JPH0442369B2 - - Google Patents

Info

Publication number
JPH0442369B2
JPH0442369B2 JP63055556A JP5555688A JPH0442369B2 JP H0442369 B2 JPH0442369 B2 JP H0442369B2 JP 63055556 A JP63055556 A JP 63055556A JP 5555688 A JP5555688 A JP 5555688A JP H0442369 B2 JPH0442369 B2 JP H0442369B2
Authority
JP
Japan
Prior art keywords
insulin
krill
test
glucose
results
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63055556A
Other languages
Japanese (ja)
Other versions
JPH01228918A (en
Inventor
Michitoku Kubo
Reiko Matsuda
Kyoko Koga
Masahiro Makuta
Mikio Satake
Shunichi Takane
Yoshuki Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissui Corp
Original Assignee
Nippon Suisan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Suisan Kaisha Ltd filed Critical Nippon Suisan Kaisha Ltd
Priority to JP63055556A priority Critical patent/JPH01228918A/en
Publication of JPH01228918A publication Critical patent/JPH01228918A/en
Publication of JPH0442369B2 publication Critical patent/JPH0442369B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、オキアミの水性抽出物を有効成分と
する抗糖尿病剤に関する。 〔従来の技術及びその課題〕 糖尿病は、インスリン依存型のタイプ型糖尿
病と非依存型のタイプ型糖尿病に大別される。
型は食生活の飽食化と社会の高令化に伴い近年
急増しておりまた型も通常若年期で発症しイン
スリンの使用が生涯必要とされ、共に我国におけ
る重大な医療問題になつている。型、型糖尿
病を問わず、インスリン製剤は有効な治療効果を
示すが、長期あるいは大量の投与によりインスリ
ン抗体の産生に起因するインスリンシヨツクやイ
ンスリン抵抗性が発現するという問題がある。そ
のため、インスリン様作用あるいはインスリン放
出活性化作用を有し、かつ長期投与においても副
作用上の問題がなく、単独使用で有効な、あるい
はインスリンと併用することによりインスリンの
使用量を著しく減少させることのできる薬剤の開
発が要望されている。 古来、糖尿病に有効とされる漢薬あるいは各種
食品が数多く伝承されている。また本発明者ら
も、各種の食肉類、魚介類にインスリン様作用及
びインスリン放出活性化作用が比較的広く存在す
ることを認めたが〔薬学雑誌、107、869(1987)〕、
これらは何れも活性が低く、また物質として特定
できず、医薬品として提供されるまでには至つて
いない。 〔課題を解決するための手段〕 以上の実情に鑑み、本発明者らは長期・大量摂
取でも副作用上の問題がなく、強力なインスリン
様作用あるいはインスリン放出活性化作用を有す
る物質を得るべく日常一般に摂取される食品を探
索源として鋭意スクリーニングした結果、オキア
ミの水性抽出物がこれらの要件を満たすことを見
出し、本発明を完成した。 すなわち本発明は、オキアミから水性溶媒によ
つて抽出される分子量20000〜40000のタンパク質
を主成分とする抗糖尿病剤を提供するものであ
る。 従来、オキアミは主に蛋白質源として食糧ある
いは飼料への利用が進められ、栄養上非常に優れ
ていることが知られており、また最近では抗潰瘍
作用(特開昭58−162524号)、高血圧予防作用
(特開昭54−119017号)、抗血栓作用(特開昭57−
35512号)等の生理活性も報告されている。しか
し、オキアミの特定の成分が抗糖尿病作用を有す
ることは知られていなかつた。 本発明で使用するオキアミとしては、南氷洋で
漁獲されるEuphausia superba日本近海で漁獲さ
れるEuphausia pacifica等のEuphausia属、ある
いはThysanoessa属等いずれでも使用可能であ
り、特別な種類に限定されない。これらは漁獲さ
れたまま未凍結のもの若しくは凍結保管されたも
の、また全姿のままのもの若しくは粉砕処理した
もの等いずれも使用できる。 本発明で使用される水性溶媒としては、例えば
冷水、熱水、含水エタノール等が挙げられる。ま
た抽出方法としては特に限定されないが、例えば
オキアミをその2〜10倍量の熱水で数分間煮熟処
理した後、ろ過、遠心分離等により固形物を除去
することにより行なわれる。得られた抽出液は、
通常食塩等の塩類を含むため、電気透析、逆浸
透、限外ろ過、ゲルろ過等により可及的に脱塩の
後、凍結乾燥、噴霧乾燥等により乾燥するのが望
ましい。 かくして得られたオキアミ水性抽出物は、未精
製の段階でも強いインスリン様作用及びインスリ
ン放出活性化作用を有し、抗糖尿病剤として十分
な効力を示すが、これを更に通常のタンパク質分
離・精製工程に付すことにより得られる、分子量
20000〜40000のタンパク画分は、更に優れた抗糖
尿病作用を有し、好ましい。このタンパク質分
離・精製法としては特に制限されず、例えば塩
析、有機溶媒沈澱、イオン交換クロマトグラフイ
ー、ゲルろ過、等電点電気泳動、超遠心、限外ろ
過等の公知の方法を単独で、または組み合わせて
用いることができる。 本発明で用いられるオキアミ水性抽出物及びオ
キアミタンパク質画分は、そのままあるいは適宜
製剤用担体、賦形剤、希釈剤等と混合し、粉末、
顆粒、錠剤、カプセル、注射剤などの形態で経口
的または非経口的に投与することができる。ま
た、食品に混合し、食品形態として患者に所用量
を摂取させることも可能である。 投与量は、例えば成人の場合、オキアミタンパ
ク質画分として1日0.1〜5g、好ましくは1〜
3gが好適であるが、症状、投与ルート、年令、
体重等により増減すべきである。 〔実施例〕 以下に実施例を挙げて説明するが、本発明はこ
れらに限定されるものではない。 実施例 1 南氷洋上で漁獲されたナンキヨクオキアミ
(Euphausia superba)を連続式煮熟装置にて90
℃で10分間煮熟の後、連続式遠心分離機デカンタ
ーにて固形分を分離し、煮汁(固形分7.75%)を
得た。 これを凍結し、日本に持ち帰り解凍後、その5
Kgを電気透析装置(旭硝子社製セレミオン膜装着
実験装置)にて脱塩し、得られた脱塩液4.1Kgを
凍結乾燥して微赤色、粉末状のオキアミ熱水抽出
物(以下ESと略記する)262gを得た。ESの高
速液体クロマトグラフイー(ShodexWS−803カ
ラム)による測定結果を図1に示す。 試験例 1 ESのインスリン様作用 Moodyらの方法に準じ、インスリン様作用試
験を行なつた。Wistar系雄性ラツト(体重130−
150g)を断頭後、副睾丸脂肪組織を摘出し、細
切した。ポリエチレン製バイアルに細切した脂肪
組織20gと2.5mg/mlコラゲナーゼ
(Whorthington社、Type)をいれ、バイアル
中の空気を95%O2−5%CO2混合ガスで置換後密
栓し、37℃、160c/〓にて40分間消化した。消化
液をナイロンメツシユ(250μm)でろ過し、
Krebs−Ringer−Bicarbonate(KRB)緩衝液
〔20mMヘペス、0.55mMグルコース及び2%牛
血清アルブミン(BSA)を含む〕で3回洗浄し、
37℃で30分間静置した。KRB緩衝液で遊離脂肪
細胞を5×105個/mlに調整後、ESおよび0.4μCi
のD−〔2−3H〕グルコース〔アマシヤム・ジヤ
パン(株)、Specific activity94mCi/mg〕を添加
し、37℃で2時間インキユベートした。インキユ
ベーシヨン後、8規定H2SO40.2mlおよびトルエ
ン基調シンチレーター5mlを加え、トルエンに抽
出された総脂質の放射能を測定した。総放射能は
KRB緩衝液に0.4μCiD−〔2−3H〕−グルコース
とインスタゲル(Packard Instrument Co.Ink.)
を加え測定した。 D−〔2−3H〕−グルコースからの総脂質への
変換率は次式から求めた。 変換率(%)=A/(B−C)×100 A:総放射能 B:インキユベーシヨン後の総脂質の放射能 C:インキユベーシヨン前の総脂質の放射能 対照薬にインスリン(ブタ由来インスリン:
Sigma社製)を用いた。この結果を図2に示す。 図2より、ESは濃度依存的にD−〔2−3H〕−
グルコースの総脂質への変換を促進し、強いイン
スリン様作用を有することが認められる。 試験例 2 ESのインスリン放出活性化作用 Lacyらの方法に準じ、インスリン放出活性化
作用試験を行なつた。24時間絶食した雄性ゴール
デンハムスター(7週令)をベントバルビタール
麻酔下で総胆管にカニユレーシヨンし、10−20ml
のHanks液で膵を膨化後摘出した。摘出膵を細
切後、摘出膵1個当りコラゲナーゼ
(Whorthington社 type)5mg/2ml(15%仔
牛血清を含むHanks液)を加え、37℃で10分間
消化した。この消化液をHanks液で洗浄し、
Ficoll−Conray比重分離法により膵ラ氏島を単
離した。単離ラ氏島は、EDTA−Dispase分散法
で分散し、さらにKRB緩衝液(20mMヘペス、
5.5mMグルコース及び2%BSAを含む)で5×
105個/mlに調整後ESを添加し、37℃で2時間、
95%air−5%CO2気相下にてインキユベーシヨ
ンした。これを、2000rpmで3分間遠心分離し、
緩衝液中に放出されたインスリンをEIA法
〔MESA INSULIN TEST:MBL(株)〕にて測定
した。対照薬にグルコースを用いた。この結果を
図3に示す。 図3より、ESは濃度依存的に膵ランゲルハン
ス島からのインスリンの放出を促進することが認
められる。 試験例 3 ESの肝グリコーゲン分解抑制作用 Wistar系雄性ラツト(体重230−250g)を使
用し、肝潅流は木村らの方法に従い、insitu.flow
−through方式で行なつた。潅流液はKRB緩衝液
(PH7.4)を使用し、95%O2−5%CO2混合ガスを
バブリングしながら試験を行なつた。ESはKRB
を緩衝液に溶解し、潅流開始時よりside armか
ら潅流液中に自動添加した。流速は25ml/minで
行ない、下大静脈から排出した潅流液中のグルコ
ースを測定した。対照薬としてインスリンを用い
た。この結果を図4に示す。 図4より、ESは200μg/mlの濃度でグルコー
スの放出を有意に抑制することが認められる。 試験例 4 ESのアロキサン誘発糖尿病マウスの高血糖低
下試験 ICR系雄性マウス(体重24−26g)の尾静脈に
アロキサン60mg/Kgを静注した。2日後にマウス
眼窩より採血し、血糖値を測定した。300mg/dl
以上の血糖値を示したマウスをアロキサン糖尿病
マウスとして試験に供した。アロキサン投与5日
後にESを20及び50mg/Kg、陽性コントロールと
してトルブタミド50mg/Kgを腹腔内投与し、投与
前、投与2、4、8および12時間後にマウス眼窩
より採血し、血糖値を測定した。正常群およびコ
ントロール群は生理食塩水を腹腔内投与した。こ
の結果を表1に示す。
[Industrial Application Field] The present invention relates to an antidiabetic agent containing an aqueous krill extract as an active ingredient. [Prior art and its problems] Diabetes is broadly classified into insulin-dependent type diabetes and non-insulin-dependent type diabetes.
The number of cases of this type has increased rapidly in recent years due to the saturation of the diet and the aging of society, and this type also usually develops at a young age and requires lifelong insulin use, both of which have become serious medical problems in Japan. Insulin preparations exhibit effective therapeutic effects regardless of type or type of diabetes, but there is a problem in that long-term or large-dose administration causes insulin shock and insulin resistance due to the production of insulin antibodies. Therefore, it has an insulin-like effect or an insulin release activating effect, has no side effects even during long-term administration, and is effective when used alone or can significantly reduce the amount of insulin used when used in combination with insulin. There is a need for the development of drugs that can do this. Since ancient times, many Chinese medicines and various foods have been handed down that are considered effective for diabetes. The present inventors also recognized that insulin-like and insulin release activating effects are relatively widely present in various meats and seafood [Pharmaceutical Journal, 107 , 869 (1987)],
All of these have low activity, cannot be identified as substances, and have not yet been provided as pharmaceuticals. [Means for solving the problem] In view of the above-mentioned circumstances, the inventors of the present invention aim to obtain a substance that has a strong insulin-like action or an insulin release activating action, even when ingested in large quantities over a long period of time, without causing side effects. As a result of intensive screening using commonly ingested foods as a search source, it was discovered that an aqueous extract of krill satisfies these requirements, and the present invention was completed. That is, the present invention provides an antidiabetic agent whose main component is a protein with a molecular weight of 20,000 to 40,000 extracted from krill with an aqueous solvent. Traditionally, krill has been used as food or feed mainly as a protein source, and is known to have excellent nutritional properties. Preventive effect (Japanese Patent Application Laid-open No. 119017/1983), antithrombotic effect (Japanese Patent Application Laid-Open No. 1983-119017)
35512) and other physiological activities have also been reported. However, it was not known that specific components of krill have antidiabetic effects. The krill used in the present invention can be any of the genus Euphausia, such as Euphausia superba caught in the Southern Ocean, Euphausia pacifica caught in the sea near Japan, or the genus Thysanoessa, and is not limited to any particular type. These can be used either unfrozen or frozen as they are caught, whole or crushed. Examples of the aqueous solvent used in the present invention include cold water, hot water, and aqueous ethanol. Although the extraction method is not particularly limited, it may be carried out, for example, by boiling krill in 2 to 10 times the amount of hot water for several minutes, and then removing solid matter by filtration, centrifugation, or the like. The obtained extract was
Since it usually contains salts such as common salt, it is desirable to desalt it as much as possible by electrodialysis, reverse osmosis, ultrafiltration, gel filtration, etc., and then dry it by freeze drying, spray drying, etc. The aqueous krill extract thus obtained has strong insulin-like and insulin release activating effects even in its unpurified state, and exhibits sufficient efficacy as an anti-diabetic agent. The molecular weight obtained by subjecting to
A protein fraction of 20,000 to 40,000 has an even better antidiabetic effect and is preferred. This protein separation/purification method is not particularly limited, and for example, known methods such as salting out, organic solvent precipitation, ion exchange chromatography, gel filtration, isoelectric focusing, ultracentrifugation, and ultrafiltration may be used alone. , or in combination. The aqueous krill extract and krill protein fraction used in the present invention can be used as is or mixed with appropriate pharmaceutical carriers, excipients, diluents, etc., and can be used as powder,
It can be administered orally or parenterally in the form of granules, tablets, capsules, injections, and the like. It is also possible to mix it with food and have the patient ingest the required amount in food form. For adults, the dosage is, for example, 0.1 to 5 g of krill protein fraction per day, preferably 1 to 5 g per day.
3g is suitable, but depending on symptoms, administration route, age,
The amount should be increased or decreased depending on body weight, etc. [Examples] Examples will be described below, but the present invention is not limited thereto. Example 1 Antarctic krill (Euphausia superba) caught in the Antarctic Ocean was boiled to 90% in a continuous boiling device.
After boiling at ℃ for 10 minutes, the solid content was separated using a continuous centrifuge decanter to obtain a broth (solid content 7.75%). Freeze this, bring it back to Japan, thaw it, and then
Kg was desalted using an electrodialysis device (Asahi Glass Co., Ltd.'s Selemion membrane equipped experimental device), and the resulting desalted solution (4.1 Kg) was freeze-dried to produce a slightly red, powdered krill hot water extract (hereinafter abbreviated as ES). ) 262g was obtained. Figure 1 shows the measurement results of ES by high performance liquid chromatography (ShodexWS-803 column). Test Example 1 Insulin-like action of ES An insulin-like action test was conducted according to the method of Moody et al. Wistar male rat (weight 130−
After decapitation, the epididymal adipose tissue was removed and cut into small pieces. Put 20 g of shredded adipose tissue and 2.5 mg/ml collagenase (Whorthington, Type) into a polyethylene vial, replace the air in the vial with a 95% O 2 - 5% CO 2 mixed gas, then seal the vial, and store at 37°C. Digested for 40 minutes at 160c/〓. Filter the digestive fluid through nylon mesh (250 μm),
Washed three times with Krebs-Ringer-Bicarbonate (KRB) buffer [containing 20mM Hepes, 0.55mM glucose and 2% bovine serum albumin (BSA)];
It was left standing at 37°C for 30 minutes. After adjusting free adipocytes to 5 × 10 5 cells/ml with KRB buffer, ES and 0.4 μCi
D-[ 2-3H ]glucose (Amasyam Japan Co., Ltd., specific activity 94 mCi/mg) was added and incubated at 37°C for 2 hours. After incubation, 0.2 ml of 8N H 2 SO 4 and 5 ml of toluene-based scintillator were added, and the radioactivity of the total lipids extracted in toluene was measured. The total radioactivity is
Instagel with 0.4 μCiD-[ 2-3H ]-glucose in KRB buffer (Packard Instrument Co.Ink.)
was added and measured. The conversion rate from D-[ 2-3H ]-glucose to total lipids was determined from the following equation. Conversion rate (%) = A/(B-C) x 100 A: Total radioactivity B: Radioactivity of total lipids after incubation C: Radioactivity of total lipids before incubation Insulin was used as a control drug (Pig-derived insulin:
(manufactured by Sigma) was used. The results are shown in FIG. From Figure 2, ES becomes D-[ 2-3H ]- in a concentration-dependent manner.
It is recognized that it promotes the conversion of glucose into total lipids and has a strong insulin-like effect. Test Example 2 Insulin release activation effect of ES An insulin release activation effect test was conducted according to the method of Lacy et al. Cannulate the common bile duct of a male golden hamster (7 weeks old) that has been fasted for 24 hours under bentobarbital anesthesia and inject 10-20 ml.
The pancreas was distended with Hank's fluid and then removed. After cutting the excised pancreas into small pieces, 5 mg/2 ml of collagenase (Whorthington type) (Hanks' solution containing 15% calf serum) was added per excised pancreas, and digestion was performed at 37°C for 10 minutes. Wash this digestive juice with Hanks solution,
Pancreatic islets were isolated by Ficoll-Conray gravity separation method. Isolated Lajishima was dispersed using EDTA-Dispase dispersion method, and further added to KRB buffer (20mM Hepes,
5x with 5.5mM glucose and 2% BSA)
After adjusting to 10 5 cells/ml, add ES and incubate at 37℃ for 2 hours.
Incubation was carried out under a gas phase of 95% air-5% CO2 . This was centrifuged at 2000 rpm for 3 minutes,
Insulin released into the buffer solution was measured by EIA method [MESA INSULIN TEST: MBL Co., Ltd.]. Glucose was used as a control drug. The results are shown in FIG. From FIG. 3, it is recognized that ES promotes the release of insulin from pancreatic islets of Langerhans in a concentration-dependent manner. Test Example 3 Inhibitory effect of ES on hepatic glycogenolysis Wistar male rats (weight 230-250 g) were used, and liver perfusion was performed in situ.flow according to the method of Kimura et al.
-Through method was used. KRB buffer solution (PH7.4) was used as the perfusate, and the test was conducted while bubbling a mixed gas of 95% O 2 -5% CO 2 . ES is KRB
was dissolved in a buffer solution and automatically added to the perfusate from the side arm at the start of perfusion. The flow rate was 25 ml/min, and glucose in the perfusate discharged from the inferior vena cava was measured. Insulin was used as a control drug. The results are shown in FIG. From FIG. 4, it is recognized that ES significantly suppresses glucose release at a concentration of 200 μg/ml. Test Example 4 Hyperglycemic lowering test of alloxan-induced diabetic mice in ES 60 mg/Kg of alloxan was intravenously injected into the tail vein of ICR male mice (body weight 24-26 g). Two days later, blood was collected from the mouse orbit and the blood sugar level was measured. 300mg/dl
Mice that showed blood sugar levels above were used for testing as alloxan diabetic mice. Five days after alloxan administration, 20 and 50 mg/Kg of ES and 50 mg/Kg of tolbutamide were administered intraperitoneally as a positive control. Blood was collected from the mouse orbit before administration, 2, 4, 8, and 12 hours after administration, and blood sugar levels were measured. . Normal and control groups received intraperitoneal administration of physiological saline. The results are shown in Table 1.

【表】 各値は平均値±標準誤差
有意差検定は同時間のコントロール群の血糖値に対す
るstudent t検定によつた、a) p<0.05
この結果より、ESは50mg/Kgの用量にてアロ
キサン糖尿病マウスの血糖値を4−8時間後に有
意に低下させることが分かる。 実施例 2 実施例1で用いたナンキヨクオキアミ煮汁の解
凍液1Kgを限外ろ過(日東電工社製 限外ろ過膜
NTU−325C装着)に付し、ろ液を50℃にて減圧
濃縮した。次いでセフアデツクスG−25カラムで
ゲルろ過を行ない、最初に溶出されたピークを分
取して凍結乾燥することにより、オキアミタンパ
ク質画分(以下EPと略記する)1.7gを得た。ゲ
ルろ過のパターンを図5に示す。尚、1フラクシ
ヨンは15mlである。 EPは白色、粉末状の外観で水への溶解性は良
好であり、その高速液体クロマトグラフイー(図
6)及びSDSポリアクリルアミドゲル電気泳動図
(図7)より、分子量20000〜40000であることが
認められた。また、EPは表2に示すアミノ酸で
構成されるタンパク質を主成分としているもので
あつた。
[Table] Each value is the mean ± standard error Significant difference test was performed using Student's t test for blood sugar levels of the control group at the same time, a) p<0.05
The results show that ES significantly lowers blood glucose levels in alloxan diabetic mice after 4-8 hours at a dose of 50 mg/Kg. Example 2 1 kg of the thawed liquid of the Antarctic krill broth used in Example 1 was subjected to ultrafiltration (Nitto Denko Corporation ultrafiltration membrane).
(NTU-325C equipped), and the filtrate was concentrated under reduced pressure at 50°C. Next, gel filtration was performed using a Sephadex G-25 column, and the first eluted peak was fractionated and freeze-dried to obtain 1.7 g of a krill protein fraction (hereinafter abbreviated as EP). The pattern of gel filtration is shown in FIG. Note that 1 fraction is 15 ml. EP has a white, powdery appearance with good solubility in water, and its molecular weight is 20,000 to 40,000 based on its high performance liquid chromatography (Figure 6) and SDS polyacrylamide gel electropherogram (Figure 7). was recognized. Furthermore, EP was mainly composed of proteins composed of the amino acids shown in Table 2.

【表】【table】

【表】 試験例 5 EPのインスリン放出活性化作用(in vitro) 試験例2と同様の方法で測定した結果を表3に
示す。
[Table] Test Example 5 Insulin release activation effect of EP (in vitro) Table 3 shows the results measured using the same method as Test Example 2.

【表】 この結果より、EPはハムスター単離ランゲル
ハンス島からのインスリン放出を濃度依存的に有
意に活性化させたことが認められる。 試験例 6 EPのアロキサン誘発糖尿病マウスの高血糖低
下試験 試験例4と同様の方法にて、測定した結果を表
4に示す。
[Table] These results demonstrate that EP significantly activated insulin release from isolated islets of Langerhans in hamsters in a concentration-dependent manner. Test Example 6 Hyperglycemia lowering test in EP alloxan-induced diabetic mice The results were measured in the same manner as in Test Example 4 and are shown in Table 4.

〔発明の効果〕〔Effect of the invention〕

本発明の抗糖尿病剤は、インスリン様作用及び
インスリン放出活性化作用に基づく抗糖尿病作用
を有し、糖尿病の病態改善に有効である。また、
本発明の抗糖尿病剤は、日常食品として摂取して
いるオキアミより分離、精製されたものであり、
長期連続投与による副作用等の問題がない。この
ため、インスリンとの併用により、インスリンの
投与量を減少させ、インスリンの長期大量投与に
よる弊害を低減させるのに効果的である。
The antidiabetic agent of the present invention has an antidiabetic effect based on insulin-like action and insulin release activation action, and is effective in improving the condition of diabetes. Also,
The antidiabetic agent of the present invention is isolated and purified from krill, which is ingested as a daily food.
There are no problems with side effects due to long-term continuous administration. Therefore, when used in combination with insulin, it is effective to reduce the dose of insulin and reduce the adverse effects of long-term, large-dose administration of insulin.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、オキアミ熱水抽出物の高速液体クロマ
トグラフイーを示す図、図2は、オキアミ熱水抽
出物のインスリン様作用の試験結果を示す図、図
3は、オキアミ熱水抽出物のインスリン放出活性
化作用の試験結果を示す図、図4は、オキアミ熱
水抽出物及びインスリンの肝グリコーゲン分解抑
制作用の試験結果を示す図、図5は、オキアミ熱
水抽出物のゲルろ過によるオキアミタンパク質画
分の分離を示す図、図6は、オキアミタンパク質
画分の高速液体クロマトグラフイーを示す図、図
7は、オキアミタンパク質画分のSDS−ポリアク
リルアミドゲル電気泳動図である。
Figure 1 shows the high performance liquid chromatography of the hot water extract of krill, Figure 2 shows the test results of the insulin-like action of the hot water extract of krill, and Figure 3 shows the insulin-like effect of the hot water extract of krill. Figure 4 is a diagram showing the test results of the release activation effect. Figure 4 is a diagram showing the test results of the hepatic glycogen decomposition inhibitory effect of hot water extract of krill and insulin. Figure 5 is the result of gel filtration of krill protein by hot water extract of krill. FIG. 6 is a diagram showing the separation of fractions. FIG. 6 is a diagram showing high performance liquid chromatography of the krill protein fraction. FIG. 7 is an SDS-polyacrylamide gel electropherogram of the krill protein fraction.

Claims (1)

【特許請求の範囲】[Claims] 1 オキアミから水性溶媒によつて抽出される分
子量20000〜40000のタンパク質を主成分とする抗
糖尿病剤。
1. An antidiabetic agent whose main component is protein with a molecular weight of 20,000 to 40,000 extracted from krill with an aqueous solvent.
JP63055556A 1988-03-09 1988-03-09 Antidiabetic drug Granted JPH01228918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63055556A JPH01228918A (en) 1988-03-09 1988-03-09 Antidiabetic drug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055556A JPH01228918A (en) 1988-03-09 1988-03-09 Antidiabetic drug

Publications (2)

Publication Number Publication Date
JPH01228918A JPH01228918A (en) 1989-09-12
JPH0442369B2 true JPH0442369B2 (en) 1992-07-13

Family

ID=13001974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055556A Granted JPH01228918A (en) 1988-03-09 1988-03-09 Antidiabetic drug

Country Status (1)

Country Link
JP (1) JPH01228918A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039366A4 (en) 2006-04-21 2010-01-06 Meiji Seika Kaisha Composition containing peptide as the active ingredient
JP5635765B2 (en) * 2009-12-02 2014-12-03 日本水産株式会社 Life-style related disease prevention or improvement agent
JP5998312B2 (en) * 2011-01-26 2016-09-28 岩手県 Pharmacological use of water-soluble extract of krill
CN111647095B (en) * 2020-06-30 2022-02-22 华润三九医药股份有限公司 Polysaccharide of fraxinus chinensis, preparation method and application thereof

Also Published As

Publication number Publication date
JPH01228918A (en) 1989-09-12

Similar Documents

Publication Publication Date Title
Alnaqeeb et al. Histopathological effects of garlic on liver and lung of rats
CN109287622A (en) A kind of marrow adoptive therapy the companion colorectal cancer of HIV infection and the tissue preserration liquid of decompensation small hepatocellular carcinoma in patients with cirrhosis
KR102064651B1 (en) Composition for preventing or improving diabetes mellitus comprising momrdica charantia (l.) extract, chrysanthemum zawadskii var. latilobum and paeonia lactiflora extract as an effective ingredient
WO2007007993A1 (en) Pharmaceutical composition for the prevention and treatment of liver disease comprising a lonicera caerulea l. var. edulis extract
JP3127484B2 (en) Hepatitis treatment
JPH0442369B2 (en)
US20060193895A1 (en) Additive for food and beverage, pharmaceutical composition, GLUT4 translocator, and method for translocating GLUT4
JPS62226927A (en) Blood sugar lowering agent of blue juice of wheat or such
CN1218747C (en) Medicinal use of agkistrodon acutus thrombase for treating hemorrhagic disease
JP3157728B2 (en) Diabetes treatment
Grossman et al. Effect of heparin on fate of intravenously administered fat emulsions in rats.
TWI426916B (en) Antrodia comphorata polysaccharides with hepatoprotective efficacy
EP0763360B1 (en) Use of thrombomodulin for treating liver injury
CN108685907B (en) Compound for preventing and treating kidney injury
CA2195863C (en) Therapeutic drug for endotoxin blood symptom and multi-organ failure induced thereby
KR100529991B1 (en) An extract of acanthopanax koreanum for the treatment or prevention of hepatitis or the liver protective drug
JPH029824A (en) Agent for preventing and treating damage of liver
KR0179088B1 (en) Composition containing rhodiola sachalinesis extract for prophylaxis and treatment of diabetes mellitus
JPH038361B2 (en)
JPH11209282A (en) Hepatic function-improving agent containing bergenin and its derivative as active ingredient
KR100242283B1 (en) Compositions for treating diabetes mellitus, and a process for their preparation
KR100354912B1 (en) Antidiabetic Amomum xanthoides extract and composition containing the extract as effective ingredient
KR0179087B1 (en) Composition containing rhodiola sachalinesis extract for lowering blood alcohol concentration
KR20230069853A (en) Pharmaceutical composition for preventing or treating of muscle diseases
Seno et al. Comparison of somatostatin-28 and somatostatin-14 clearance by the perfused rat liver