JPH0442413B2 - - Google Patents

Info

Publication number
JPH0442413B2
JPH0442413B2 JP59065153A JP6515384A JPH0442413B2 JP H0442413 B2 JPH0442413 B2 JP H0442413B2 JP 59065153 A JP59065153 A JP 59065153A JP 6515384 A JP6515384 A JP 6515384A JP H0442413 B2 JPH0442413 B2 JP H0442413B2
Authority
JP
Japan
Prior art keywords
resin
polyphenylquinoxaline
fiber
general formula
good
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59065153A
Other languages
Japanese (ja)
Other versions
JPS60208329A (en
Inventor
Kuniaki Tobukuro
Nobuyuki Odagiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6515384A priority Critical patent/JPS60208329A/en
Publication of JPS60208329A publication Critical patent/JPS60208329A/en
Publication of JPH0442413B2 publication Critical patent/JPH0442413B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、優れた耐熱、耐水性と機械的特性を
有する成形性の優れたポリフエニルキノキサリン
樹脂の製造方法に関する。さらに詳しくは、機械
的特性が良好でかつ耐熱性の良い炭素繊維強化複
合体のマトリツクス樹脂として好適な、ポリフエ
ニルキノキサリン樹脂の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a polyphenylquinoxaline resin having excellent heat resistance, water resistance and mechanical properties and excellent moldability. More specifically, the present invention relates to a method for producing a polyphenylquinoxaline resin that has good mechanical properties and good heat resistance and is suitable as a matrix resin for carbon fiber reinforced composites.

〔従来技術〕[Prior art]

ポリフエニルキノキサリン樹脂は耐熱性、耐水
性が優れていることから古くから研究されている
が、ポリイミド樹脂に比べて実用化が遅れてい
る。ポリフエニルキノキサリン樹脂の実用化が遅
れている最大の原因は、ポリフエニルキノキサリ
ン樹脂の成形が困難なことにある。
Polyphenylquinoxaline resins have been studied for a long time due to their excellent heat resistance and water resistance, but their practical application has been slower than that of polyimide resins. The biggest reason why the practical application of polyphenylquinoxaline resin has been delayed is that polyphenylquinoxaline resin is difficult to mold.

一般に高耐熱性の樹脂は、ガラス転移温度並び
に融点が高く、かつ溶融樹脂の流動性が悪いため
成形が困難な樹脂が多い。そのため高耐熱性樹脂
の成形は高温、高圧下で行なわれるが、形状の複
雑な成形品や複合材料を成形するためには、樹脂
の流動性の良いことが不可欠である。特に、繊維
強化複合材料のマトリツクス樹脂として使用する
場合には、強化繊維中に樹脂が完全に含浸される
必要があるため、成形時の樹脂の流動性が極めて
重要な特性となつている。さらに高耐熱性樹脂の
成形は高温で行なうため、成形品には大きな熱残
留歪みが生成する。特に繊維強化複合材料の場合
には強化繊維と樹脂との熱膨脹差のために成形品
に発生する熱残留歪みも大きいので、マトリツク
ス樹脂の伸びが小さい場合には成形品にクラツク
が生成することがある。そのため高耐熱性樹脂と
しては成形時の樹脂の流動性が良好なことと同時
に、樹脂の伸びの大きいことが要求されている。
In general, many highly heat-resistant resins have high glass transition temperatures and melting points, and are difficult to mold due to poor fluidity of the molten resin. Therefore, molding of highly heat-resistant resins is carried out at high temperatures and high pressures, but in order to mold molded products with complex shapes or composite materials, it is essential that the resin has good fluidity. In particular, when used as a matrix resin for fiber-reinforced composite materials, the resin must be completely impregnated into the reinforcing fibers, so the fluidity of the resin during molding is an extremely important characteristic. Furthermore, since molding of highly heat-resistant resin is carried out at high temperatures, large thermal residual strains are generated in the molded product. In particular, in the case of fiber-reinforced composite materials, the thermal residual strain that occurs in the molded product due to the difference in thermal expansion between the reinforcing fibers and the resin is large, so if the elongation of the matrix resin is small, cracks may occur in the molded product. be. Therefore, highly heat-resistant resins are required to have good resin fluidity during molding and at the same time have high elongation.

ポリフエニルキノキサリン樹脂が共重合によつ
て改質する試みはP.M.Hergenrother(Appl.
Polym.Symposium.22,PP57−76(1973)によつ
て試みられている。P.M.Hergenrotherは、ジア
ミノベンチジンとビスフエニルグリオキサリルベ
ンゼンとから得られる一般式〔〕で表わされる
ポリフエニルキノキサリン樹脂の成形性向上につ
いて研究した結果、3,3′4,4′−テトラアミノ
ベンゾフエノンとビスグリオキサリルベンゼンと
から得られる一般式〔〕で表わされるポリフエ
ニルキノキサリン樹脂上とのブロツク共重合樹脂
が、耐熱性が良好でかつ成形性が改良されること
を報告している。
An attempt to modify polyphenylquinoxaline resin by copolymerization was made by PM Hergenrother (Appl.
An attempt was made by Polym.Symposium.22, PP57-76 (1973). As a result of research into improving the moldability of polyphenylquinoxaline resin represented by the general formula [] obtained from diaminobenzidine and bisphenylglyoxalylbenzene, PMHergenrother developed 3,3'4,4'-tetraaminobenzophenol. It has been reported that a block copolymer resin of polyphenylquinoxaline resin represented by the general formula [] obtained from non and bisglyoxalylbenzene has good heat resistance and improved moldability.

しかし、かかる共重合ポリフエニルキノキサリ
ン樹脂は、耐熱性は良好であるが、原料モノマと
して使用しているテトラアミンの反応性が良好な
ため、重合中に副反応によつて架橋構造を生成し
やすいため(P.M.Hergenrother.J.Appl.Polym.
Sci.,18,PP1779−1791(1974))成形時の樹脂
の流動性が悪く、かつ樹脂の可撓性が悪いため繊
維強化複合材料、特に炭素繊維強化複合材料用マ
トリツクス樹脂として用いた場合機械的特性の優
れた複合材料が得られないという問題点を有して
いた。特に、近年炭素繊維の強度が著しく向上し
たにもかかわらず、前記共重合ポリフエニルキノ
キサリン樹脂をマトリツクス樹脂とする複合材料
は、ほとんど強度の向上が認められないという問
題点を有していることを確認した。
However, although such copolymerized polyphenylquinoxaline resin has good heat resistance, the tetraamine used as a raw material monomer has good reactivity, so it is easy to generate a crosslinked structure due to side reactions during polymerization. (PMHergenrother.J.Appl.Polym.
Sci., 18, PP1779-1791 (1974)) Due to the poor flowability of the resin during molding and the poor flexibility of the resin, when used as a matrix resin for fiber-reinforced composite materials, especially carbon fiber-reinforced composite materials. The problem was that a composite material with excellent physical properties could not be obtained. In particular, although the strength of carbon fibers has improved significantly in recent years, composite materials using the copolymerized polyphenylquinoxaline resin as a matrix resin have the problem that almost no improvement in strength is observed. confirmed.

〔本発明の目的〕[Object of the present invention]

そこで、本発明者等は、耐熱性及び機械的特性
に優れ、かつ成形時の樹脂の流動性の良好なポリ
フエニルキノキサリン樹脂を得ることを目的とし
て鋭意研究した結果、本発明に到達したものであ
る。
Therefore, the present inventors conducted extensive research with the aim of obtaining a polyphenylquinoxaline resin that has excellent heat resistance and mechanical properties, and has good resin fluidity during molding, and as a result, they have arrived at the present invention. be.

〔本発明の構成〕[Configuration of the present invention]

すなわち、本発明は、 (1) 一般式〔〕で表わされる3,3′4,4′−テ
トラアミノジフエニルスルホンと、一般式
〔〕及び〔〕で表わされるビスフエニルグ
リオキサリル化合物とを、一般式〔〕と
〔〕のモル比を85/15〜15/85として共重合
することを特徴とするポリフエニルキノキサリ
ン樹脂の製造方法 に関するものである。
That is, the present invention provides (1) a 3,3'4,4'-tetraaminodiphenylsulfone represented by the general formula [] and a bisphenylglyoxalyl compound represented by the general formulas [] and []. , a method for producing a polyphenylquinoxaline resin characterized by copolymerizing the general formula [] and [] at a molar ratio of 85/15 to 15/85. It is related to.

本発明の目的とするポリフエニルキノキサリン
樹脂を製造する際に、一般式〔〕で表わされる
グリオキサリル化合物と一般式〔〕で表わされ
るグリオキサリル化合物を混合させて共重合す
る。その場合の混合比率は85/15〜15/85の範囲
であるが、より好ましくは80/20〜25/75が望ま
しい。一般式〔〕で表わされるグリオキサリル
化合物の添加量が増えるほど樹脂の可撓性や成形
性は向上するが逆に耐熱性が低下する。そのため
耐熱性樹脂として必要な性能を保持するために
は、一般式〔〕で表わされるグリオキサリル化
合物の添加量は75モル%を越えてはならない。一
方、添加量が少なすぎると流動性や可撓性の改善
が不十分なため、一般式〔〕で表わされるグリ
オキサリル化合物の添加量は15モル%以上でなけ
ればならない。また本発明の製造方法によつて得
られる共重合ポリフエニルキノキサリン樹脂は、
ブロツク共重合体でもランダム共重合体でも上述
効果、すなわち、流動性と可撓性に差異はない。
When producing the polyphenylquinoxaline resin which is the object of the present invention, a glyoxalyl compound represented by the general formula [] and a glyoxalyl compound represented by the general formula [] are mixed and copolymerized. In that case, the mixing ratio is in the range of 85/15 to 15/85, more preferably 80/20 to 25/75. As the amount of the glyoxalyl compound represented by the general formula [] increases, the flexibility and moldability of the resin improve, but the heat resistance decreases. Therefore, in order to maintain the necessary performance as a heat-resistant resin, the amount of the glyoxalyl compound represented by the general formula [] must not exceed 75 mol%. On the other hand, if the amount added is too small, the improvement in fluidity and flexibility will be insufficient, so the amount of the glyoxalyl compound represented by the general formula [] must be 15 mol % or more. Furthermore, the copolymerized polyphenylquinoxaline resin obtained by the production method of the present invention is
Whether it is a block copolymer or a random copolymer, there is no difference in the above-mentioned effects, ie, fluidity and flexibility.

次に本発明による共重合ポリフエニルキノキサ
リン樹脂は優れた流動性と可撓性を活かして接着
剤や成形材料として好適なほか、繊維強化複合材
料用マトリツクス樹脂として優れた特性を有して
いる。特にマトリツクス樹脂として使用する場合
には、あらかじめ重合して得られた共重合樹脂を
用いても良いし、原料モノマから直接現場重合法
(in situ polymerization of monomer
reactants,たとえばT.T.Serafini et al.,J.
Appl.Polym.Sci.,Vol17,P3235−3238(1973))
でプリプレグ化することもできる。
Next, the copolymerized polyphenylquinoxaline resin according to the present invention is suitable as an adhesive or a molding material due to its excellent fluidity and flexibility, and also has excellent properties as a matrix resin for fiber-reinforced composite materials. In particular, when used as a matrix resin, a copolymer resin obtained by polymerization in advance may be used, or a copolymer resin obtained by direct polymerization of raw material monomers (in situ polymerization of monomer resin) may be used.
reactants, such as TTSerafini et al., J.
Appl.Polym.Sci., Vol17, P3235-3238 (1973))
It can also be made into prepreg.

さらに本発明による共重合ポリフエニルキノキ
サリン樹脂を繊維強化複合材料用マトリツクス樹
脂として用いる場合には、強化繊維として炭素繊
維を用いる場合特に高強度の炭素繊維の場合にも
つとも優れた効果が得られるが、強化繊維として
は炭素繊維の他に有機繊維やガラス繊維など、他
の繊維と混合使用してもさしつかえないし、繊維
の形態も繊維、織物、編物、マツト、カツトフア
イバーなどいずれの形態であつてもさしつかえな
い。
Furthermore, when the copolymerized polyphenylquinoxaline resin of the present invention is used as a matrix resin for fiber-reinforced composite materials, excellent effects can be obtained when carbon fibers are used as the reinforcing fibers, especially when high-strength carbon fibers are used. In addition to carbon fiber, the reinforcing fiber may be mixed with other fibers such as organic fiber or glass fiber, and the fiber may be in any form such as fiber, woven fabric, knitted fabric, matte fiber, or cut fiber. I can't help it.

〔本発明の効果〕[Effects of the present invention]

本発明は、成形時の樹脂の流動性はテトラアミ
ンに3,3′,4,4′−テトラアミノジフエニルス
ルホン(一般式)を用い、かつビスグリオキサ
リル化合物として一般式〔〕で表わされるビス
フエニルグリオキサリルベンゼンと、一般式
〔〕で表わされるビスフエニルグリオキサリル
化合物とを用いて共重合することによつて、樹脂
の可撓性と流動性を改善するものである。
The present invention uses 3,3',4,4'-tetraaminodiphenylsulfone (general formula) as the tetraamine to improve the fluidity of the resin during molding, and bisglyoxalyl compound represented by the general formula []. The flexibility and fluidity of the resin are improved by copolymerizing phenylglyoxalylbenzene and a bisphenylglyoxalyl compound represented by the general formula [].

すなわち、かくして得られたポリフエニルキノ
キサリン樹脂は、優れた耐熱性及び機械的特性を
有し、かつ成形時の樹脂の流動性が良好なため、
成形用樹脂、特に繊維強化複合材料用マトリツク
ス樹脂として好適な樹脂である。
That is, the polyphenylquinoxaline resin thus obtained has excellent heat resistance and mechanical properties, and has good fluidity during molding.
This resin is suitable as a molding resin, especially as a matrix resin for fiber-reinforced composite materials.

以下実施例によつて本発明の内容をさらに詳細
に説明する。
The contents of the present invention will be explained in more detail below with reference to Examples.

実施例 1 3,3′,4,4′−テトラアミノジフエニルスル
ホン1.0モルに対し、P−ビス(フエニルグリオ
キサリル)ベンゼンを0.6モルと4,4′−ビス
(フエニルグリオキサリル)ジフエニルエーテル
を0.4モルをm−クレゾールに溶解し、室温で3
時間反応させた。得られた反応溶液をガラス板上
に注型し、加熱乾燥して溶剤を完全に除去してポ
リフエニルキノキサリン樹脂フイルムを作成し
た。得られたフイルムの物性を測定した結果、引
張強度13.8Kg/mm2、引張弾性率300Kg/mm2、引張
破断伸び15.0%と良好な物性を有していた。
Example 1 1.0 mole of 3,3',4,4'-tetraaminodiphenylsulfone, 0.6 mole of P-bis(phenylglyoxalyl)benzene and 4,4'-bis(phenylglyoxalyl)diphenyl sulfone. Dissolve 0.4 mole of enyl ether in m-cresol and
Allowed time to react. The obtained reaction solution was cast onto a glass plate, and the solvent was completely removed by heating and drying to prepare a polyphenylquinoxaline resin film. As a result of measuring the physical properties of the obtained film, it had good physical properties such as tensile strength of 13.8 Kg/mm 2 , tensile modulus of elasticity of 300 Kg/mm 2 , and tensile elongation at break of 15.0%.

次に、反応によつて得られたポリフエニルキノ
キサリン樹脂のm−クレゾール溶液を大量のメチ
ルアルコールに投入し、沈澱した樹脂を別、真
空乾燥して、ポリフエニルキノキサリン樹脂粉末
を得た。得られた粉末を金型に充填し、250℃30
Kg/cm2の条件でパイプを成形したところ、ボイド
やクラツクのない良好な成形品が得られ、優れた
成形性を有していることが分つた。
Next, the m-cresol solution of the polyphenylquinoxaline resin obtained by the reaction was poured into a large amount of methyl alcohol, and the precipitated resin was separated and dried under vacuum to obtain a polyphenylquinoxaline resin powder. Fill the obtained powder into a mold and heat it at 250℃30
When a pipe was molded under conditions of Kg/cm 2 , a good molded product with no voids or cracks was obtained, and it was found that it had excellent moldability.

実施例 2 実施例1で得られたポリフエニルキノキサリン
樹脂粉末をNMPに溶解し、東レ株式会社製“ト
レカ”T400を用いてドラムワインド法でプリプ
レグを作成した。プリプレグ中の樹脂の含有量は
32.8%で、炭繊維は250g/m2であつた。そこで
得られたプリプレグを長さ30cm、幅20cmに切断
し、金型に挿入して250℃、圧力30Kg/mm2の条件
でプレス成形した後、320℃で2時間アフターキ
ユアーして成形品を得た。得られた成形品中の炭
素繊維の体積含有量は60.9%で、DSC法で測定し
たガラス転移温度は35℃で優れた耐熱性を有して
いることが分つた。
Example 2 The polyphenylquinoxaline resin powder obtained in Example 1 was dissolved in NMP, and a prepreg was produced by a drum winding method using Torayca T400 manufactured by Toray Industries, Inc. The resin content in prepreg is
The carbon fiber content was 32.8% and 250 g/m 2 . The prepreg obtained was cut into pieces of 30 cm long and 20 cm wide, inserted into a mold, press-molded at 250°C and a pressure of 30 kg/ mm2 , and then after-cured at 320°C for 2 hours to form a molded product. I got it. The volume content of carbon fiber in the obtained molded product was 60.9%, and the glass transition temperature measured by the DSC method was 35°C, indicating that it had excellent heat resistance.

次に得られた成形品からASTM,D−638並び
にD−790に準じて試験片を切出して引張特性並
びに曲げ特性の測定を行なつたところ、引張強度
190Kg/m2、引張弾性率14.6t/mm2、曲げ強度203
Kg/mm2、曲げ弾性率14.3t/mm2で優れた機械的特
性を有していた。
Next, test pieces were cut out from the molded product obtained in accordance with ASTM, D-638 and D-790, and the tensile and bending properties were measured.
190Kg/m 2 , tensile modulus 14.6t/mm 2 , bending strength 203
It had excellent mechanical properties with Kg/mm 2 and flexural modulus of 14.3 t/mm 2 .

比較例 1 等モルの3,3′,4,4′−テトラアミノジフエ
ニルスルホンと、4,4′−ビス(フエニルグリオ
キサリル)ジフエニルエーテルをm−クレゾール
に溶解し、室温で3時間反応させた後、反応溶液
を大量のメチルアルコールに投入し、沈澱した樹
脂を別、真空乾燥してポリフエニルキノキサリ
ン樹脂の粉末を得た。
Comparative Example 1 Equimolar amounts of 3,3',4,4'-tetraamino diphenyl sulfone and 4,4'-bis(phenylglyoxalyl) diphenyl ether were dissolved in m-cresol, and the solution was dissolved at room temperature for 3 hours. After the reaction, the reaction solution was poured into a large amount of methyl alcohol, and the precipitated resin was separated and dried under vacuum to obtain a polyphenylquinoxaline resin powder.

得られた粉末をNMPに溶解し、実施例2と同
様の方法で炭素繊維強化複合材料を成形した。た
だし、成形温度25℃では良好な成形品が得られな
かつたので、成形温度のみ320℃に変更し、その
他の条件は実施例2と同一条件で行なつた。得ら
れた成形品中の炭素繊維の体積含有量は60.5%
で、DSC法で測定したガラス転移温度は290℃
で、耐熱性は実施例2と同様の方法で測定した引
張強度は166Kg/mm2、引張弾性率14.5t/mm2、曲げ
強度182Kg/mm2、曲げ弾性率14.2t/mm2で実施例2
に比べて機械的特性も劣つていた。
The obtained powder was dissolved in NMP, and a carbon fiber reinforced composite material was molded in the same manner as in Example 2. However, since a good molded product could not be obtained at a molding temperature of 25°C, only the molding temperature was changed to 320°C, and the other conditions were the same as in Example 2. The volume content of carbon fiber in the obtained molded product is 60.5%
The glass transition temperature measured by DSC method is 290℃.
The heat resistance was measured using the same method as in Example 2.The tensile strength was 166Kg/mm 2 , the tensile modulus was 14.5t/mm 2 , the bending strength was 182Kg/mm 2 , and the bending modulus was 14.2t/mm 2 . 2
The mechanical properties were also inferior to that of .

比較例 2 ジアミノベンチジン0.25モルと3,3′,4,
4′−テトラアミノベンゾフエノン0.75モル及びP
−ビス(フエニルグリオキサリル)ベンゼン1.0
モルの割合でm−クレゾールに溶解した他は比較
例1と同様の方法で共重合ポリフエニルキノキサ
リン樹脂粉末を合成した。得られた粉末をNMP
に溶解し、成形温度を350℃とした他は比較例1
と同様の方法で成形品を作成した。得られた成形
品中の炭素繊維の体積含有量は60.1%で、DSC法
で測定したガラス転移温度は327℃で耐熱性は良
好であつた。次に比較例1と同様の方法で測定し
た引張強度は140Kg/mm2、引張弾性率14.3t/mm2
曲げ強度152Kg/mm2、曲げ弾性率14.1t/mm2で実施
例2に比べて著しく劣つていた。
Comparative example 2 0.25 mol of diaminobenzidine and 3,3',4,
0.75 mol of 4'-tetraaminobenzophenone and P
-Bis(phenylglyoxalyl)benzene 1.0
A copolymerized polyphenylquinoxaline resin powder was synthesized in the same manner as in Comparative Example 1 except that it was dissolved in m-cresol at a molar ratio. The obtained powder is NMP
Comparative Example 1 except that the molding temperature was 350°C.
A molded product was created using the same method as above. The volume content of carbon fiber in the obtained molded article was 60.1%, the glass transition temperature measured by DSC method was 327°C, and the heat resistance was good. Next, the tensile strength measured in the same manner as Comparative Example 1 was 140Kg/mm 2 , the tensile modulus was 14.3t/mm 2 ,
It was significantly inferior to Example 2, with a bending strength of 152 Kg/mm 2 and a bending modulus of 14.1 t/mm 2 .

Claims (1)

【特許請求の範囲】 1 一般式〔〕で表わされる3,3′,4,4′−
テトラアミノジフエニルスルホンと、一般式
〔〕及び〔〕で表わされるビスフエニルグリ
オキサリル化合物とを、一般式〔〕と〔〕の
モル比を85/15〜15/85として共重合することを
特徴とするポリフエニルキノキサリン樹脂の製造
方法。
[Claims] 1 3,3',4,4'- represented by the general formula []
Tetraaminodiphenylsulfone and bisphenylglyoxalyl compounds represented by the general formulas [] and [] are copolymerized with the molar ratio of the general formulas [] and [] being 85/15 to 15/85. A method for producing a characteristic polyphenylquinoxaline resin.
JP6515384A 1984-04-03 1984-04-03 Polyphenylquinoxaline resin having improved moldability Granted JPS60208329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6515384A JPS60208329A (en) 1984-04-03 1984-04-03 Polyphenylquinoxaline resin having improved moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6515384A JPS60208329A (en) 1984-04-03 1984-04-03 Polyphenylquinoxaline resin having improved moldability

Publications (2)

Publication Number Publication Date
JPS60208329A JPS60208329A (en) 1985-10-19
JPH0442413B2 true JPH0442413B2 (en) 1992-07-13

Family

ID=13278647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6515384A Granted JPS60208329A (en) 1984-04-03 1984-04-03 Polyphenylquinoxaline resin having improved moldability

Country Status (1)

Country Link
JP (1) JPS60208329A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661850A (en) * 1970-07-16 1972-05-09 John K Stille Quinoxaline polymers,methods of making same and compositions thereof
JPS5761048A (en) * 1980-06-23 1982-04-13 Ethyl Corp Polyethylene terephthalate forming composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661850A (en) * 1970-07-16 1972-05-09 John K Stille Quinoxaline polymers,methods of making same and compositions thereof
JPS5761048A (en) * 1980-06-23 1982-04-13 Ethyl Corp Polyethylene terephthalate forming composition

Also Published As

Publication number Publication date
JPS60208329A (en) 1985-10-19

Similar Documents

Publication Publication Date Title
TWI540150B (en) Benzoxazine resins
US4739075A (en) Reactive end-capping agent, addition-curable quinoxaline resin oligomer and intermediate material for fiber-reinforced composite
CA2177568C (en) Melt-processible polyimides with high tg
JPS63295523A (en) Novel propenyl substituted polyhydric phenol
JPS59210931A (en) Bis-maleimido-epoxy composition and prepreg
SU867317A3 (en) Thermoresistant thermosetting composition
JPH0442413B2 (en)
CA3183897C (en) Compositions comprising cyanate ester resins and substituted bisimides
JPH048464B2 (en)
JPH04227912A (en) New curable composition
Thompson et al. Phenylethynyl terminated arylene ether oxadiazole and triazole oligomers and their cured polymers
Stoessel et al. High‐performance composites from polyimide matrix resins that utilize a cross linking reaction of biphenylene end‐caps with acetylene units in the main chain
JPH0547565B2 (en)
JPS63130632A (en) Addition-curable polyquinoxaline resin composition and intermediate material for carbon fiber-reinforced composite material, having said composition as matrix
JPS6317853B2 (en)
EP0266708B1 (en) Cross-linked resins and production thereof
CN108409966B (en) Modified bismaleimide resin suitable for resin transfer molding process and preparation method thereof
JPH03418B2 (en)
JPH0149380B2 (en)
CN111944146B (en) Poly-triazole resin containing polyphenyl, composite material thereof and preparation method
USRE33079E (en) Homopolymerization of acetylene substituted polyimide polymers
JPH02269124A (en) Polyphenylquinoxaline resin prepolymer
JP3342709B2 (en) Epoxy resin composition and prepreg therefrom
JPH037206B2 (en)
JPH07224121A (en) Thermosetting resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term