JPH0442629B2 - - Google Patents

Info

Publication number
JPH0442629B2
JPH0442629B2 JP21163383A JP21163383A JPH0442629B2 JP H0442629 B2 JPH0442629 B2 JP H0442629B2 JP 21163383 A JP21163383 A JP 21163383A JP 21163383 A JP21163383 A JP 21163383A JP H0442629 B2 JPH0442629 B2 JP H0442629B2
Authority
JP
Japan
Prior art keywords
pair
elements
shifted
differential amplifier
voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21163383A
Other languages
Japanese (ja)
Other versions
JPS60104262A (en
Inventor
Tsumoru Matsumoto
Mitsuo Uzuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21163383A priority Critical patent/JPS60104262A/en
Publication of JPS60104262A publication Critical patent/JPS60104262A/en
Publication of JPH0442629B2 publication Critical patent/JPH0442629B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/006Details of instruments used for thermal compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • G01P13/045Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は移動体の移動等を検出するための磁気
抵抗効果素子を用いた周波数発電器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a frequency generator using a magnetoresistive element for detecting the movement of a moving body.

背景技術とその問題点 従来より、磁気抵抗効果素子(以下MR素子と
云う)を用いて回転体の回転速度、回転方向、回
転位置等を検出するようにした周波数発電器とし
て、第1〜7図に示すものが知られている。
BACKGROUND TECHNOLOGY AND PROBLEMS Conventionally, frequency generators 1 to 7 have been used as frequency generators that use magnetoresistive elements (hereinafter referred to as MR elements) to detect the rotation speed, rotation direction, rotation position, etc. of a rotating body. The one shown in the figure is known.

第1図に示すものは、4個のMR素子A1,B1
A2,B2を用い、図示のように結線して電源端子
1,2及び中点端子A0,B0を設けたものである。
MR素子A1〜B2としてはニツケルコバルト等の
ような磁界の方向に応じて電気抵抗が変化する強
磁性体が用いられる。この強磁性体を基板上に所
定の形状に薄膜で形成すると共に、各強磁性体を
薄膜の導体により接続する。素子A1〜B2が形成
された基板は、図示のように回転体に磁気記録さ
れた磁気信号3に近接して配される。この場合、
各素子A1〜B2は、磁気信号3の波長λに対して
1/8λの間隔を以つて配される。尚、磁気信号3
は素子A1〜B2を飽和磁化させるのに充分な強さ
の磁界を発生するものとする。
The one shown in Fig. 1 has four MR elements A 1 , B 1 ,
A 2 and B 2 are used and connected as shown in the figure to provide power supply terminals 1 and 2 and midpoint terminals A 0 and B 0 .
As the MR elements A 1 to B 2 , a ferromagnetic material such as nickel cobalt whose electrical resistance changes depending on the direction of the magnetic field is used. This ferromagnetic material is formed as a thin film on a substrate in a predetermined shape, and each ferromagnetic material is connected by a thin film conductor. The substrate on which the elements A 1 to B 2 are formed is placed close to the magnetic signal 3 magnetically recorded on the rotating body as shown. in this case,
Each element A 1 to B 2 is arranged at an interval of 1/8λ with respect to the wavelength λ of the magnetic signal 3. In addition, magnetic signal 3
shall generate a magnetic field of sufficient strength to saturate magnetize the elements A 1 to B 2 .

第2図は素子A1〜B2を周波数発電器として用
いる場合の等価回路を示す。
FIG. 2 shows an equivalent circuit when the elements A 1 to B 2 are used as a frequency generator.

素子A1〜B2には外付けの抵抗R1,R2が接続さ
れ、全体としてブリツジ構成される。上記抵抗
R1,R2で定められるC0点の中点電位とB0点の電
位とが差動アンプ4で比較されると共に、上記
C0点の電位とA0点の電位とが差動アンプ5で比
較される。また端子1に電源電圧V1が加えられ、
端子2は基準電位E1に保たれる。
External resistors R 1 and R 2 are connected to the elements A 1 to B 2 , and the entire structure is a bridge. Above resistance
The midpoint potential of the C 0 point determined by R 1 and R 2 and the potential of the B 0 point are compared by the differential amplifier 4, and the above
The potential at point C0 and the potential at point A0 are compared by differential amplifier 5. Also, power supply voltage V 1 is applied to terminal 1,
Terminal 2 is held at reference potential E1 .

第1図及び第2図の構成において、回転体が矢
印a方向に回転すると、素子A1〜B2の各々に対
する磁界の方向が変化する。この結果、差動アン
プ4から第3図に示す出力電圧OUT1が得られ、
差動アンプ5から上記OUT1よりπ/2遅延する出
力電圧OUT2が得られる。これらの出力電圧
OUT1,OUT2は回転体の回転速度に応じた周波
数を有している。回転体が矢印b方向に回転する
場合は、OUT1,OUT2の位相関係が逆になり、
OUT1がOUT2よりπ/2遅れることになる。従つ
て、OUT1,OUT2の位相関係を検出することに
より、回転体の回転方向及び回転位置等を知るこ
とができる。
In the configurations shown in FIGS. 1 and 2, when the rotating body rotates in the direction of the arrow a, the direction of the magnetic field for each of the elements A 1 to B 2 changes. As a result, the output voltage OUT 1 shown in FIG. 3 is obtained from the differential amplifier 4,
An output voltage OUT 2 delayed by π/2 from the above OUT 1 is obtained from the differential amplifier 5. These output voltages
OUT 1 and OUT 2 have frequencies that correspond to the rotational speed of the rotating body. When the rotating body rotates in the direction of arrow b, the phase relationship of OUT 1 and OUT 2 is reversed,
OUT 1 will lag behind OUT 2 by π/2. Therefore, by detecting the phase relationship between OUT 1 and OUT 2 , it is possible to know the rotational direction, rotational position, etc. of the rotating body.

この第1図及び第2図に示す周波数発電器は、
外付け抵抗R1,R2と素子A1〜B2との温度差によ
りドリフトが生じ、このため特に回転体が停止し
ているときの停止位置の検出に際して誤差を生じ
る欠点がある。
The frequency generator shown in FIGS. 1 and 2 is
A drift occurs due to the temperature difference between the external resistors R 1 and R 2 and the elements A 1 to B 2 , which has the drawback of causing an error in detecting the stop position especially when the rotating body is stopped.

第4図及び第5図に示すものは、8個のMR素
子A1〜A4,B1〜B4を用い、これらを交互にλ/8
の間隔を以つて配し、導体により結線して2組の
ブリツジ回路を構成したものである。そして素子
A1〜A4で構成されるブリツジ回路の端子1,2
に電圧V1,E1を加えると共に、中点A01,A02
電圧を差動アンプ4に加えることにより、第3図
の出力電圧OUT1を得る。また素子B1〜B4で構
成されるブリツジ回路の端子6,7に電圧V2
E2を加えると共に、中点B01,B02の電圧を差動
アンプ5に加えることにより、第3図の出力電圧
OUT2を得る。
The ones shown in FIGS. 4 and 5 use eight MR elements A 1 to A 4 , B 1 to B 4 and alternately
Two sets of bridge circuits are constructed by arranging the bridge circuits with a distance of 1,000 mm and connecting them with conductors. And Motoko
Terminals 1 and 2 of the bridge circuit consisting of A 1 to A 4
By applying the voltages V 1 and E 1 to the differential amplifier 4 and the voltages at the midpoints A 01 and A 02 to the differential amplifier 4, the output voltage OUT 1 shown in FIG. 3 is obtained. In addition, voltages V 2 and 7 are applied to terminals 6 and 7 of the bridge circuit composed of elements B 1 to B 4
By adding E 2 and applying the voltage at the midpoints B 01 and B 02 to the differential amplifier 5, the output voltage shown in Fig. 3 is obtained.
Get OUT 2 .

この第4図及び第5図に示す周波数発電器は8
個の素子A1〜A4,B1〜B4を同一基板上に形成す
るので素子間に温度差がなく、従つて温度ドリフ
トが解消されるが、素子数が多くなる欠点があ
る。
The frequency generator shown in Figs. 4 and 5 is 8
Since the elements A 1 to A 4 and B 1 to B 4 are formed on the same substrate, there is no temperature difference between the elements and therefore temperature drift is eliminated, but there is a drawback that the number of elements increases.

第6図及び第7図に示すものは、4個のMR素
子A1,A2,B1,B2を並列に接続して端子1を設
けると共に外付け抵抗R3,R4,R5,R6を接続し
て端子2を設けたものである。この場合は素子数
を減らすことができるが、外付け抵抗R4〜R6
用いているため温度特性が悪化する欠点がある。
6 and 7, four MR elements A 1 , A 2 , B 1 , B 2 are connected in parallel to provide terminal 1, and external resistors R 3 , R 4 , R 5 are connected in parallel. , R6 are connected to provide terminal 2. In this case, the number of elements can be reduced, but since external resistors R 4 to R 6 are used, there is a drawback that temperature characteristics deteriorate.

発明の目的 本発明は上記の欠点を除去した周波数発電器を
提供するものである。
OBJECTS OF THE INVENTION The present invention provides a frequency generator that eliminates the above-mentioned drawbacks.

発明の概要 本発明はMR素子のペアを3組設け、第1のペ
アと第2のペアとをλ/4ずらせて配すると共に、
第3のペアを第1又は第2のペアに対してλ/8ず
らせて配したものである。これによつて、素子数
を減らしながら温度特性を改善することができ
る。
Summary of the Invention The present invention provides three pairs of MR elements, the first pair and the second pair are shifted by λ/4, and
The third pair is shifted by λ/8 from the first or second pair. Thereby, temperature characteristics can be improved while reducing the number of elements.

実施例 第8〜11図は本発明の第1の実施例を示すも
ので、第1〜7図と同一部分には同一符号を付し
てある。
Embodiment FIGS. 8 to 11 show a first embodiment of the present invention, and the same parts as in FIGS. 1 to 7 are given the same reference numerals.

本実施例は第8図に示すように、6個のMR素
子A1A2,B1B2,C1C2を用い、これらの素子を基
板上にA1A2B2C2B1C1の順に配列している。この
場合第1のペアとなる素子A1とA2をλ/4の間隔
で配すると共に、第2のペアとなる素子B1とB2
をλ/4の間隔で配し、上記第1のペアと第2のペ
アとをλ/4ずらせて配している。また第3のペア
となる素子C1とC2をλ/4の間隔で配すると共に、
この第3のペアを第2のペアに対してλ/8ずらせ
て配している。また第9図の等価回路にも示され
るように各ペアの各中点A0,B0,C0に端子が設
けられると共に、素子A1,B1,C1の一端に端子
1が設けられ、A2,B2,C2の一端に端子2が設
けられている。
As shown in FIG. 8, this embodiment uses six MR elements A 1 A 2 , B 1 B 2 , C 1 C 2 , and these elements are arranged on a substrate . Arranged in the order of 1 C 1 . In this case, the first pair of elements A 1 and A 2 are arranged at an interval of λ/4, and the second pair of elements B 1 and B 2 are arranged at an interval of λ/4.
are arranged at an interval of λ/4, and the first pair and the second pair are arranged with a shift of λ/4. In addition, a third pair of elements C 1 and C 2 are arranged at an interval of λ/4, and
This third pair is shifted by λ/8 from the second pair. Furthermore, as shown in the equivalent circuit of FIG. 9, terminals are provided at the midpoints A 0 , B 0 , and C 0 of each pair, and terminal 1 is provided at one end of the elements A 1 , B 1 , and C 1 . A terminal 2 is provided at one end of A 2 , B 2 , and C 2 .

第10図は周波数発電器として用いる場合の回
路構成を示すもので、中点A0,B0の電圧を差動
アンプ4に加えると共に、中点B0,C0の電圧を
回転方向検出端子8,9から取り出すようにして
いる。
Figure 10 shows the circuit configuration when used as a frequency generator. The voltages at midpoints A 0 and B 0 are applied to the differential amplifier 4, and the voltages at midpoints B 0 and C 0 are applied to the rotation direction detection terminals. I try to take it out from 8 and 9.

この状態で回転体が矢印a方向に回転すれば、
A0,B0,C0の各中点から第11図に示す出力電
圧A0−OUT,B0−OUT,C0−OUTが得られ
る。この場合、A0−OUT,B0−OUTとの間に
は180゜の位相差が生じ、C0−OUTとA0−OUT又
はB0−OUTとの間には90゜の位相差が生じる。従
つて、差動アンプ4より第11図の点線で示す出
力電圧OUT0が得られると共に、端子8,9の電
圧に基いて回転方向及び回転位置を知ることがで
きる。
If the rotating body rotates in the direction of arrow a in this state,
Output voltages A 0 -OUT , B 0 -OUT, and C 0 -OUT shown in FIG. 11 are obtained from each midpoint of A 0 , B 0 , and C 0 . In this case, a 180° phase difference occurs between A 0 −OUT and B 0 −OUT, and a 90° phase difference occurs between C 0 −OUT and A 0 −OUT or B 0 −OUT. arise. Therefore, the output voltage OUT 0 shown by the dotted line in FIG. 11 is obtained from the differential amplifier 4, and the rotational direction and rotational position can be determined based on the voltages at the terminals 8 and 9.

尚、本実施例では素子C1,C2の第3のペアを
素子B1,B2の第2のペアに対してλ/8ずらせ配置
しているが、上記第3のペアを素子A1,A2の第
1のペアに対してλ/8ずらせた配置としてもよ
い。また回転方向及び回転位置の検出はC0点と
A0点の電圧に基いて検出するようにしてもよい。
Note that in this example, the third pair of elements C 1 and C 2 is shifted by λ/8 with respect to the second pair of elements B 1 and B 2 , but the third pair is shifted from the second pair of elements B 1 and B 2. 1 and A 2 may be arranged so as to be shifted by λ/8 with respect to the first pair. In addition, the rotation direction and rotation position are detected at C 0 point.
Detection may be performed based on the voltage at point A0 .

第12図は第2の実施例を示すもので、素子
C1,C2の第3のペアを素子B1,B2の第2のペア
の外側にλ/8ずらせて配置した場合である。尚、
前述した第1の実施例による第8図の場合は第3
のペアは第2のペアの内側にλ/8ずらせて配置さ
れている。
FIG. 12 shows a second embodiment, in which the elements
This is a case where the third pair of elements C 1 and C 2 is arranged outside the second pair of elements B 1 and B 2 with a shift of λ/8. still,
In the case of FIG. 8 according to the first embodiment described above, the third
The pair is placed inside the second pair and shifted by λ/8.

発明の効果 6個のMR素子が同一基板上に近接して形成さ
れるので、温度特性が同一となり、ドリフトを生
じることがない。MR素子の使用個数を第4図及
び第5図に示す従来の場合の8個から6個に減ら
すことができる。第3のペアの中点出力と第1又
は第2のペアの中点出力とにより、回転方向及び
回転位置の検出を行うことができる。
Effects of the Invention Since six MR elements are formed close to each other on the same substrate, their temperature characteristics are the same and no drift occurs. The number of MR elements used can be reduced from eight in the conventional case shown in FIGS. 4 and 5 to six. The rotational direction and rotational position can be detected by the midpoint output of the third pair and the midpoint output of the first or second pair.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の周波数発電器の一例を示す構成
図、第2図は等価回路図、第3図は出力波形図、
第4図は従来の他の例を示す構成図、第5図は等
価回路図、第6図は従来のさらに他の例を示す構
成図、第7図は等価回路図、第8図は本発明の第
1の実施例を示す構成図、第9図は等価回路図、
第10図は回路構成図、第11図は出力波形図、
第12図は本発明の第2の実施例を示す構成図で
ある。 なお図面に用いた符号において、3……磁気信
号、A1A2,B1B2,C1C2……磁気抵抗素子であ
る。
Figure 1 is a configuration diagram showing an example of a conventional frequency generator, Figure 2 is an equivalent circuit diagram, Figure 3 is an output waveform diagram,
Fig. 4 is a block diagram showing another conventional example, Fig. 5 is an equivalent circuit diagram, Fig. 6 is a block diagram showing still another conventional example, Fig. 7 is an equivalent circuit diagram, and Fig. 8 is the book. A configuration diagram showing the first embodiment of the invention, FIG. 9 is an equivalent circuit diagram,
Figure 10 is a circuit configuration diagram, Figure 11 is an output waveform diagram,
FIG. 12 is a configuration diagram showing a second embodiment of the present invention. Note that in the symbols used in the drawings, 3... is a magnetic signal, A 1 A 2 , B 1 B 2 , C 1 C 2 ... is a magnetoresistive element.

Claims (1)

【特許請求の範囲】 1 一対の磁気抵抗素子が移動体に記録された磁
気信号の波長λに対してλ/4の間隔を以つて配さ れた第1のペアと、この第1のペアと同一に構成
された第2及び第3のペアとを有し、上記第1の
ペアと上記第2のペアとをλ/4ずらせて配すると
共に上記第3のペアを上記第1のペア又は上記第
2のペアに対してλ/8ずらせて配し、上記第1及
び第2のペアから上記移動体の移動速度に応じた
周波数を有する信号を取り出すと共に、上記第3
のペアと上記第2のペア又は上記第3のペアとか
ら上記移動体の移動方向を示す信号を取り出すよ
うにした周波数発電器。
[Claims] 1. A first pair in which a pair of magnetoresistive elements are arranged at an interval of λ/4 with respect to the wavelength λ of a magnetic signal recorded on a moving body; a second pair and a third pair having the same configuration, the first pair and the second pair are shifted by λ/4, and the third pair is arranged to be shifted from the first pair or the second pair. The third pair is arranged to be shifted by λ/8 with respect to the second pair, and a signal having a frequency corresponding to the moving speed of the moving object is extracted from the first and second pair, and the third
A frequency generator configured to extract a signal indicating a moving direction of the mobile body from the pair and the second pair or the third pair.
JP21163383A 1983-11-10 1983-11-10 Frequency generator Granted JPS60104262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21163383A JPS60104262A (en) 1983-11-10 1983-11-10 Frequency generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21163383A JPS60104262A (en) 1983-11-10 1983-11-10 Frequency generator

Publications (2)

Publication Number Publication Date
JPS60104262A JPS60104262A (en) 1985-06-08
JPH0442629B2 true JPH0442629B2 (en) 1992-07-14

Family

ID=16609005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21163383A Granted JPS60104262A (en) 1983-11-10 1983-11-10 Frequency generator

Country Status (1)

Country Link
JP (1) JPS60104262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385555B1 (en) * 2017-12-26 2018-09-05 三菱電機株式会社 Magnetic detector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622177Y2 (en) * 1986-06-13 1994-06-08 京セラ株式会社 Flow measuring device
SE456368B (en) * 1987-02-12 1988-09-26 Scanpump Ab COMBINATION SENSOR FOR MONITORING OPERATING STATE OF A PUMP WHEEL
JPH0690046B2 (en) * 1989-01-23 1994-11-14 エスエムシー株式会社 Displacement detection device
JPH0690047B2 (en) * 1989-01-23 1994-11-14 エスエムシー株式会社 Moving amount detector
US5568048A (en) * 1994-12-14 1996-10-22 General Motors Corporation Three sensor rotational position and displacement detection apparatus with common mode noise rejection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385555B1 (en) * 2017-12-26 2018-09-05 三菱電機株式会社 Magnetic detector

Also Published As

Publication number Publication date
JPS60104262A (en) 1985-06-08

Similar Documents

Publication Publication Date Title
US6300758B1 (en) Magnetoresistive sensor with reduced output signal jitter
EP0235750A2 (en) Apparatus for magnetically detecting position or speed of moving body
JPS63225124A (en) Magnetic position detector
JPH0442629B2 (en)
JPS58106462A (en) Rotation detector
JPH04282417A (en) Magnetic sensor
JPS59147213A (en) Magnetic rotary sensor
JPS6363050B2 (en)
JPH0330089B2 (en)
JP2005069744A (en) Magnetic detection element
JPS60135768A (en) Rotation detector
JPH1010141A (en) Magnetic rotation detector
JP2767281B2 (en) Magnetic sensor
JPS59142417A (en) Magnetism detecting device
JPS625284B2 (en)
JPS63205514A (en) Device for detecting position and speed magnetically
JPS60117108A (en) Magnetic rotary sensor
JPH0348119A (en) Position detecting apparatus
JPH0469348B2 (en)
JP2508345B2 (en) Position detection device
JPS5816265B2 (en) Entoujikukenshiyutsusouchi
JPS62266479A (en) Thin film magnetic sensor
JPH01259217A (en) Rotation detecting device
JPH0267983A (en) Magnetoresistance element
JPS5919810A (en) Detecting device of rotation angle