合、停止台車より後方の各自
走台車は、追突防止用前車検出センサーの働きで車間距
離を詰めた状態て自動停止させることは出来るか、再起
動に際して元の車間距離に自動的に戻すことが出来ない
With this pulse command type travel control method, is it possible to maintain a preset inter-vehicle distance and make multiple self-propelled carts travel synchronously? There are cases where the worker or the worker artificially causes the machine to decelerate and stop temporarily. In such a case, is it possible for each self-propelled trolley behind the stopped trolley to automatically stop with the front vehicle detection sensor working to prevent rear-end collisions while closing the following distance, or is it possible to automatically return to the original following distance when restarting? cannot be returned to.

又、追突防止用前車検出センサーを利用して自走台車の
走行制御を行う方法も知られているか、この従来の前車
検出センサー利用の制御方法では、各自走台車に設定さ
れている走行速度に於ける減速停止距離より若干大きい
検出距離を前記センサーに設定しておき、前車との間の
車間距離か前記センサーの検出距離よりも短くなったと
きのオン信号て減速停止制御を行わせ、前車との間の車
間距離が前記センサーの検出距離よりも長くなったとき
のオフ信号で発進加速制御を行わせるだけであるから、
当然のことながら各自走台車間の車間距離を走行速度に
関係なく一定に保たせることは不可能である。
Also, is there a known method of controlling the travel of a self-propelled bogie using a front vehicle detection sensor for preventing rear-end collisions? The sensor is set to a detection distance that is slightly larger than the deceleration and stopping distance at the vehicle speed, and deceleration and stop control is performed using an on signal when the distance between the vehicle in front and the vehicle in front becomes shorter than the detection distance of the sensor. This is because the start acceleration control is only performed using the off signal when the distance between the vehicle and the vehicle in front becomes longer than the detection distance of the sensor.
Naturally, it is impossible to keep the inter-vehicle distance between each self-propelled bogie constant regardless of the traveling speed.

(課題を解決するための手段) 本発明は上記のような従来の問題点を解決するために、
−足軽路上を自走する自走台車に、前車との間の変化す
る車間距離をそのまま距離データとして出力する距離セ
ンサーとマイクロコンピュータ−を搭載し、前記距離セ
ンサーからの距離データに基づいて前記マイクロコンピ
ュータ−により前車に対する相対速度を演算し、この相
対速度かセロとなるように前記マイクロコンピュータ−
によりモーターコントローラーを介して走行駆動モータ
ーの加減速制御を行うことを特徴とする自走台車の走行
制御方法を提案するものである。
(Means for Solving the Problems) In order to solve the conventional problems as described above, the present invention has the following features:
- A self-propelled trolley that runs on footlight roads is equipped with a distance sensor and a microcomputer that outputs the changing distance between the vehicle and the vehicle in front as distance data. The microcomputer calculates the relative speed to the vehicle in front, and the microcomputer calculates the relative speed to the vehicle in front.
The present invention proposes a traveling control method for a self-propelled bogie, which is characterized by controlling the acceleration and deceleration of a traveling drive motor via a motor controller.

(実施例) 以下に本発明の一実施例を添付の例示図に基づいて説明
する。
(Example) An example of the present invention will be described below based on the attached illustrative drawings.

第1図に於いて、lは軌道上を走行する自走台車であっ
て、各自走台車1の後端に取付けられた反射板2を利用
して前車との間の変化する車間距離をそのまま距離デー
タとして出力する光学的反射式距離センサー3(勿論、
変化する車間距離をそのまま距離データとして出力する
ものであれば、他の形式の距離センサーであっても良い
)、マイクロコンピュータ−4、モーターコントローラ
ー5によって制御されるモーター6、当該モーター6に
よって駆動される駆動車輪7、及び前記モーター6に連
動連結されたパルスエンコーダー8を備えている。
In Fig. 1, l is a self-propelled bogie that runs on a track, and uses a reflector 2 attached to the rear end of each self-propelled bogie 1 to measure the changing inter-vehicle distance between it and the vehicle in front. Optical reflective distance sensor 3 that outputs distance data as it is (of course,
Other types of distance sensors may be used as long as they output changing inter-vehicle distance as distance data), a microcomputer 4, a motor 6 controlled by a motor controller 5, and a motor 6 driven by the motor 6. The motor 6 includes a drive wheel 7 and a pulse encoder 8 operatively connected to the motor 6.

前記マイクロコンピュータ−4は、前記距離センサー3
から常時与えられる距離データから、前車との間の車間
距離Sの変化率、即ち前車に対する相対速度δ■を演算
するプログラムと、前記パルスエンコーダー8からのパ
ルスの発信周波数から自軍の現在速度v1を演算するプ
ログラムと、この現在速度■1と前記相対速度δVとか
ら前車走行速度に相当する目標速度■2を演算し、この
目標速度■2と現在速度■1との比較に基づいて前記モ
ーターコントローラー5に減速指令又は加速指令を与え
る走行制御プログラムか設定されている。
The microcomputer 4 has the distance sensor 3
A program that calculates the rate of change in the inter-vehicle distance S to the vehicle in front, that is, the relative speed δ with respect to the vehicle in front, from distance data constantly provided by A program that calculates v1, calculates a target speed ■2 corresponding to the traveling speed of the vehicle in front from this current speed ■1 and the relative speed δV, and based on a comparison between this target speed ■2 and the current speed ■1. A travel control program for giving a deceleration command or an acceleration command to the motor controller 5 is set.

この走行制御プログラムを第2図のフローチャートに基
づいて詳述すると、同一軌道上にある各自走台車1は、
夫々モーター6による駆動車輪7の回転駆動により前進
走行するが、この走行状態に於いて、距離センサー3か
ら前車との間の車間距離データを取込み、単位時間当た
りの距離データの変化量(車間距離の変化率)、即ち前
車に対する相対速度δVを演算する。そしてパルスエン
コーダー8からのパルスの発信周波数に基づいて演算さ
れた現在速度■1に前記相対速度δVを加算し、前車走
行速度に相当する目標速度v2を演算する。そしてこの
目標速度V2と現在速度V1とを比較し、V2=Vlで
あれば、そのまま現在速度Vlての走行を続行させ、V
2<Vlてあれよ、減速指令をモーターコントローラー
5に与えて減速制御を行い、V2>Vlであれば、加速
指令をモーターコントローラー5に与えて加速制御を行
わせる。
This running control program will be explained in detail based on the flowchart in FIG. 2. Each self-propelled bogie 1 on the same track will
Each vehicle travels forward by rotationally driving the driving wheels 7 by the motor 6. In this driving state, the following distance data between the vehicle in front and the vehicle in front is acquired from the distance sensor 3, and the amount of change in distance data per unit time (the (rate of change in distance), that is, the relative speed δV with respect to the vehicle in front. Then, the relative speed δV is added to the current speed (1) calculated based on the pulse transmission frequency from the pulse encoder 8, and a target speed v2 corresponding to the traveling speed of the vehicle in front is calculated. Then, this target speed V2 is compared with the current speed V1, and if V2=Vl, the vehicle continues traveling at the current speed Vl, and V
If 2<Vl, a deceleration command is given to the motor controller 5 to perform deceleration control, and if V2>Vl, an acceleration command is given to the motor controller 5 to perform acceleration control.

即ち、自軍か前車と同一速度で走行しているときは、δ
v二〇であるからV2=Vlてあって、そのまま現在速
度Vlでの走行か続行される。自軍速度よりも前車速度
か低下するとδv〉0となるから、V2<Vlとなって
自軍の減速制御か開始され、自軍速度よりも前車速度か
増加するとδV〈0となるから、V2>Vlとなって自
軍の加速制御か開始される。
In other words, when traveling at the same speed as the own vehicle or the vehicle in front, δ
Since V20, V2=Vl, and the vehicle continues to travel at the current speed Vl. If the speed of the front vehicle becomes lower than the speed of the own force, δv〉0, so V2<Vl, and the deceleration control of the own force is started. If the speed of the front vehicle increases than the speed of the own force, δV〈0, so V2> It becomes Vl and acceleration control of the own army starts.

(発明の作用及び効果) 以上のように本発明の自走台車の走行制御方法によれば
、距離センサーからの距離データに基づいて演算した前
車に対する相対速度(車間距離の変化率)かゼロとなる
ように走行駆動モーターの加減速制御を行うのであるか
ら、前車の減速加速に合わせて自軍も減速加速を自動的
に行い、前車が停止すると自軍も停止し、そして前車か
発進すると同時に自車も発進することになるので、同一
の減速度及び加速度で加減速制御か行われる限り、前後
の自走台車1間の車間距離は常に略一定に保たれる。
(Operations and Effects of the Invention) As described above, according to the self-propelled trolley travel control method of the present invention, the relative speed (rate of change in inter-vehicle distance) to the vehicle in front calculated based on distance data from the distance sensor is zero. Since the acceleration and deceleration control of the travel drive motor is performed so that the vehicle in front of the vehicle decelerates and accelerates, the vehicle in front automatically decelerates and accelerates, and when the vehicle in front stops, the vehicle in front also stops, and the vehicle in front of the vehicle starts. At the same time, the own vehicle also starts, so as long as acceleration/deceleration control is performed with the same deceleration and acceleration, the inter-vehicle distance between the front and rear self-propelled carts 1 is always kept approximately constant.

換言すれば、初期状態での車間距離に関係なく常にその
初期状態ての車間距離を維持させて同一軌道上の各自走
台車を同期走行させることか出来るので、作業ラインに
於ける各搬送用自走台車の走行制御に利用することによ
り、仮に人為的操作で自走台車か一時減速停止されるよ
うな場合でも、当該停止台車に続(各自走台車は、これ
ら各自走台車毎に任意に設定された必要最小限の車間距
離を保たせて同期的に減速停止及び同時発進加速を行わ
せることか出来るので、確実な衝突防止効果を得なから
ロス時間を最小限に抑えて効率良く作業を遂行すること
か出来る。
In other words, regardless of the initial inter-vehicle distance, it is possible to always maintain the initial inter-vehicle distance and make each self-propelled vehicle on the same track travel synchronously, so that each self-propelled vehicle on the work line By using this to control the running of a moving bogie, even if a self-propelled bogie is temporarily decelerated and stopped due to human operation, the self-propelled bogie will continue to follow the stopped bogie (each self-propelled bogie can be set arbitrarily for each of these bogies). This allows for synchronous deceleration, stopping, and simultaneous start and acceleration while maintaining the minimum required distance between vehicles, ensuring reliable collision prevention, minimizing lost time, and working efficiently. I can carry it out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自走台車の構成を説明するブロック線図、第2
図は制御手順を説明するフローチャートである。
Figure 1 is a block diagram explaining the configuration of the self-propelled trolley, Figure 2
The figure is a flowchart explaining the control procedure.

Claims (1)

【特許請求の範囲】[Claims]  一定経路上を自走する自走台車に、前車との間の変化
する車間距離をそのまま距離データとして出力する距離
センサーとマイクロコンピューターを搭載し、前記距離
センサーからの距離データに基づいて前記マイクロコン
ピューターにより前車に対する相対速度を演算し、この
相対速度がゼロとなるように前記マイクロコンピュータ
ーによりモーターコントローラーを介して走行駆動モー
ターの加減速制御を行うことを特徴とする自走台車の走
行制御方法。
A self-propelled trolley that runs on a fixed route is equipped with a distance sensor and a microcomputer that directly outputs the changing inter-vehicle distance to the vehicle in front as distance data. A traveling control method for a self-propelled bogie, characterized in that a computer calculates a relative speed with respect to the vehicle in front, and the microcomputer performs acceleration/deceleration control of a traveling drive motor via a motor controller so that the relative speed becomes zero. .
JP2148133A 1990-06-06 1990-06-06 Travel control method for self-propelled bogie Expired - Fee Related JP2727370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2148133A JP2727370B2 (en) 1990-06-06 1990-06-06 Travel control method for self-propelled bogie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2148133A JP2727370B2 (en) 1990-06-06 1990-06-06 Travel control method for self-propelled bogie

Publications (2)

Publication Number Publication Date
JPH0442707A true JPH0442707A (en) 1992-02-13
JP2727370B2 JP2727370B2 (en) 1998-03-11

Family

ID=15446004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2148133A Expired - Fee Related JP2727370B2 (en) 1990-06-06 1990-06-06 Travel control method for self-propelled bogie

Country Status (1)

Country Link
JP (1) JP2727370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211442A (en) * 2008-03-05 2009-09-17 Tcm Corp Control method for unmanned conveyor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276009A (en) * 1988-09-12 1990-03-15 Toyota Autom Loom Works Ltd Unmanned vehicle operating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276009A (en) * 1988-09-12 1990-03-15 Toyota Autom Loom Works Ltd Unmanned vehicle operating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211442A (en) * 2008-03-05 2009-09-17 Tcm Corp Control method for unmanned conveyor

Also Published As

Publication number Publication date
JP2727370B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JP3234925B2 (en) Train control device
JP4151108B2 (en) Anti-collision device for automated guided vehicles
JPH10161745A (en) Controller of unmanned running vehicle
JP3238496B2 (en) Anti-collision device for vehicles
JPH0442707A (en) Travel control method for mobile vehicle
KR100394167B1 (en) Vehicle running management method and system, and vehicle running assisting apparatus
JP2003312311A (en) Device and method for vehicle driving control
JPH01131907A (en) Device for preventing rear end collision of mobile vehicle
JP2021076971A (en) Vehicle and vehicle group
JPH1016734A (en) Vehicular automatic stoppage device
JP3620144B2 (en) Track control device for tracked carriage
JP3562375B2 (en) Vehicle travel control device
JP3010770B2 (en) Load transfer equipment
JP2019140810A (en) Locus transport system
KR20180089592A (en) Speed optimizing control system for robotic transfer vehicle
JPH0729685Y2 (en) Travel control device for self-propelled carriage
JPS62160010A (en) Travel controller for unmanned conveying vehicle
JP2841890B2 (en) Storage method of transport train
JPH04117115A (en) Fixed position stopping method for vehicle
JPH04314638A (en) Device for preventing collision from behind
JPS6022214A (en) Carrying device
JP2023158907A (en) Vehicle control device
JP2695353B2 (en) Train speed controller
JPH0641188Y2 (en) Obstacle detection device for unmanned vehicles
JPH10116117A (en) Unmanned truck and its stop control method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees