JPH0442437A - Device and method for manufacturing magnetic disk - Google Patents

Device and method for manufacturing magnetic disk

Info

Publication number
JPH0442437A
JPH0442437A JP15097790A JP15097790A JPH0442437A JP H0442437 A JPH0442437 A JP H0442437A JP 15097790 A JP15097790 A JP 15097790A JP 15097790 A JP15097790 A JP 15097790A JP H0442437 A JPH0442437 A JP H0442437A
Authority
JP
Japan
Prior art keywords
substrate
etching
film
magnetic disk
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15097790A
Other languages
Japanese (ja)
Inventor
Yasuhiro Notohara
康裕 能登原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15097790A priority Critical patent/JPH0442437A/en
Publication of JPH0442437A publication Critical patent/JPH0442437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To perform magnetic recording with superior magnetic characteristic and high density by placing a substrate under oxygen atmosphere after applying etching to the surface of the substrate. CONSTITUTION:A carrier on which the substrate is set is transferred from a carry-in room 1 to a surface treating room 2 evacuated in advance, and when argon gas pressure in the surface treating room 2 arrives at prescribed pressure, a high frequency power is applied to a disk substrate, and the etching of the surface of the substrate is performed for a prescribed time. The substrate to which the etching is applied is placed under the oxygen atmosphere for a constant time, and an oxide layer on the surface of the substrate eliminated when the etching is performed is reproduced. Thereby, the filming of a magnetic disk can be performed on the surface of an extremely clean substrate, and the superior magnetic characteristic can be attached, and the magnetic recording with high density can be performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気ディスク装置に用いられる磁気ディスクの
製造装置とその方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus and method for manufacturing a magnetic disk used in a magnetic disk device.

従来の技術 データ記録用の磁気ディスク装置は記録密度の高密度化
やアクセスタイムの短縮化及び転送レートの高速化が年
々進歩している。
BACKGROUND OF THE INVENTION Conventional magnetic disk drives for recording data are progressing year by year in terms of higher recording densities, shorter access times, and faster transfer rates.

これに伴い磁気ディスクには高保磁力、及び高残留磁束
密度が要求され酸化物の塗布型の磁気ディスクからのス
パッタ法やメツキ法によシ作製される金属薄膜型の磁気
ディスクに変わってきている。又、磁気ヘッドと磁気デ
ィスクとの分離長を小さくするため磁気ヘッドの浮上量
を従来の0.3μmから0.2μm1更にはそれ以下へ
と浮上量の低下が進んで来ている。
Along with this, magnetic disks are required to have high coercive force and high residual magnetic flux density, and oxide-coated magnetic disks are being replaced by metal thin film magnetic disks manufactured by sputtering or plating methods. . Furthermore, in order to reduce the separation length between the magnetic head and the magnetic disk, the flying height of the magnetic head has been reduced from the conventional 0.3 .mu.m to 0.2 .mu.m1 or even less.

即ち、高密度な磁気ディスク装置に用いられるための磁
気ディスクは優れた磁気特性を有する事は言うまでもな
く、浮上量の低下にともなう耐ヘツド衝撃性等の優れた
機械的特性、更には様々な環境下でも腐食しない等の優
れた耐環境性を兼ね備えた信頼性の高いものでなくては
ならない。
In other words, it goes without saying that magnetic disks used in high-density magnetic disk drives have excellent magnetic properties, as well as excellent mechanical properties such as head impact resistance due to a reduction in flying height, and even better resistance to various environments. It must be highly reliable and have excellent environmental resistance, such as not corroding even under conditions.

磁気ディスクの磁気的及び機械的特性は磁気ディヌクの
製造条件、例えばスパッタリング法によル作製される磁
気ディスクならば基板の加熱温度や動作ガヌ圧、投入電
力等の製造条件によって決まる。また基板の材質及び表
面のあらさや清浄度にも強く依存するものである。
The magnetic and mechanical properties of a magnetic disk are determined by the manufacturing conditions of the magnetic disk, for example, in the case of a magnetic disk manufactured by a sputtering method, the manufacturing conditions such as the heating temperature of the substrate, the operating pressure, and the input power. It also strongly depends on the material of the substrate and the roughness and cleanliness of the surface.

例えば、基板の表面に基板の洗浄時の残留物、いわゆる
洗浄残シがある基板に成膜して作製した磁気ディスクは
、ディスク基板表面上に直接成膜された部分と、ディス
ク基板表面上に洗浄残シの物質を介して成膜された部分
とが存在する事になる。この磁気ディスクは基板の表面
上に洗浄残りの物質を介して成膜された部分は膜と基板
との付着力が弱い、また磁気特性が基板の表面上に直接
成膜された部分と異なる為に、耐ヘツド衝撃性の劣化や
膜の離脱によるエラーの発生、あるいは磁気特性の部分
的な変化によるモジュレーシ靜ンの発生等の問題が発生
し磁気ディスク装置に用いることはできない。従って、
高密度な磁気ディスク装置に用いる磁気ディスクを製造
するためには、基板の全面に渡シ付着汚染物の無い極め
て清浄なディスク基板表面に成膜する必要がある。
For example, in a magnetic disk manufactured by depositing a film on a substrate that has residue from cleaning the substrate, so-called cleaning residue, there is a portion where the film is deposited directly on the disk substrate surface, and a portion where the film is deposited directly on the disk substrate surface. This means that there is a portion where the film was formed through the cleaning residue material. In this magnetic disk, the adhesion between the film and the substrate is weak in the part where the film is formed on the surface of the substrate via the cleaning residue, and the magnetic properties are different from the part where the film is formed directly on the surface of the substrate. Moreover, problems such as deterioration of head impact resistance, occurrence of errors due to separation of the film, and occurrence of modulation loss due to local changes in magnetic properties occur, making it impossible to use it in magnetic disk drives. Therefore,
In order to manufacture a magnetic disk for use in a high-density magnetic disk device, it is necessary to form a film on an extremely clean surface of a disk substrate, free from any contaminants that have been transferred over the entire surface of the substrate.

現在の磁気ディスクの洗浄は有機溶剤を使用する方法や
温水を使用する方法があり、基板の全面にわたシ極めて
清浄な表面を得るべく細心の注意を払った基板の洗浄が
行われているが、基板の全面に洗浄むら、洗浄残シやし
み等を完全に除去することは非常に困難であシ、上述の
ような種々の問題が発生する。
Current methods of cleaning magnetic disks include using organic solvents and hot water, and the substrate is cleaned with great care in order to obtain an extremely clean surface over the entire surface of the substrate. It is very difficult to completely remove cleaning unevenness, cleaning residue, stains, etc. from the entire surface of the substrate, and various problems as described above occur.

スパッタリング法等の乾式の成膜方法に於いては成膜直
前の基板の洗浄方法として基板の表面をArイオンでエ
ツチングする方法がある。この方法は基板の表面層を物
理的に除去し、基板の材質そのものを基板の表面に出す
方法であるために極めて清浄な面を基板の全面に得る事
が出来る。従ってこの様な処理をした基板に成膜された
膜は基板の全体に均質な膜を有し基板と膜との付着力も
極めて強い膜を形成することができ機械的特性や耐環境
性に優れた膜を形成する事が出来る。
In a dry film forming method such as a sputtering method, there is a method of etching the surface of the substrate with Ar ions as a method of cleaning the substrate immediately before film forming. This method physically removes the surface layer of the substrate and exposes the substrate material itself to the surface of the substrate, making it possible to obtain an extremely clean surface over the entire surface of the substrate. Therefore, a film formed on a substrate treated in this way has a homogeneous film over the entire substrate, has extremely strong adhesion between the substrate and the film, and has excellent mechanical properties and environmental resistance. It is possible to form an excellent film.

発明が解決しようとする課題 しかしながら、表面にエツチングを施した基板に成膜し
て作製した磁気ディスクは、基板の表面に形成されてい
る同心円状のすし、いわゆるテクスチャに因シ誘導され
る磁気異方性の方向が消失域は逆9、即ちテクスチャ方
向が磁化困難軸となる磁気異方性が誘導されるためK、
テクスチャ方向の磁気特性が非常に悪いものとなり、記
録再生特性の劣化が著しく高密度磁気記録用の磁気ディ
スクとして使用することは出来ない。その為に、従来は
第4図に示すような基板の表面にエツチングを施す機構
を備えないインライン型の磁気ディスクの製造装置によ
り基板の表面にエツチングを施さず、基板の表面に洗浄
残シ等の付着物を十分に除去せずに成膜して磁気ディス
クを製造するので、膜と基板との付着力が弱い部分が生
じ、耐ヘツド衝撃性の劣化や、膜の離脱によるエラーの
発生あるいはモジュレーシーンの発生が生ずるという問
題点を有していた。本発明は上記従来の問題点を解決す
るもので、優れた磁気特性を有し高密度の磁気記録がで
き、基板と膜との付着力が強く、機械特性や耐環境性に
優れた磁気ディスクの製造装置とその製造方法を提供す
ることを目的とする。
Problems to be Solved by the Invention However, magnetic disks fabricated by forming a film on a substrate whose surface has been etched do not exhibit magnetic differences induced by concentric circles formed on the surface of the substrate, so-called textures. The direction of orientation is reversed in the vanishing region 9, that is, magnetic anisotropy is induced in which the texture direction is the axis of hard magnetization, so K,
The magnetic properties in the texture direction become very poor, and the recording and reproducing properties deteriorate significantly, making it impossible to use it as a magnetic disk for high-density magnetic recording. For this reason, in the past, as shown in Figure 4, in-line magnetic disk manufacturing equipment without a mechanism for etching the surface of the substrate did not etch the surface of the substrate, leaving cleaning residue on the surface of the substrate. Since magnetic disks are manufactured by forming a film without sufficiently removing the deposits, there are parts where the adhesion between the film and the substrate is weak, resulting in deterioration of head impact resistance and the occurrence of errors due to film separation. This has the problem that modulation scenes occur. The present invention solves the above conventional problems, and is a magnetic disk that has excellent magnetic properties, can perform high-density magnetic recording, has strong adhesion between the substrate and film, and has excellent mechanical properties and environmental resistance. The purpose of this invention is to provide a manufacturing device and a method for manufacturing the same.

課題を解決するための手段 この課題を解決するために本発明の磁気ディスクの製造
装置とその製造方法は基板の表面のエツチング機構と続
いてその基板を酸素雰囲気下に置く機構を備えた磁気デ
ィスク製造装置もしくは、基板の表面にエツチングを施
すこと次いで基板を酸素雰囲気下に置くことを用いる磁
気ディスクの製造方法を有する構成、または、基板の表
面を酸素雰囲気下でエツチングする機構を備えた磁気デ
ィスク製造装置、もしくは基板の表面をM累算囲気下で
エツチングを施すことを用いる磁気ディスクの製造製造
方法を有する構成とする。
Means for Solving the Problem In order to solve this problem, a magnetic disk manufacturing apparatus and a manufacturing method thereof according to the present invention provide a magnetic disk having a mechanism for etching the surface of a substrate and a mechanism for subsequently placing the substrate in an oxygen atmosphere. A manufacturing device or a magnetic disk manufacturing method that involves etching the surface of a substrate and then placing the substrate in an oxygen atmosphere, or a magnetic disk equipped with a mechanism for etching the surface of the substrate in an oxygen atmosphere. The present invention is configured to include a manufacturing apparatus or a method for manufacturing a magnetic disk using etching the surface of a substrate under an M-accumulation atmosphere.

作  用 この構成によって、磁気ディスクは、極めて清浄な基板
の表面に成膜されることとなる。
Operation: With this configuration, a magnetic disk can be deposited on the surface of an extremely clean substrate.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

第1図に示すように、磁気ディスクの製造装置は基板を
搬入する搬入室1、基板の表面をエッチング及び酸化さ
せる表面処理室2、基板の温度を調整する基板加熱室3
、基板にスパッタによシ成膜するスパッタ室4及び成膜
した磁気ディスクを取シ出す搬出室6よルなる。搬入室
1、基板加熱室3、成膜室4、および搬出室6は従来の
磁気ディスクの製造装置と何等変わらない。
As shown in FIG. 1, the magnetic disk manufacturing apparatus includes a loading chamber 1 for loading substrates, a surface treatment chamber 2 for etching and oxidizing the surface of the substrate, and a substrate heating chamber 3 for adjusting the temperature of the substrate.
, a sputtering chamber 4 in which a film is deposited on a substrate by sputtering, and an unloading chamber 6 in which the deposited magnetic disk is taken out. The carrying-in chamber 1, substrate heating chamber 3, film-forming chamber 4, and carrying-out chamber 6 are no different from conventional magnetic disk manufacturing equipment.

表面処理室2について第2図を用いて詳しく説明する。The surface treatment chamber 2 will be explained in detail using FIG. 2.

第2図に示すように、表面処理室2は真空ポンプ6、真
空ゲージ7、高周波電源8、アルゴンガスの導入系9及
び酸素ガスの導入系10を備えている。真空ポンプ6は
清浄で高真空を得ることが出来るクライオポンプであシ
、バルブ11とオリフィス12を介して表面処理室2と
結合している。バルブ11は真空ポンプ6と表面処理室
2との間の開閉を行うものである。オリフィス12は真
空ポンプ6と表面処理室2との間のコンダクタンスを変
えて表面処理室2内のガス圧を調整するものである。真
空ゲージ7は表面処理室2内の真空度を測定する検出器
である。アルゴンガスの導入系9及び酸素ガスの導入系
10は、ガス導入開閉を行うためのバルブ13及び14
、ならびにガスの導入量を調整する流量計16及び16
を有している。
As shown in FIG. 2, the surface treatment chamber 2 includes a vacuum pump 6, a vacuum gauge 7, a high frequency power source 8, an argon gas introduction system 9, and an oxygen gas introduction system 10. The vacuum pump 6 is a clean cryopump capable of obtaining a high vacuum, and is connected to the surface treatment chamber 2 via a valve 11 and an orifice 12. The valve 11 opens and closes the connection between the vacuum pump 6 and the surface treatment chamber 2. The orifice 12 changes the conductance between the vacuum pump 6 and the surface treatment chamber 2 to adjust the gas pressure within the surface treatment chamber 2. The vacuum gauge 7 is a detector that measures the degree of vacuum within the surface treatment chamber 2. The argon gas introduction system 9 and the oxygen gas introduction system 10 have valves 13 and 14 for opening and closing gas introduction.
, and flow meters 16 and 16 for adjusting the amount of gas introduced.
have.

以上のように構成された磁気ディスクの製造装置につい
て、以下その動作を説明する。
The operation of the magnetic disk manufacturing apparatus configured as above will be described below.

搬入室1に基板がセットされたキャリア17が入ったら
搬入室1の真空引きを行う。所定の真空度に達したら、
キャリア17は搬入室1から表面処理室2へ移動する。
When the carrier 17 with the substrate set therein is placed in the loading chamber 1, the loading chamber 1 is evacuated. Once the specified degree of vacuum is reached,
The carrier 17 moves from the loading chamber 1 to the surface treatment chamber 2.

表面処理室2は予め真空に引かれているので、搬入室1
から表面処理室2へのキャリア17の移動は何等問題は
ない。キャリア17が表面処理室2に入ったら、先ず基
板のエツチングを始める。アルゴンガス導入系のバルブ
13を開けると流量計16により調整されながら予め設
定された量のアルゴンガスが表面処理室2に導入される
。表面処理室2内のアルゴンガス圧が所定のガス圧にな
る様に、真空ゲージ7で表面処理室2内のガス圧を測定
しながらオリフィス12の開度を調節する。表面処理室
2内のアルゴンガス圧が所定の圧力に達したら、高周波
電力をディスク基板に印加し基板の表面のエツチングを
所定の時間行う。基板の表面のエツチングを所定の時間
行ったら高周波電源8を切シ、アルゴンガス導入系のバ
ルブ13を閉じて基板の表面のエツチングは終了する。
Since the surface treatment chamber 2 has been evacuated in advance, the loading chamber 1
There is no problem in moving the carrier 17 from the surface treatment chamber 2 to the surface treatment chamber 2. When the carrier 17 enters the surface treatment chamber 2, etching of the substrate begins. When the valve 13 of the argon gas introduction system is opened, a preset amount of argon gas is introduced into the surface treatment chamber 2 while being regulated by the flow meter 16 . The opening degree of the orifice 12 is adjusted while measuring the gas pressure in the surface treatment chamber 2 with the vacuum gauge 7 so that the argon gas pressure in the surface treatment chamber 2 becomes a predetermined gas pressure. When the argon gas pressure in the surface treatment chamber 2 reaches a predetermined pressure, high frequency power is applied to the disk substrate to etch the surface of the substrate for a predetermined period of time. After etching the surface of the substrate for a predetermined time, the high frequency power source 8 is turned off and the valve 13 of the argon gas introduction system is closed to complete the etching of the surface of the substrate.

これによシ、基板の表面に付着していた洗浄残りなどが
完全に除去されて基板の表面は極めて清浄な表面となる
。しかしながら、この基板の表面のエツチングによシ基
板の表面の酸化層も除去されてしまう。そこで次に、エ
ツチングした基板を酸素雰囲気に置くことで基板の表面
に酸化層を再生する。
As a result, cleaning residues adhering to the surface of the substrate are completely removed, and the surface of the substrate becomes extremely clean. However, this etching of the surface of the substrate also removes the oxide layer on the surface of the substrate. Next, the etched substrate is placed in an oxygen atmosphere to regenerate the oxide layer on the surface of the substrate.

酸素ガス導入系のバルブ14を開けると流量計16によ
り調整されながら予め設定された量の酸素ガスが表面処
理室2に導入される。表面処理室2内の酸素ガス圧が所
定のガス圧になる様に、真空ゲージアで表面処理室2内
のガス圧を測定しながらオリフィス12の開度を調節す
る。こうしてエツチング処理を行った基板を酸素雰囲気
下に所定の時装置いてエツチングの際に除去された基板
の表面の酸化層を再生する。
When the valve 14 of the oxygen gas introduction system is opened, a preset amount of oxygen gas is introduced into the surface treatment chamber 2 while being regulated by the flow meter 16 . The opening degree of the orifice 12 is adjusted while measuring the gas pressure in the surface treatment chamber 2 with a vacuum gauge so that the oxygen gas pressure in the surface treatment chamber 2 becomes a predetermined gas pressure. The substrate thus etched is placed in an oxygen atmosphere at a predetermined time to regenerate the oxide layer on the surface of the substrate that was removed during etching.

所定の時間に達したら、酸素ガス導入系のバルブ14を
閉じ、オリフィス12の開度を全開にして、表面処理室
2の真空引きを始める。所定の真空度に達したら、キャ
リアは基板加熱室3へ移動する。所定の基板温度に達し
たら、キャリア17は成膜室4へ移動し、極めて清浄に
なったディスク基板への成膜が始まる。成膜が終了した
ら、キャリア17は搬出室6へ移動し磁気ディスクが取
り出される。上記の様にして本実施例の磁気ディスク製
造装置によυ磁気ディスクが製造される。
When a predetermined time has elapsed, the valve 14 of the oxygen gas introduction system is closed, the orifice 12 is fully opened, and evacuation of the surface treatment chamber 2 is started. When a predetermined degree of vacuum is reached, the carrier moves to the substrate heating chamber 3. When a predetermined substrate temperature is reached, the carrier 17 is moved to the film forming chamber 4, and film formation begins on the extremely clean disk substrate. When the film formation is completed, the carrier 17 is moved to the unloading chamber 6 and the magnetic disk is taken out. As described above, the υ magnetic disk is manufactured by the magnetic disk manufacturing apparatus of this embodiment.

本実施例の磁気ディスク製造装置は、上述の基板の表面
にエツチングを施した後酸素雰囲気下に置いて酸化層を
再生させる#1か基板の表面を酸素雰囲気下でエツチン
グした後に、下地膜や磁性膜、保護膜など成膜して磁気
ディスクを製造することもできる。次にその動作につい
て説明する。
The magnetic disk manufacturing apparatus of this embodiment uses #1, in which the surface of the substrate is etched and then placed in an oxygen atmosphere to regenerate the oxide layer. A magnetic disk can also be manufactured by forming a magnetic film, a protective film, or the like. Next, its operation will be explained.

搬入室1に基板がセットされたキャリア17が入ったら
搬入室1の真空引きを行う。所定の真空度に達したら、
キャリア17は搬入室1から表面処理室2へ移動する。
When the carrier 17 with the substrate set therein is placed in the loading chamber 1, the loading chamber 1 is evacuated. Once the specified degree of vacuum is reached,
The carrier 17 moves from the loading chamber 1 to the surface treatment chamber 2.

表面処理室2は予め真空に引かれているので、搬入當1
から表面処理室2へのキャリア17の移動は何等問題は
ない。キャリア17が表面処理室2に入ったら、先ずデ
ィスク基板のエツチングを始める。アルゴンガス導入系
のパルプ13を開けると流量計15によシ調整されなが
ら予め設定された量のアルゴンガスが表面処理室2に導
入される。この時同時に酸素ガス導入系のパルプ14を
開けると流量計16によシ調整されながら予め設定され
た量の酸素ガスが表面処理室2に導入される。表面処理
室2内のアルゴンガスと酸素ガスの混合ガスの圧力が所
定のガス圧になる様に、真空ゲージ7で表面処理室2内
のガス圧を測定しながらオリフィス12の開度を調節す
る。表面処理室2内のアルゴンガスと酸素ガスの混合ガ
スの圧力が所定の圧力に達したら、高周波電力をディス
ク基板に印加し基板の表面のエツチングを所定の時間行
う。基板の表面のエツチングを所定の時間行ったら高周
波電力を切シ、アルゴンガス導入系のパルプ13と酸素
ガス導入系0パルプ14を閉じてディスク基板の表面の
エツチングは終了する。
Since the surface treatment chamber 2 has been evacuated in advance,
There is no problem in moving the carrier 17 from the surface treatment chamber 2 to the surface treatment chamber 2. When the carrier 17 enters the surface treatment chamber 2, etching of the disk substrate begins. When the pulp 13 of the argon gas introduction system is opened, a preset amount of argon gas is introduced into the surface treatment chamber 2 while being regulated by the flow meter 15 . At this time, when the pulp 14 of the oxygen gas introduction system is simultaneously opened, a preset amount of oxygen gas is introduced into the surface treatment chamber 2 while being regulated by the flow meter 16. The opening degree of the orifice 12 is adjusted while measuring the gas pressure in the surface treatment chamber 2 with the vacuum gauge 7 so that the pressure of the mixed gas of argon gas and oxygen gas in the surface treatment chamber 2 becomes a predetermined gas pressure. . When the pressure of the mixed gas of argon gas and oxygen gas in the surface treatment chamber 2 reaches a predetermined pressure, high frequency power is applied to the disk substrate to etch the surface of the substrate for a predetermined period of time. After etching the surface of the disk substrate for a predetermined period of time, the high frequency power is turned off, the argon gas introduction system pulp 13 and the oxygen gas introduction system 0 pulp 14 are closed, and the etching of the surface of the disk substrate is completed.

これにより、基板の表面に付着していた洗浄残りなどが
完全に除去されて基板の表面は極めて清浄な表面となる
。しかも、基板の表面をエツチングする際に、その動作
ガスに酸素ガスが含まれているために、基板の表面のエ
ツチングと基板の表面の酸化とが同時に進行し、従って
基板の表面の酸化層が消失する事はない。
As a result, cleaning residues adhering to the surface of the substrate are completely removed, and the surface of the substrate becomes extremely clean. Moreover, when etching the surface of the substrate, since the operating gas contains oxygen gas, etching of the surface of the substrate and oxidation of the surface of the substrate proceed simultaneously, resulting in an oxidized layer on the surface of the substrate. It will never disappear.

上記の基板の表面のエツチングが終了したら、オリフィ
ス12の開度を全開にして、表面処理室2の真空引きを
始める。所定の真空度に達したら、キャリアは基板加熱
室3へ移動する。所定の基板温度に達したら、キャリア
17は成膜室4へ移動し、極めて清浄になった基板への
成膜が始まる。
After the etching of the surface of the substrate is completed, the orifice 12 is fully opened and the surface treatment chamber 2 is evacuated. When a predetermined degree of vacuum is reached, the carrier moves to the substrate heating chamber 3. When a predetermined substrate temperature is reached, the carrier 17 is moved to the film forming chamber 4, and film formation begins on the extremely clean substrate.

成膜が終了したら、キャリア17は搬出室6へ移動し磁
気ディスクが取り出される。上記の様にして本実施例の
磁気ディスク製造装置により磁気ディスクが製造される
When the film formation is completed, the carrier 17 is moved to the unloading chamber 6 and the magnetic disk is taken out. A magnetic disk is manufactured by the magnetic disk manufacturing apparatus of this embodiment as described above.

以下に実施例及び比較例を示し、さらに詳しく本発明に
ついて説明する。
EXAMPLES The present invention will be explained in more detail by showing Examples and Comparative Examples below.

(実施例1) 第3図に示すように、軽量で非磁性のAItMg合金基
板18の表面に磁気ディスクの機械的な強度を保つため
にNIP 合金膜19を無電界メツキ法によシ成膜する
。メツキ上がりのNiP合金膜の表面は凹凸であるため
にAl2O3砥粒を用いて鏡面になるようにポリッシュ
する。更に、その表面に基板と同心円状のテクスチャを
中心線平均あらさRaが適切な値となるようにつける。
(Example 1) As shown in FIG. 3, a NIP alloy film 19 is formed on the surface of a lightweight, non-magnetic AItMg alloy substrate 18 by electroless plating to maintain the mechanical strength of the magnetic disk. do. Since the surface of the plated NiP alloy film is uneven, it is polished to a mirror surface using Al2O3 abrasive grains. Furthermore, a texture concentric with the substrate is applied to the surface so that the center line average roughness Ra becomes an appropriate value.

基板の洗浄は純水による超音波洗浄、スクラバ洗浄、有
機溶剤による超音波洗浄を行った後に有機溶剤による蒸
気洗浄で終了する。
The cleaning of the substrate is performed by ultrasonic cleaning with pure water, scrubber cleaning, and ultrasonic cleaning with an organic solvent, and then ends with steam cleaning with an organic solvent.

洗浄が終了した基板を実施例の磁気ディスク製造装置に
セットする。真空引を始め真空度か10Torr台にな
ったらアルゴンガスを導入してアルゴンガス圧を3mT
orrとする。300Wの高周波電力を基板側に印加し
基板の表面のエツチングを行う。基板の表面のエツチン
グにより除去する膜厚は数十人であり、このエツチング
によシ基板に付着していた有機膜等の洗浄残り等が完全
に除去されて極めて清浄な表面を得る事が出来る。また
、このエツチングにょシ基板の表面の酸化層も除去され
てしまう。そこで真空を破る事なく導入ガスをアルゴン
ガスから酸素ガスへと取シ替えて酸素ガス圧50 m 
Torrの雰囲気下で3分間保持して基板の表面に酸化
層を形成する。なお、この工程はガスを入れ換え、るだ
けであるために基板の表面の汚染することはない。また
、基板の表面の表層を均一に除去されて活性になった基
板の表面には化学的に活性なガスである酸素ガスが基板
の全面に渡り均質な表面酸化層を形成することになる。
The substrate that has been cleaned is set in the magnetic disk manufacturing apparatus of the embodiment. Start evacuation and when the vacuum level reaches 10 Torr, introduce argon gas and increase the argon gas pressure to 3 mT.
orr. A high frequency power of 300 W is applied to the substrate side to etch the surface of the substrate. The thickness of the film removed by etching the surface of the substrate is several tens of layers, and this etching completely removes cleaning residues such as organic films attached to the substrate, resulting in an extremely clean surface. . Moreover, this etching also removes the oxide layer on the surface of the substrate. Therefore, without breaking the vacuum, the introduced gas was changed from argon gas to oxygen gas, and the oxygen gas pressure was 50 m.
An oxide layer is formed on the surface of the substrate by holding it in a Torr atmosphere for 3 minutes. Note that this step only replaces the gas, so the surface of the substrate is not contaminated. Further, on the surface of the substrate which has been made active by uniformly removing the surface layer of the surface of the substrate, oxygen gas, which is a chemically active gas, forms a uniform surface oxidation layer over the entire surface of the substrate.

なお、基板の表面をエツチングにより除去する量を数十
人としたのは以下の理由による。
The reason why the amount of the surface of the substrate to be removed by etching was set at several tens of layers is as follows.

本実施例を行う前の種々の実験結果より、理由は明確で
はないが酸化層の有無がテクスチャにより誘導される磁
気異方性の方向を決めていることが判明した。即ち、基
板の表面に酸化層が有ればテクスチャにより誘導される
磁気異方性の磁化容異軸の方向はテクスチャと平行方向
になるのであるが、基板の表面に酸化層が無ければテク
スチャにより誘導される磁気異方性の磁化容易軸の方向
はテクスチャと垂直方向となる事が判明したのである。
From the results of various experiments conducted before conducting this example, it was found that the presence or absence of an oxide layer determines the direction of magnetic anisotropy induced by texture, although the reason is not clear. In other words, if there is an oxide layer on the surface of the substrate, the direction of the magnetic anisotropy induced by the texture will be parallel to the texture, but if there is no oxide layer on the surface of the substrate, the direction of the magnetic anisotropy will be parallel to the texture. It was found that the direction of the easy axis of induced magnetic anisotropy is perpendicular to the texture.

従って、ここで重要なのは基板の表面に渡り基板の表面
の酸化層を除去する事なく、基板の表面に残留している
有機膜などのみを基板の表面のエツチングにより除去で
きれば良いのである。
Therefore, what is important here is that only the organic film remaining on the surface of the substrate can be removed by etching the surface of the substrate, without removing the oxide layer on the surface of the substrate.

しかしながら、基板の表面に残留している有機膜などは
基板の表面に渡って均一なものではないので基板の表面
に残留している有機膜などのみを基板の表面のエツチン
グによシ除去する事は出来ない。
However, since the organic film remaining on the surface of the substrate is not uniform over the surface of the substrate, only the organic film remaining on the surface of the substrate can be removed by etching the surface of the substrate. I can't.

そこで基板の表面のエツチングにより除去する厚みを数
十人と厚くして基板の全面が残留有機膜や酸化層の有無
の分布が無い均質な表面を形成することが必要なのであ
る。
Therefore, it is necessary to increase the thickness to be removed by etching the surface of the substrate by several tens of layers so that the entire surface of the substrate has a homogeneous surface with no residual organic film or oxidized layer.

従って、上記した様に基板の表面を数十人のエツチング
により除去した後にその基板を酸素雰囲気下に置くと基
板の全面に渡り均質な酸化層を有する極めて清浄な基板
が得られるのである。
Therefore, if the surface of the substrate is removed by etching several dozen people as described above and then placed in an oxygen atmosphere, an extremely clean substrate having a homogeneous oxide layer over the entire surface of the substrate can be obtained.

上記の基板の表面の表面処理を行った後に成膜を始める
。DC−マグネトロンスパッタ法によシアルボンガス圧
1 m Tor−r で磁性膜の磁気特性を向上させる
ための膜厚が200o人のCr下地膜20、膜厚が60
0人のCoNiCr磁性膜21、膜厚が2oo人のC表
面保護膜を連続して形成して実施例1の磁気ディスクを
作製した。
After the surface of the substrate is subjected to the surface treatment described above, film formation is started. A Cr base film 20 with a film thickness of 200 μm to improve the magnetic properties of the magnetic film was formed by DC-magnetron sputtering at a sialbone gas pressure of 1 m Tor-r.
A magnetic disk of Example 1 was manufactured by successively forming a CoNiCr magnetic film 21 with a thickness of 0.0 mm and a C surface protection film with a thickness of 2 mm.

(実施例2) 次に実施例の2の磁気ディスクを作製した。実施例1と
同様の基板を用い基板の洗浄は実施例1と同様に純水に
よる超音波洗浄、スクラバー洗浄、有機溶剤による超音
波洗浄を行った後に有機溶剤による蒸気洗浄で終了する
。洗浄の終了した基板を実施例で示した磁気ディスク製
造装置にセットする。真空引を始め真空度が10”−’
 Torr 台になったらアルゴンガスと酸素ガスとを
導入しアルゴンガスと酸素ガスとの混合ガスの圧力を3
mTorrとする。本実施例2ではアルゴンガスの分圧
を1.6mTorr酸素ガスの分圧を1.5 m To
rr とした。
(Example 2) Next, a magnetic disk of Example 2 was produced. Using the same substrate as in Example 1, the cleaning of the substrate is completed by performing ultrasonic cleaning with pure water, scrubber cleaning, ultrasonic cleaning with an organic solvent, and then steam cleaning with an organic solvent as in Example 1. The substrate that has been cleaned is set in the magnetic disk manufacturing apparatus shown in the embodiment. The degree of vacuum was 10"-' when the vacuum was started.
When the pressure reaches the Torr level, introduce argon gas and oxygen gas and reduce the pressure of the mixed gas of argon gas and oxygen gas to 3 Torr.
Let it be mTorr. In this Example 2, the partial pressure of argon gas is 1.6 mTorr, and the partial pressure of oxygen gas is 1.5 mTorr.
It was set as rr.

300Wの高周波電力を基板側に印加し基板の表面のエ
ツチングを行う。基板の表面のエツチング量は数十人で
あシ、このエツチングによシ基板に付着していた有機膜
などの洗浄残り、しみなどが完全に除去されて極めて清
浄な表面となる。しかも基板の表面のエツチングの際に
その動作ガスには酸素ガスが含まれているので、エツチ
ングにより酸化層が除去されても化学的に活性な酸素ガ
スは直ちに基板の表面を覆い、従って基板の表面から基
板の表面の酸化層が消失する事はない。従って、実施例
1ではエツチングの際に除去された基板の表面の酸化層
を再生するために基板の表面をエツチングした後に酸素
雰囲気下に保持したのであるが、本実施例2では、基板
の表面のエツチング終了後、基板を酸素雰囲気下に置か
なくても実施例1と同様な全面に渡り酸化層を有し、し
かも全面に渡シ極めて清浄な基板の表面が得られるので
ある。上記の基板の表面の表面処理を行った抜に実施例
1と同様に成膜して実施例2の磁気ディスクを作製した
A high frequency power of 300 W is applied to the substrate side to etch the surface of the substrate. The amount of etching required for the surface of the substrate is several dozen people, and this etching completely removes cleaning residue such as organic films and stains that had adhered to the substrate, resulting in an extremely clean surface. Moreover, when etching the surface of the substrate, the operating gas contains oxygen gas, so even if the oxide layer is removed by etching, the chemically active oxygen gas will immediately cover the surface of the substrate, and therefore the substrate surface will be etched. The oxide layer on the surface of the substrate does not disappear from the surface. Therefore, in Example 1, the surface of the substrate was kept in an oxygen atmosphere after etching in order to regenerate the oxide layer on the surface of the substrate that was removed during etching, but in Example 2, the surface of the substrate was etched. After the etching is completed, the surface of the substrate can be obtained which has an oxidized layer over the entire surface as in Example 1 without placing the substrate in an oxygen atmosphere, and which is also extremely clean over the entire surface. A magnetic disk of Example 2 was fabricated by forming a film in the same manner as in Example 1, except that the surface of the substrate was subjected to the surface treatment described above.

なお実施例2ではアルゴンガスの分圧と酸素ガスの分圧
との比は1:1としたが、アルゴンガスの分圧と酸素ガ
スの分圧との比は幾らであっても構わない。アルゴンガ
スと酸素ガスとの分圧比により、単位時間にエツチング
されるエツチング量、即ちエツチング量と酸化のしやす
さとが変わってくる。即ちアルゴンガスの分圧が高くな
ると、エツチングレートは上がるが酸化しにくくなる。
In Example 2, the ratio of the partial pressure of argon gas to the partial pressure of oxygen gas was set to 1:1, but the ratio of the partial pressure of argon gas to the partial pressure of oxygen gas may be any value. The amount of etching per unit time, that is, the amount of etching and the ease of oxidation vary depending on the partial pressure ratio of argon gas and oxygen gas. That is, as the partial pressure of argon gas increases, the etching rate increases, but oxidation becomes more difficult.

−方、酸素ガスの分圧が高くなると、酸化はしやすくな
るがエツチングレートが小さくなる。従って、アルゴン
ガスと酸素ガスとの分圧比は洗浄終了後の基板の表面の
清浄の程度等により適当な分圧比に決めれば良いのであ
る。例えば、洗浄終了後の基板の表面に洗浄残シなどの
付着物が多く清浄度が悪い場合は、アルゴンガスの分圧
を増やしエツチングレートを大きくする等の処理をすれ
ば良いのである。
- On the other hand, as the partial pressure of oxygen gas increases, oxidation becomes easier but the etching rate decreases. Therefore, the partial pressure ratio of argon gas and oxygen gas may be determined to be an appropriate partial pressure ratio depending on the degree of cleanliness of the surface of the substrate after cleaning. For example, if the surface of the substrate after cleaning has a lot of cleaning residue and other deposits and the cleanliness is poor, treatment may be performed such as increasing the partial pressure of argon gas and increasing the etching rate.

(比較例1) 実施例1と同様の基板を用い、基板の洗浄は実施例1と
同様に純水による超音波洗浄、スクラバ−洗浄、有機溶
剤による超音波洗浄を行った後に有機溶剤による蒸気洗
浄で終了する。洗浄の終了した基板を、実施例で示した
磁気ディスク製造装置にセットする。真空引を始め真空
度が1O−7Torr 台になったらアルゴンガスを導
入してアルゴンガス圧を3mTorr とする。300
Wの高周波電力を基板側に印加し基板の表面のエツチン
グを行う。基板の表面のエツチング量は数十人であシ、
このエツチングにより基板に付着していた有機膜などの
洗浄残シ、しみなどが完全に除去されて極めて清浄な表
面となる。この状態で基板の表面の表面酸化層も除去さ
れてしまう。実施例1ではこの後アルゴンガスを酸素ガ
スと取シ替えて基板を酸素ガス雰囲気下に保持すること
で基板の表面に酸化層を形成したのであるが、比較例1
ではアルゴンガスを酸素ガスに取り替える事無しに、即
ちディスクの基板表面に酸化層を形成することなしに実
施例1と同様に成膜して比較例1の磁気ディスクを作製
した。
(Comparative Example 1) Using the same substrate as in Example 1, the substrate was cleaned by ultrasonic cleaning with pure water, scrubber cleaning, and ultrasonic cleaning with an organic solvent, followed by steam cleaning with an organic solvent. Finish with washing. The substrate that has been cleaned is set in the magnetic disk manufacturing apparatus shown in the example. After evacuation begins and the degree of vacuum reaches the 10-7 Torr level, argon gas is introduced to bring the argon gas pressure to 3 mTorr. 300
High frequency power of W is applied to the substrate side to etch the surface of the substrate. The amount of etching on the surface of the board took several dozen people.
This etching completely removes cleaning residues such as organic films and stains adhering to the substrate, resulting in an extremely clean surface. In this state, the surface oxide layer on the surface of the substrate is also removed. In Example 1, the argon gas was then replaced with oxygen gas and the substrate was held in an oxygen gas atmosphere to form an oxide layer on the surface of the substrate, but in Comparative Example 1
A magnetic disk of Comparative Example 1 was prepared by forming a film in the same manner as in Example 1 without replacing argon gas with oxygen gas, that is, without forming an oxide layer on the surface of the substrate of the disk.

(比較例2) 実施例1と同様の基板を用い、基板の洗浄は実施例1と
同様に純水による超音波洗浄、ヌクラ・(−洗浄、有機
溶剤による超音波洗浄を行った後に有機溶剤による蒸気
洗浄で終了する。洗浄の終了した基板を実施例で示した
磁気ディスク製造装置にセットする。真空引きを始め嚢
仝+真空度が10”” Torr台になったら、比較例
1では基板の表面の処理を行ったが、比較例2では、基
板の表面の処理を行う事なく、即ち、基板の表面がスパ
ッタ装置にセットする前の洗浄上がυの状態の基板−に
実施例1と同様に成膜して比較例2の磁気ディスクを作
成した。
(Comparative Example 2) The same substrate as in Example 1 was used, and the substrate was cleaned in the same manner as in Example 1 by ultrasonic cleaning with pure water, Nukura (- cleaning), ultrasonic cleaning with organic solvent, and then ultrasonic cleaning with organic solvent. The substrate that has been cleaned is placed in the magnetic disk manufacturing apparatus shown in the example. Vacuuming is started and when the chamber + vacuum level reaches 10" Torr, the substrate is cleaned in Comparative Example 1. However, in Comparative Example 2, the surface of the substrate was not treated, that is, the surface of the substrate was cleaned at υ before being set in the sputtering apparatus, and Example 1 was applied to the substrate. A magnetic disk of Comparative Example 2 was prepared by forming a film in the same manner as in .

上記の様にして作製した実施例1.実施例2゜比較例1
及び比較例2の各磁気ディスクの磁気特性の評価結果を
第1表に示す。
Example 1 produced as described above. Example 2゜Comparative example 1
Table 1 shows the evaluation results of the magnetic properties of each magnetic disk of Comparative Example 2.

第1表 第1表でByはテクスチャと平行方向の残留磁化、B 
r工はテクスチャと垂直方向の残留磁化であ1) Bx
// Bx土はテクスチャに依シ誘導された磁気異方性
の強さを表す。又、Sはテクスチャと平行方向の角型比
をHaはテクスチャと平行方向の保磁力を表す。
Table 1 In Table 1, By is the residual magnetization in the direction parallel to the texture, B
r is the residual magnetization in the direction perpendicular to the texture 1) Bx
// Bx soil represents the strength of texture-induced magnetic anisotropy. Further, S represents the squareness ratio in the direction parallel to the texture, and Ha represents the coercive force in the direction parallel to the texture.

基板の表面にエツチング処理を行った後に酸素雰囲気下
に保持した基板に作製した実施例1の磁気ディスクのB
 r、/ B r、と基板の表面を酸素雰囲気下でエツ
チングした基板に作製した実施例2の磁気ディスクのB
x、ip / Bx土は比較例1及び比較例2の磁気デ
ィスクのB7 / Bx土と比べて大きく強い磁気異方
性が誘導されている。又、S及びHaにおいても実施例
1の磁気ディスクと実施例2の磁気ディスクは、比較例
1及び比較例2の磁気ディスクと比べて大きい優れた磁
気特性を有している。
B of the magnetic disk of Example 1 manufactured on a substrate kept in an oxygen atmosphere after etching the surface of the substrate
r, / B r, and B of the magnetic disk of Example 2 manufactured on a substrate whose surface was etched in an oxygen atmosphere.
The x, ip/Bx soil induces a larger and stronger magnetic anisotropy than the B7/Bx soil of the magnetic disks of Comparative Examples 1 and 2. Also, in terms of S and Ha, the magnetic disks of Example 1 and 2 have superior magnetic properties compared to the magnetic disks of Comparative Examples 1 and 2.

基板の表面にエツチング処理のみを行い、基板の表面に
酸化層を形成する事なく成膜した比較例1の磁気ディス
クではBr//BrL〈1であり、テクスチャと平行方
向が磁化困難軸となる磁気異方性が誘導される。即ち、
エツチングを施したのみの基板上に成膜した磁気ディス
クの磁気特性は、エツチングを施していない基板上に成
膜した磁気ディスクの磁気特性よりも著しく劣ることに
なる。
In the magnetic disk of Comparative Example 1, in which only etching was performed on the surface of the substrate and the film was formed without forming an oxide layer on the surface of the substrate, Br//BrL<1, and the direction parallel to the texture is the axis of difficult magnetization. Magnetic anisotropy is induced. That is,
The magnetic properties of a magnetic disk formed on a substrate that has only been etched will be significantly inferior to those of a magnetic disk formed on a substrate that has not been etched.

即ち、基板の表面にエツチングを施した極めて清浄な面
に成膜した磁気ディスクで磁気特性を得るには、基板の
表面にエツチングを施し極めて清浄な面を得た後に、基
板を酸素雰囲気下に保持して、エツチングの際に除去さ
れた基板の表面の酸化層を再生するか、域は基板の表面
を酸素を含む雰囲気下でエツチングを施し基板の表面の
酸化層を消失させない様にする事が必要なのである。
In other words, in order to obtain magnetic properties with a magnetic disk that has been deposited on an extremely clean surface that has been etched onto the surface of the substrate, the substrate must be exposed to an oxygen atmosphere after the surface of the substrate has been etched to obtain an extremely clean surface. The oxide layer on the surface of the substrate that was removed during etching can be regenerated by holding the substrate, or the surface of the substrate can be etched in an atmosphere containing oxygen to prevent the oxide layer on the surface of the substrate from disappearing. is necessary.

実施例1では基板の表面にエツチングを施して極めて清
浄にした基板の表面に、エツチングにより除去された酸
化層を、エツチングした基板を酸素雰囲気下に保持する
事により再生した後に、スパッタリング法により成膜し
て磁気ディスクを作製するので優れた磁気特性を有する
磁気ディスクを作製することが出来るのである。
In Example 1, the oxide layer removed by etching was regenerated by keeping the etched substrate in an oxygen atmosphere on the surface of the substrate, which was made extremely clean by etching, and then formed by sputtering. Since a magnetic disk is manufactured by forming a film, a magnetic disk having excellent magnetic properties can be manufactured.

又、本実施例2では基板の表面を酸素雰囲気下でエツチ
ングを施し、基板の表面の酸化層を消失する事無しに基
板の全面を極めて清浄にした後に、スパッタリング法に
よシ成膜して磁気ディスクを作製するので優れた磁気特
性を有する磁気ディスクを作製することが出来るのであ
る。
In Example 2, the surface of the substrate was etched in an oxygen atmosphere to make the entire surface of the substrate extremely clean without eliminating the oxide layer on the surface of the substrate, and then a film was formed by sputtering. Since a magnetic disk is manufactured using this method, a magnetic disk having excellent magnetic properties can be manufactured.

次に、磁気ディスクを実根ドライブに組み込む際に重要
な問題となるC8S試験後のエラーの発生について調べ
た。
Next, we investigated the occurrence of errors after the C8S test, which is an important problem when incorporating magnetic disks into actual drives.

実施例1の磁気ディスクと実施例2の磁気ディスク及び
比較例2の磁気ディスクについてC8S試験を2oO0
0回行う前後でのエラーの発生個数を調べた。その結果
を第2表に示す。
The C8S test was conducted on the magnetic disk of Example 1, the magnetic disk of Example 2, and the magnetic disk of Comparative Example 2 at 2oO0.
We investigated the number of errors that occurred before and after performing the test 0 times. The results are shown in Table 2.

第2表 実施例1及び実施例2ではCSS試験の前後でエラーの
発生はない。
In Examples 1 and 2 of Table 2, no errors occurred before or after the CSS test.

一方、比較例2ではC8S試験の後にエラーの発生がみ
られその個数は8個にもなる。
On the other hand, in Comparative Example 2, errors occurred after the C8S test, and the number of errors was as many as 8.

即ち、実施例1及び実施例2では成膜時に基板の表面を
エツチングする事によシ、基板の表面上に洗浄残シやし
み等の付着物が全く無い極めて清浄な基板の表面上に成
膜した為に膜とディスク基板との付着性が良くしかも均
質に成膜されるために、磁気ディスクに損傷を与え易い
試験であるC8S試験においても何等の損傷も認められ
ず、従ってエラーの発生もないのである。一方、比較例
2では成膜時に基板の表面をエツチングする事無しに成
膜した為に、膜は基板の表面上の洗浄残りやじみを介し
て成膜される事になり、従って膜とディスク基板との付
着性が悪くしかも不均質な膜となシ、磁気ディスクに損
傷を与え易い試験であるC8S試験において、膜の剥離
等の損傷が発生し、それがエラーとして検出されるQで
ある。
That is, in Examples 1 and 2, by etching the surface of the substrate during film formation, the film was formed on an extremely clean substrate surface with no cleaning residue or stains on the surface of the substrate. Because the film was coated, the adhesion between the film and the disk substrate was good and the film was formed uniformly, so even in the C8S test, which is a test that easily damages magnetic disks, no damage was observed, and therefore errors occurred. There is none. On the other hand, in Comparative Example 2, the film was formed without etching the surface of the substrate during film formation, so the film was formed through the cleaning residue and smudges on the surface of the substrate, and therefore the film and disk If the film has poor adhesion to the substrate and is non-uniform, damage such as peeling of the film will occur in the C8S test, which is a test that can easily damage the magnetic disk, and this will be detected as an error. .

以上のように実施例1によれば、基板の表面にテクスチ
ャが施された、NiP  をメツキしたAfiMg基板
の表面を高周波ヌパッタリングによシエッチングを施し
基板の表面に残留している有機物の付着物、いわゆる洗
浄残りを除去して極めて清浄になった基板を酸素雰囲気
下に置いて、基板の表面のエツチングの際に除去された
基板の表面の酸化層を再生した後にCr、CoNiCr
、C膜を連続して成膜した磁気ディスクを作製でき、ま
た実施例2によれば、基板の表面にテクスチャが施され
た、N i PをメツキしたAIMq基板の表面を酸素
雰囲気中で高周波ヌパッタリングによシエッチングを施
し、基板の表面の酸化層を消失させる事無しに基板の表
面に残留している有機物の付着物、いわゆる洗浄残りを
除去して極めて清浄にした後にCx、CoNiCr、C
膜を連続して成膜した磁気ディスクを作製できて、テク
スチャと平行方向を磁化容易軸とする磁気異方性が誘導
されるために、テクスチャ方向の保磁力が大きくなり、
また角型比も大きくなる優れた磁気特性を有するために
高密度な磁気記録が出来ることになる。更に、実施例1
及び実施例2によれば基板と膜との付着力が強く、しか
も膜は基板上に均質に形成される為に、C8S試験に於
いても何等損傷を受けない優れた機械特性を有し、また
耐食性などにも優れた磁気ディスクを作製することがで
きる。
As described above, according to Example 1, the surface of the NiP-plated AfiMg substrate, which has a textured surface, is etched by high-frequency puttering, and organic matter deposits remaining on the surface of the substrate are removed. After removing the so-called cleaning residue and placing the extremely clean substrate in an oxygen atmosphere to regenerate the oxide layer on the surface of the substrate that was removed during etching, Cr, CoNiCr, etc.
According to Example 2, the surface of an AIMq substrate plated with NiP and having a textured surface was exposed to high frequency in an oxygen atmosphere. Cx, CoNiCr, and Cx, CoNiCr, and C were etched by Nuputtering to remove organic deposits remaining on the surface of the substrate, so-called cleaning residue, without eliminating the oxide layer on the surface of the substrate.
Since it is possible to create a magnetic disk in which films are continuously deposited, and magnetic anisotropy is induced with the axis of easy magnetization parallel to the texture, the coercive force in the texture direction increases.
Furthermore, since it has excellent magnetic properties with a large squareness ratio, high-density magnetic recording can be performed. Furthermore, Example 1
According to Example 2, the adhesion between the substrate and the film is strong, and the film is uniformly formed on the substrate, so it has excellent mechanical properties that do not suffer any damage even in the C8S test. Furthermore, a magnetic disk with excellent corrosion resistance can be manufactured.

なお、本実施例では基板の表面のエツチングの際、動作
ガスにアルゴンガス、域はアルゴンガスと酸素ガスとの
混合ガヌを用いたが、動作ガスはこれらのガヌ以外にも
ネオンガスや、窒素ガス。
In this example, when etching the surface of the substrate, argon gas was used as the operating gas, and a gas mixture of argon gas and oxygen gas was used. Nitrogen gas.

二酸化炭素ガヌなどの単体のガヌ、あるいはネオンガス
と酸素ガス等の混合ガス等でも本実施と同様の特性を有
する磁気ディスクを作製できる。
A magnetic disk having characteristics similar to those in this embodiment can be produced using a single gas such as carbon dioxide or a mixed gas such as neon gas and oxygen gas.

また、本実施例では基板の表面のエツチングの際に高周
波電力を用いたスパッタリング法によシ行ったが、基板
の表面のエツチングは直流電力を用いたスパッタリング
法でも何等構わず、更にはスパッタリング法以外にも、
イオンミーリング法等でも何等構わなく本実施例と同様
の特性を有する磁気ディスクを作製できる。
Furthermore, in this example, the surface of the substrate was etched by a sputtering method using high-frequency power, but the surface of the substrate may be etched by any sputtering method using DC power. Besides,
A magnetic disk having characteristics similar to those of this embodiment can be manufactured by any method such as ion milling.

更に、本実施例では非磁性の基板にNiPをメツキした
Af1Mq合金基板を用いたが、非磁性の基板は、アル
マイト処理したへ!基板やプラヌチック基板としてもよ
い。また、本実施例では、磁性膜にCoNiCr合金、
非磁性下地膜にOrを用いたが、磁性膜はCoNiCr
合金以外にもCoNi。
Furthermore, in this example, an Af1Mq alloy substrate in which a non-magnetic substrate was plated with NiP was used, but the non-magnetic substrate was anodized! It may also be a substrate or a planutic substrate. In addition, in this example, the magnetic film includes a CoNiCr alloy,
Or was used for the non-magnetic base film, but the magnetic film was CoNiCr.
In addition to alloys, CoNi.

CoCr 、 CoCr Ta 、 CoNi P を
等の合金でも構わないし、非磁性下地膜はCr以外にM
o、W、あるいはそれらを含む合金としてもよい。
Alloys such as CoCr, CoCrTa, CoNiP, etc. may be used, and the nonmagnetic underlayer may be made of M in addition to Cr.
O, W, or an alloy containing them may be used.

発明の効果 以上の実施例の説明からも明らかなように本発明は、基
板の表面にテクスチャが施された非磁性基板の表面にエ
ツチングを施し、基板の表面に残留している有機物の付
着物、いわゆる洗浄残シを除去して極めて清浄になった
基板を酸素雰囲気下に置いて、基板の表面のエツチング
の際に除去された基板の表面の酸化層を再生した後に、
非磁性下地膜や磁性膜及び保護膜を連続して成膜して磁
気ディスクを製造する方法あるいは基板の表面にテクス
チャが施された非磁性基板の表面に、酸素雰囲気下でエ
ツチングを施し、基板の表面に酸化層を消失させる事な
く基板の表面に残留している有機物の付着物、いわゆる
洗浄残りを除去して極めて清浄にした徒に、非磁性下地
膜や磁性膜及び保護膜を連続して成膜して磁気ディスク
を製造する方法によシ、優れた磁気特性を有して高密度
な磁気記録ができ、基板と膜との付着力が強く、しかも
膜は基板上に均質に形成されて機械特性や耐環境性にも
優れた磁気ディスクの製造装置とその製造方法を実現で
きるものである。
Effects of the Invention As is clear from the description of the embodiments above, the present invention etches the surface of a non-magnetic substrate with a textured surface to eliminate organic matter deposits remaining on the surface of the substrate. After removing the so-called cleaning residue and placing the extremely clean substrate in an oxygen atmosphere to regenerate the oxide layer on the surface of the substrate that was removed during etching of the surface of the substrate,
A method of manufacturing a magnetic disk by successively forming a non-magnetic base film, a magnetic film, and a protective film, or etching the surface of a non-magnetic substrate with a texture in an oxygen atmosphere to form a substrate. After removing the organic deposits, so-called cleaning residue, remaining on the surface of the substrate without eliminating the oxide layer on the surface of the substrate, the non-magnetic base film, magnetic film, and protective film are continuously applied. This method of manufacturing magnetic disks by depositing a film on the substrate has excellent magnetic properties, enables high-density magnetic recording, has strong adhesion between the substrate and the film, and is formed uniformly on the substrate. Accordingly, it is possible to realize a manufacturing apparatus and method for manufacturing a magnetic disk having excellent mechanical properties and environmental resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の磁気ディスクの製造装置の構
成図、第2図は表面処理室の構成の概念図、第3図は本
発明の実施例の磁気ディスクの部分断面図、第4図は従
来の磁気ディスクの製造装置の構成図である。 1・・・・・・搬入室、2・・・・・・表面処理室、3
・・・・・・基板加熱室、4・・・・・・成膜室、6・
・・・・・搬出室、6・・・・・・真空ポンプ、7・・
・・・・真空ゲージ、8・・・・・・高周波電源、9・
・・・・・アルゴンガスの導入系、10・・・・・・酸
素ガスの導入系、11.13,14・・・・・・パルプ
、12・・・・・・オリアイス、16.16・・・・・
・流量計、17・・・・・・キャリア、18・・・・・
・A I Mq合金基板、19・・・・・・NiP  
合金膜、2o・・・・・・Cr下地膜、21・・・・・
・CoNiCr 磁性膜、22・・・・・・C表面保護
膜。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名!@
 1 図
FIG. 1 is a configuration diagram of a magnetic disk manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a conceptual diagram of the configuration of a surface treatment chamber, and FIG. 3 is a partial sectional view of a magnetic disk according to an embodiment of the present invention. FIG. 4 is a block diagram of a conventional magnetic disk manufacturing apparatus. 1... Loading room, 2... Surface treatment room, 3
...Substrate heating chamber, 4... Film forming chamber, 6.
...Export room, 6...Vacuum pump, 7...
...Vacuum gauge, 8...High frequency power supply, 9.
... Argon gas introduction system, 10 ... Oxygen gas introduction system, 11.13, 14 ... Pulp, 12 ... Oliice, 16.16.・・・・・・
・Flowmeter, 17...Carrier, 18...
・A I Mq alloy substrate, 19...NiP
Alloy film, 2o...Cr base film, 21...
・CoNiCr magnetic film, 22...C surface protection film. Name of agent: Patent attorney Shigetaka Awano and 1 other person! @
1 figure

Claims (4)

【特許請求の範囲】[Claims] (1)磁気ディスクの製造装置であって、基板の表面に
エッチングを施した後、前記基板を酸素雰囲気下に置く
機構を備えた磁気ディスクの製造装置。
(1) A magnetic disk manufacturing apparatus comprising a mechanism for etching the surface of a substrate and then placing the substrate in an oxygen atmosphere.
(2)磁気ディスクの製造装置であって、基板の表面を
酸素雰囲気下でエッチングする機構を備えた磁気ディス
クの製造装置。
(2) A magnetic disk manufacturing apparatus, which is equipped with a mechanism for etching the surface of a substrate in an oxygen atmosphere.
(3)磁気ディスクの製造方法であって、基板の表面に
エッチングを施すこと、次いで基板を酸素雰囲気下に置
くことを用いた磁気ディスクの製造方法。
(3) A method for manufacturing a magnetic disk, which includes etching the surface of a substrate and then placing the substrate in an oxygen atmosphere.
(4)磁気ディスクの製造方法であって、基板の表面を
酸素雰囲気下でエッチングをすることを用いた磁気ディ
スクの製造方法。
(4) A method for manufacturing a magnetic disk, the method using etching the surface of a substrate in an oxygen atmosphere.
JP15097790A 1990-06-08 1990-06-08 Device and method for manufacturing magnetic disk Pending JPH0442437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15097790A JPH0442437A (en) 1990-06-08 1990-06-08 Device and method for manufacturing magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15097790A JPH0442437A (en) 1990-06-08 1990-06-08 Device and method for manufacturing magnetic disk

Publications (1)

Publication Number Publication Date
JPH0442437A true JPH0442437A (en) 1992-02-13

Family

ID=15508590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15097790A Pending JPH0442437A (en) 1990-06-08 1990-06-08 Device and method for manufacturing magnetic disk

Country Status (1)

Country Link
JP (1) JPH0442437A (en)

Similar Documents

Publication Publication Date Title
US5679431A (en) Sputtered carbon overcoat in a thin-film medium and sputtering method
US5066552A (en) Low noise thin film metal alloy magnetic recording disk
US20040247941A1 (en) Granular perpendicular media with surface treatment for improved magnetic properties and corrosion resistance
KR100418640B1 (en) Magnetic recording medium and its manufacturing method
US20050060874A1 (en) Method for processing work piece including magnetic material and method for manufacturing magnetic recording medium
JP3481252B2 (en) Magnetic recording medium and method of manufacturing the same
WO2000074042A1 (en) Magnetic recording medium and production method therefor and magnetic recording device
TW512323B (en) Method of manufacturing thin-film magnetic recording medium
JPH0442437A (en) Device and method for manufacturing magnetic disk
WO1996027877A1 (en) Magnetic recording medium and method of manufacturing the same
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JP3724814B2 (en) Magnetic recording medium
JP2010108587A (en) Method for producing magnetic transfer master carrier, magnetic transfer master carrier and magnetic transfer method
JP2009146557A (en) Master carrier for magnetic transfer and magnetic transfer method using the same
JP2010086606A (en) Magnetic transfer method and magnetic recording medium
JP3969727B2 (en) Magnetic disk and magnetic recording apparatus
JP3649416B2 (en) Method for manufacturing magnetic recording medium
Zhang et al. Nanoscale protection for CoCrPt thin film magnetic recording media
JPH08212531A (en) Magnetic recording medium and production thereof
JP2516379B2 (en) Magnetic recording media
JP2007184099A (en) Magnetic disk
JPH0415528B2 (en)
JP2000123344A (en) Magnetic recording medium, its production and magnetic disk device
WO1999045537A1 (en) Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same
KR20010005789A (en) Magnetic recording medium