JPH0442303A - Double freedom degree controller - Google Patents
Double freedom degree controllerInfo
- Publication number
- JPH0442303A JPH0442303A JP14848290A JP14848290A JPH0442303A JP H0442303 A JPH0442303 A JP H0442303A JP 14848290 A JP14848290 A JP 14848290A JP 14848290 A JP14848290 A JP 14848290A JP H0442303 A JPH0442303 A JP H0442303A
- Authority
- JP
- Japan
- Prior art keywords
- target value
- controlled object
- freedom
- transfer function
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010354 integration Effects 0.000 claims abstract description 15
- 238000004364 calculation method Methods 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 abstract 4
- 238000010586 diagram Methods 0.000 description 11
- 230000004044 response Effects 0.000 description 6
- 230000001629 suppression Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、目標値フィルタを有する2自由度PID調節
装置に係わり、特に積分時間を時定数とする1次遅れ要
素と制御対象モデル手段とを組合わせた目標値フィルタ
を用いた2自由度制御装置に関する。Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a two-degree-of-freedom PID adjustment device having a target value filter, and in particular a first-order delay element having an integral time as a time constant. The present invention relates to a two-degree-of-freedom control device using a target value filter combined with a controlled object model means.
(従来の技術)
PIまたはPID制御装置は、プロセス制御の有史以来
あらゆる産業分野で広く利用されており、もはや計装分
野においてはPID制御装置なしには成り立たなくなっ
て来ている。(Prior Art) PI or PID control devices have been widely used in all industrial fields since the beginning of process control, and it is no longer possible to do without PID control devices in the instrumentation field.
ところで、従来からPID制御装置では種々の調節演算
方式が提案されており、またアナログ式からディジタル
式の調節演算方式に移行した現在においてもPID制御
装置の王座は少しも変わっておらず、プラント運転制御
の基盤をなしている。By the way, various control calculation methods have been proposed for PID control devices, and even now that the analog control system has been replaced by a digital control calculation method, the throne of the PID control device has not changed in the slightest, and it is important for plant operation. It forms the basis of control.
今後もその王座は変りそうにない。That throne is unlikely to change in the future.
このようなPID調節演算方式の基本式は、・・・ (
1)
で表される。但し、MV(s)は操作信号、E (s)
は偏差、K、は比例ゲイン、T1は積分時間、TDは微
分時間、Sはラプラス演算子、(1/η)は微分ゲイン
である。The basic formula for such a PID adjustment calculation method is... (
1) It is expressed as. However, MV (s) is the operation signal, E (s)
is the deviation, K is the proportional gain, T1 is the integral time, TD is the differential time, S is the Laplace operator, and (1/η) is the differential gain.
このようなPID調節演算方式は1自由度PID調節演
算方式と呼ばれ、PIDパラメータが1組しか設定でき
ない、いわゆる1自由度方式である。その結果、実際の
制御系では、外乱抑制最適PIDパラメータと目標値追
従最適PIDパラメータの値が大きく異なっており、外
乱抑制特性と目標値追従特性との両方を同時に最適化す
ることは出来ず、二律背反となる性質をもっている。Such a PID adjustment calculation method is called a one-degree-of-freedom PID adjustment calculation method, and is a so-called one-degree-of-freedom method in which only one set of PID parameters can be set. As a result, in an actual control system, the values of the disturbance suppression optimum PID parameter and the target value tracking optimum PID parameter are significantly different, and it is not possible to simultaneously optimize both the disturbance suppression characteristic and the target value tracking characteristic. It has contradictory properties.
つまり、外乱変化の影響を最適に抑制するようにPID
パラメータ値を設定すると目標値追従特性が振動的とな
り、逆に目標値変化に対して最適に追従するようにPI
Dパラメータ値を設定すると外乱抑制特性が非常に目−
くなってしまう。In other words, the PID
When parameter values are set, the target value tracking characteristics become oscillatory, and conversely, the PI
Setting the D parameter value will improve the disturbance suppression characteristics.
It becomes.
そこで、この種のPID制御装置においては、外乱抑制
特性と目標値追従特性とを同時に最適化する技術の出現
が望まれている。Therefore, in this type of PID control device, there is a desire for a technology to simultaneously optimize the disturbance suppression characteristics and the target value tracking characteristics.
これに対して、1963年、I 5sac、 M +H
orowitzによって2組のPIDパラメータをそれ
ぞれ独立して設定可能な2自由度PIまたはPIDアル
ゴリズム(T vOD egrees of’F r
eedom P IまたはP I D A Igo
ritl+n+ :以下、2DOF PIDと総称す
る)の基本概念が発表され、近年、我が国でもその基本
概念の下に2DOF PIDが実用化されてきており
、プラント運転制御の高度化に大きく貢献しつつある。In contrast, in 1963, I 5sac, M +H
Two degrees of freedom PI or PID algorithm (T vOD degrees of 'F r
eedom P I or P I D A Igo
The basic concept of ritl+n+ (hereinafter collectively referred to as 2DOF PID) was announced, and in recent years, 2DOF PID has been put into practical use in Japan based on this basic concept, and is greatly contributing to the advancement of plant operation control.
第7図はP動作とD動作を2自由度化した従来の2DO
F PID制御装置の構成を示す図である。この装置
は、比例ゲインKPと積分時間TIとを2自由度化する
演算処理を行う目標値フィルタ1が設けられ、目標値S
■を受けて目標値フィルタ1によって得られる制御目標
値SVoと制御対象2からの制御量Pv′とを偏差演算
手段3に導き、ここで(SVo −PV’ )なる演算
を行って偏差Eを求めてPI調節手段4に導入する。こ
のPI調節手段4では偏差E′を受けてPI調節演算に
よって操作信号MV’を得、後続の加算手段5に導入す
る。この加算手段5では操作信号MV’ と外乱信号り
とを加算合成し、得られた加算合成信号を制御対象2に
印加することにより、制御目標値5V0=制御量PV′
となるように制御する。Figure 7 shows a conventional 2DO with two degrees of freedom for P and D motions.
FIG. 2 is a diagram showing the configuration of an FPID control device. This device is provided with a target value filter 1 that performs arithmetic processing to make the proportional gain KP and the integral time TI two degrees of freedom, and the target value S
2, the control target value SVo obtained by the target value filter 1 and the control amount Pv' from the controlled object 2 are led to the deviation calculation means 3, where the calculation (SVo - PV') is performed to calculate the deviation E. and introduces it into the PI adjustment means 4. The PI adjustment means 4 receives the deviation E' and performs a PI adjustment calculation to obtain a manipulation signal MV', which is introduced into the subsequent addition means 5. This addition means 5 adds and synthesizes the operation signal MV' and the disturbance signal R, and applies the obtained addition and synthesis signal to the controlled object 2, so that the control target value 5V0=control amount PV'
Control so that
前記目標値フィルタ1は、目標値Svに対して適宜な進
みまたは遅れをもたせる進み/遅れ要素11と、目標値
SVに1次遅れをもたせる積分時間TIを時定数とする
1次遅れ要素12と、この1次遅れ要素12の出力を不
完全微分する不完全微分手段13と、前記進み/遅れ要
素1.の出力から不完全微分手段13の出力を減算して
制御目標値Svoを得た後、前記偏差演算手段3に導入
する減算手段14とによって構成されている。The target value filter 1 includes a lead/lag element 11 that gives an appropriate lead or lag to the target value Sv, and a first-order lag element 12 whose time constant is an integral time TI that gives a first-order lag to the target value SV. , an incomplete differentiator 13 for imperfectly differentiating the output of the first-order lag element 12, and the lead/lag element 1. The subtraction means 14 subtracts the output of the incomplete differentiator 13 from the output of the subtraction means 14 to obtain the control target value Svo, and then introduces the control target value Svo into the deviation calculation means 3.
従って、以上のような構成のPI制御装置によれば、P
V−MV間の伝達関数をCpv(s)Sv→MV間の伝
達関数をC5v(s)とすると、となる。上式において
αは比例ゲインの2自由度化係数、βは積分時間の2自
由度化係数である。Therefore, according to the PI control device configured as above, P
If the transfer function between V and MV is Cpv(s) and the transfer function between Sv and MV is C5v(s), then the following equations are obtained. In the above equation, α is a two-degree-of-freedom coefficient for proportional gain, and β is a two-degree-of-freedom coefficient for integral time.
従って、上式から明らかなように、外乱抑制特性が最適
となるようにK p ST +を決定し、その後、目標
値追従特性が最適となるようにα、βを決定することに
より、2自由度化が達成できる。Therefore, as is clear from the above equation, by determining K p ST + so that the disturbance suppression characteristics are optimal, and then determining α and β so that the target value tracking characteristics are optimal, the two free degree can be achieved.
(発明が解決しようとする課題)
ところが、以上のような2 DOF PIまたはP
ID制御装置は種々の特長をもっているものの、一方で
は次のような問題点が指摘されている。(Problem to be solved by the invention) However, the above 2 DOF PI or P
Although the ID control device has various features, the following problems have been pointed out.
■ 積分時間の2自由度化係数βの最適値が特定できな
いこと。■ The optimum value of the two-degree-of-freedom coefficient β of the integration time cannot be determined.
比例ゲインの2自由度化係数αの値はPIDパラメータ
の最適調整法の中のCHR(Chjen。The value of the two-degree-of-freedom coefficient α of the proportional gain is determined by CHR (Chjen) in the optimal adjustment method of PID parameters.
Hrones SReswick)なとによって特定で
きるが、積分時間の2自由度化係数βの値は特定できな
い。However, the value of the two-degree-of-freedom coefficient β of the integration time cannot be specified.
何となれば、(3)式に表す(1/T1 −5)(β/
(1+T、 ・S)l のうち、(1/ T 1S
)を伝達関数とする人出力特性は第6図の(イー1)で
表され、この(イー1)の状態から11値を徐々に大き
くすると、(イー2)、(イー3) ・・・のような特
性を示し、一方、β/ (1+T、 ・S)を伝達関
数とする場合には第8図の(ロ)のような特性となる。What happens is that (1/T1 -5)(β/
(1+T, ・S)l, (1/T 1S
) is the transfer function, and the human output characteristic is expressed as (E1) in Figure 6. If the 11 value is gradually increased from this (E1) state, (E2), (E3)... On the other hand, when β/(1+T, .multidot.S) is used as the transfer function, the characteristic is as shown in (b) of FIG. 8.
つまり、方は直線となり、他方は曲線となる。その結果
、(1/T1 ・5)−(β/ (1+T+−5))か
らなる伝達関数の場合には(ハ)の如き勾配が変化する
入出力特性となり、積分時間の2自由度化係数βの値は
特定できない。従って、一般には、制御対象の特性毎に
シミュレーションを行って特定しなければならず、非常
に作業に手間がかかって煩雑である。In other words, one side is a straight line and the other side is a curved line. As a result, in the case of a transfer function consisting of (1/T1 ・5)-(β/ (1+T+-5)), the input/output characteristic changes in slope as shown in (c), and the integration time has two degrees of freedom. The value of β cannot be determined. Therefore, in general, it is necessary to perform a simulation to specify each characteristic of the controlled object, which is extremely time-consuming and complicated.
■ 積分時間の2自由度化係数βの値と制御対象の特性
との関係が明確でない。■ The relationship between the value of the two-degree-of-freedom coefficient β of the integration time and the characteristics of the controlled object is not clear.
シミュレーションにより苦労しながら積分時間の2自由
度化係数βを求めても、制御対象の特性との関係が明確
でない。その理由は、(2)式および(3)式から明ら
かなように、制御対象の時定数と無駄時間を積分時間の
2自由度化係数βのみで表さねばならないためである。Even if the two-degree-of-freedom coefficient β of the integration time is found through simulation, the relationship with the characteristics of the controlled object is not clear. The reason for this is that, as is clear from equations (2) and (3), the time constant and dead time of the controlled object must be expressed only by the two-degree-of-freedom coefficient β of the integral time.
従って、1自由度PIDから2自由度PIDに円滑に移
行するためには、以上のような従来の欠陥を完全に除去
し、実用上から、また学術上からも積分時間の2自由度
化係数βを簡単に特定でき、かつ、制御対象の特性との
関係を明確にしなければならない。Therefore, in order to smoothly transition from a 1-degree-of-freedom PID to a 2-degree-of-freedom PID, it is necessary to completely eliminate the above-mentioned conventional defects, and from both a practical and academic point of view, it is necessary to change the integral time's 2-degree-of-freedom coefficient. β must be easily specified and its relationship to the characteristics of the controlled object must be clarified.
本発明は上記実情にかんがみてなされたもので、目標値
フィルタに制御対象モデルを採用し、積分時間の2自由
度化を完全に特定し、かつ、積分時間の2自由度化と制
御対象との関係を明確に関連付けた2自由度制御装置を
提供することを目的とする。The present invention has been made in view of the above circumstances, and employs a controlled object model for the target value filter, completely specifies the two degrees of freedom of the integral time, and combines the two degrees of freedom of the integral time and the controlled object. It is an object of the present invention to provide a two-degree-of-freedom control device that clearly relates the relationship between the two degrees of freedom.
[発明の構成]
(課題を解決するための手段)
本発明に係わる2自由度制御装置は上記課題を解決する
ために、目標値を導入して目標値フィルタ手段を通して
得られる制御目標値と制御対象からの制御量との偏差に
基づいてPID(P:比例、I:積分、D=微分)調節
演算のうち、少なくともPI調節手段によって調節演算
を実行し、得られた操作出力を前記制御対象に印加して
制御量が目標値となるように制御する2自由度制御装置
において、
前記目標値フィルタ手段としては、少なくとも前記PI
調節手段の積分時間を時定数とする1次遅れ要素と、前
記制御対象の伝達関数のうち制御対象モデルの単位伝達
関数を含んだ伝達関数をもった制御対象モデル手段とを
組合わせてなる構成である。[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the two-degree-of-freedom control device according to the present invention introduces a target value and uses the control target value obtained through the target value filter means and the control Among the PID (P: proportional, I: integral, D= differential) adjustment calculations, at least the PI adjustment means executes adjustment calculations based on the deviation from the control amount from the control object, and the obtained operation output is applied to the control object. In a two-degree-of-freedom control device that controls the control amount so that it becomes a target value by applying
A configuration consisting of a combination of a first-order lag element having the integration time of the adjustment means as a time constant, and controlled object model means having a transfer function that includes a unit transfer function of the controlled object model among the transfer functions of the controlled object. It is.
(作用)
従って、本発明は以上のような手段を講じたことにより
、前記目標値フィルタ手段かPI調節手段の積分時間を
時定数とする1次遅れ要素および制御対象の単位伝達関
数を含む伝達関数の制御対象モデル手段を設けたことに
より、積分時間の2自由度化係数の最適値を特定でき、
また目標値の変更に対して制御対象の応答が一巡するに
相当する時間を見計らって制御目標値を立上げながら偏
差演算手段に印加するので、積分時間の2自由度化と制
御対象との関係を明確に関係づけることができる。(Function) Therefore, by taking the above-mentioned measures, the present invention achieves a transfer including a first-order lag element whose time constant is the integration time of the target value filter means or the PI adjustment means and a unit transfer function of the controlled object. By providing a control target model means for the function, it is possible to identify the optimal value of the two-degree-of-freedom coefficient for the integration time.
In addition, since the control target value is applied to the deviation calculation means while increasing the control target value at a time corresponding to one cycle of the response of the controlled object in response to a change in the target value, the integration time has two degrees of freedom and the relationship with the controlled object. can be clearly related.
(実施例)
以下、本発明の実施例について図面を参照して説明する
。第1図は2DOF PID制御装置の構成を示す図
である。なお、同図において第7図と同一部分には同一
符号を付してその詳しい説明は省略する。この制御装置
は、目標値フィルタ手段10が設けられ、ここで目標値
を比例ゲインに、と積分時間T1とに関し2自由度化す
る演算処理を行って制御目標値Svoを得た後、制御対
象2からの制御量P■とともに偏差演算手段3に導入し
、ここで制御偏差E=SVO−PVを求めてPI調節手
段4に供給する。このPI調節手段4は制御偏差Eに基
づいてPI調節演算を実行し、得られたPI調節演算出
力、つまり操作信号MVを加算手段5に導入し、操作信
号MVと外乱りとを加算合成する。そして、加算手段5
からの加算合成信号を制御対象2に印加し、5v−sv
o =pvとなるように制御する構成である。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the configuration of a 2DOF PID control device. In this figure, the same parts as in FIG. 7 are given the same reference numerals, and detailed explanation thereof will be omitted. This control device is provided with a target value filter means 10, which performs arithmetic processing to convert the target value into a proportional gain and two degrees of freedom regarding the integral time T1 to obtain a control target value Svo. It is introduced into the deviation calculation means 3 together with the control amount P■ from 2, and the control deviation E=SVO-PV is determined here and supplied to the PI adjustment means 4. This PI adjustment means 4 executes a PI adjustment calculation based on the control deviation E, and introduces the obtained PI adjustment calculation output, that is, the operation signal MV, into the addition means 5, which adds and synthesizes the operation signal MV and the disturbance. . And addition means 5
Apply the addition composite signal from 5v-sv to the controlled object 2.
This is a configuration in which control is performed so that o = pv.
前記目標値フィルタ手段10は、目標値SVに係数手段
11にて比例ゲインの2自由度化係数αを乗算した後に
加算手段12に導入し、また減算手段13にて目標値S
Vから係数手段11の出力を減じた後、ゲインを1とし
た制御対象モデル手段14および積分時間T1を時定数
とする1次遅れ要素15を経由した後、前記加算手段1
2に導き、先の係数手段11の出力とともに加算合成し
て制御目標値Svoを得、偏差演算手段3に導入する構
成となっている。The target value filter means 10 multiplies the target value SV by a two-degree-of-freedom coefficient α of the proportional gain in the coefficient means 11, and then inputs it into the addition means 12, and the subtraction means 13 multiplies the target value SV.
After subtracting the output of the coefficient means 11 from V, the output is passed through the controlled object model means 14 with a gain of 1 and the first-order delay element 15 whose time constant is the integration time T1, and then the addition means 1
2, and is added and combined with the output of the coefficient means 11 to obtain the control target value Svo, which is introduced into the deviation calculation means 3.
次に、以上のような構成の目標値フィルタ手段10を採
用した理由について説明する。今、第2図は目標値フィ
ルタ形2自由度PID制御装置の構成を示す図であり、
ここで制御対象2の伝達関数G (s)は、
G(s)=KM −gu (s)
−(4)で表すことができる。K Mは制御対象モデ
ルのゲイン、gM(s)は制御対象モデルの単位伝達関
数とする。Next, the reason why the target value filter means 10 having the above configuration is adopted will be explained. Now, FIG. 2 is a diagram showing the configuration of a target value filter type two-degree-of-freedom PID control device,
Here, the transfer function G (s) of the controlled object 2 is: G (s) = KM - gu (s)
−(4). KM is the gain of the controlled object model, and gM(s) is the unit transfer function of the controlled object model.
そこで、第2図に示す制御装置において偏差演算手段3
に導入するPMとS V oとが同じ性質をもつために
は、目標値フィルタ手段10にどのような性質を持たな
ければならないかを検討してみる。Therefore, in the control device shown in FIG.
Let us examine what properties the target value filter means 10 must have in order for PM introduced into the filter to have the same properties as S V o .
今、外乱D−PV間の伝達関数をG op(S)とする
と、
GDP(S)=PV/D=G(s)=KM−gM(S)
・・・(5)
で表されるので、SV→Svo間の伝達関数G 5s(
S)は、
G55(s) −8Vo /SV−H(s)−gMを含
んだ伝達関数 ・・・(6)の関係
にある必要がある。すなわち、(5)式からS V =
S V o間の伝達関数G55(S) 、つまり目標
値フィルタ手段10の伝達関数H(s)が外乱D−PV
間の伝達関数G Dr(S)と同じ性質を持つためには
、gM(S)を含んだ伝達関数とならねばならないとい
うことになる。このgu(s)を含んだ伝達関数は予め
制御対象のステップ応答から求めることができる。Now, if the transfer function between the disturbance D and PV is G op (S), then GDP (S) = PV/D = G (s) = KM - gM (S)
...(5) Therefore, the transfer function G 5s(
S) is a transfer function including G55(s) -8Vo /SV-H(s)-gM It is necessary that the relationship is as shown in (6). That is, from equation (5), S V =
The transfer function G55(S) between S Vo, that is, the transfer function H(s) of the target value filter means 10 is the disturbance D-PV
In order to have the same properties as the transfer function G Dr(S) between, the transfer function must include gM(S). The transfer function including this gu(s) can be determined in advance from the step response of the controlled object.
ところで、第7図に示す従来の2DOFPID制御装置
における目標値フィルタ手段1中の進み/遅れ要素11
について等価変換すれば、が得られるが、これを機能ブ
ロックで表せば第3図に示すようになる。By the way, the lead/lag element 11 in the target value filter means 1 in the conventional 2DOFPID control device shown in FIG.
If we perform equivalent transformation on , we will obtain , which is expressed as a functional block as shown in Fig. 3.
そこで、偏差演算手段3の入力側に前記(7)式のフィ
ルタを挿入するとP動作のみ2自由度化されるが、その
フィルタの入力側にユニットステップを入れたとき、第
4図に示す(イ)ような出力応答特性が得られる。しか
し、この出力応答特性は制御対象2の特性、つまり制御
対象2の無駄時間と遅れが何ら考慮されておらず、偏差
演算手段3の入力であるPVとSvoとが同じ性質にな
い。Therefore, by inserting the filter of equation (7) above into the input side of the deviation calculation means 3, only the P motion becomes two degrees of freedom, but when a unit step is inserted into the input side of the filter, as shown in FIG. b) Output response characteristics can be obtained. However, this output response characteristic does not take into account the characteristics of the controlled object 2, that is, the dead time and delay of the controlled object 2, and PV and Svo, which are input to the deviation calculation means 3, do not have the same characteristics.
一方、前記(7)式に制御対象2の単位伝達関数gM(
s)を導入すると、
が得られるが、同様に(8)式のフィルタにユニットス
テップを入力すれば、第4図の(ロ)に示すように丁度
制御対象2を一巡するに相当する時間T、つまり制御対
象2の無駄時間と遅れを伴って制御結果が現れる時間に
立ち上げるように制御目標値SVo を偏差演算手段3
に入力できる。On the other hand, the unit transfer function gM(
If s) is introduced, the following is obtained. Similarly, if the unit step is input to the filter of equation (8), the time T corresponding to exactly one round of the controlled object 2 is obtained, as shown in (b) of Fig. 4. In other words, the control target value SVo is set by the deviation calculation means 3 so as to be started at the time when the control result appears with dead time and delay of the controlled object 2.
can be entered.
従って、第1図の目標値フィルタ手段10は以上のよう
な前提条件の下に得られた前記(8)式の伝達関数でも
って構成された図である。ゆえに、以上のような経緯か
ら第1図の制御装置では、PV→MV間の伝達関数c
PM(S)は、となり、またS■→MV間の伝達関数0
5M(s)は、となり、PとIが2自由度化されたこと
になる。Therefore, the target value filter means 10 in FIG. 1 is constructed using the transfer function of equation (8) obtained under the above-mentioned preconditions. Therefore, from the above-mentioned background, in the control device shown in Fig. 1, the transfer function c from PV to MV is
PM(S) becomes, and the transfer function between S→MV is 0
5M(s) becomes, which means that P and I have two degrees of freedom.
つまり、(10)式は積分時間の2自由度化係数βを除
去して比例ゲインの2自由度化係数αのみに依存する関
係とすることができ、しかも比例ゲインの2自由度化係
数αは前述したようにCHR法などにより特定できるの
で、(10)式の積分項の2自由度化も容易に特定でき
る。In other words, equation (10) can be made to have a relationship that depends only on the two-degree-of-freedom coefficient α of the proportional gain by removing the two-degree-of-freedom coefficient β of the integral time, and moreover, the two-degree-of-freedom coefficient α of the proportional gain can be specified by the CHR method as described above, so that the integration of the integral term in equation (10) into two degrees of freedom can also be easily specified.
また、制御対象モデルの単位伝達関数gM(s)は、−
船釣には無駄時間+1次遅れ、つまりび無駄時間十高次
進み/遅れのものを含むものである。Moreover, the unit transfer function gM(s) of the controlled object model is −
Boat fishing involves wasted time + first-order delay, that is, wasted time that is ten higher-order advances/lags.
次に、第5図は本発明装置の他の実施例を示す構成図で
ある。この制御装置は、構成要素的には第1図の目標値
フィルタ手段と同じであるが、特に第1図では減算手段
13の出力側に制御対象モデル手段14を設けたものを
、第5図では目標値SV入力端と減算手段13との間に
制御対象モデル手段14′を設けたものである。Next, FIG. 5 is a block diagram showing another embodiment of the apparatus of the present invention. This control device has the same components as the target value filter means shown in FIG. In this example, a controlled object model means 14' is provided between the target value SV input terminal and the subtraction means 13.
従って、このときの
5V−8Vo間の伝達関数
で表されるが、実際的には1次遅れのみのもの、複雑に
は無駄時間十高次進み/遅れをもつものもある。TMは
制御対象モデルの時定数、LMは制御対象モデルの無駄
時間である。従って、制御対象モデルの単位伝達関数g
M(s)の中には、1次遅れのみのもの、無駄時間+1
次遅れのものおよ・・・ (12)
とすることにより、
Sv−+Mv間の伝達関数
となる。従って、この(13)式から明らがなように、
比例ゲインの2自由度化係数αによって比例ゲインKP
の2自由度化がなされ、一方、制御対象モデルの単位伝
達関数gM(s)によって積分時間T1が2自由度化さ
れることになり、フィードバック制御の基本に適合した
ものとなる。さらに、目標値フィルタ手段10内に積分
時間を時定数とする1次遅れ要素15と制御対象モデル
の単位伝達関数gM(s)を含む伝達関数をもつ制御対
象モデル手段14′を設けたことにより、目標値フィル
タ手段10の伝達関数を制御対象2の性質に合わせるこ
とができる。Therefore, although it is expressed as a transfer function between 5V and 8Vo at this time, in reality it may have only a first-order lag, or more complicatedly, it may have dead time with ten higher-order leads/lags. TM is the time constant of the controlled object model, and LM is the dead time of the controlled object model. Therefore, the unit transfer function g of the controlled model
M(s) includes only first-order delay, dead time +1
By setting the next delayed one and... (12), the transfer function between Sv-+Mv is obtained. Therefore, as is clear from equation (13),
The proportional gain KP is determined by the two-degree-of-freedom coefficient α of the proportional gain.
On the other hand, the integral time T1 is made into two degrees of freedom by the unit transfer function gM(s) of the controlled object model, which is compatible with the basics of feedback control. Furthermore, by providing within the target value filter means 10 a first-order lag element 15 having an integration time as a time constant and a controlled object model means 14' having a transfer function including a unit transfer function gM(s) of the controlled object model. , the transfer function of the target value filter means 10 can be matched to the properties of the controlled object 2.
さらに、第6図は本発明の他の実施例を示す構成図であ
る。この制御装置の目標値フィルタ手段10は、目標値
SVの入力端に係数手段11.16をシリアルに接続し
、目標値SVに係数手段11にて比例ゲインの2自由度
化係数αを乗算し、さらに係数手段16にて積分時間の
2自由度化係数βを乗算し、得られた乗算出力を減算手
段17により目標値Svから減算し、制御対象モデル手
段14に供給する。また、減算手段18において係数手
段16からの乗算出力から係数手段11.の乗算出力を
減算し、得られた減算出力を加算手段18に導き、ここ
で制御対象モデル手段14の出力と加算し、積分時間を
時定数とする1次遅れ要素15に供給するものである。Furthermore, FIG. 6 is a configuration diagram showing another embodiment of the present invention. The target value filter means 10 of this control device serially connects coefficient means 11.16 to the input terminal of the target value SV, and multiplies the target value SV by the two-degree-of-freedom coefficient α of the proportional gain in the coefficient means 11. Further, the coefficient means 16 multiplies the integration time by a two-degree-of-freedom coefficient β, and the obtained multiplication output is subtracted from the target value Sv by the subtraction means 17, and is supplied to the controlled object model means 14. Further, in the subtraction means 18, the multiplication output from the coefficient means 16 is calculated from the coefficient means 11. The multiplication output of .
すなわち、この装置は、目標値フィルタ手段11におい
て時間的構成要素は第1図と同じであるが、制御対象モ
デル手段14の組合゛わせ方を変え、しかも係数βを設
定した係数手段16を付加し、これら係数手段11.1
6のα、βの設定替えを行うことにより、1自由度PI
D制御 −第1図の実施例 −第5図の実施例と連続的
に可変しうる万能組合わせ方式とすることができる。That is, in this device, the temporal components in the target value filter means 11 are the same as those in FIG. and these coefficient means 11.1
By changing the settings of α and β in 6, one degree of freedom PI
D control - The embodiment shown in FIG. 1 - The embodiment shown in FIG. 5 can be used as a universal combination system that can be continuously varied.
因みに、この実施例では、
SV−”SVo間の伝達関数
とすることにより、
Sv→MV間の伝達関数
となる。この(15)式においては、β−1で(10)
式と等しくなり、β=0で(13)式と等しくなり、以
上述べた万能組合わせ方式となる。Incidentally, in this example, by setting the transfer function between SV - "SVo, it becomes the transfer function between Sv → MV. In this equation (15), β - 1 is expressed as (10)
When β=0, it becomes equal to equation (13), and becomes the universal combination method described above.
なお、本発明は上記実施例に限定されずにその要旨を変
更しない範囲で種々変形して実施できる。Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without changing the gist thereof.
第1図ないし第4図は本発明に係わる2自由度制御装置
の実施例を説明するために示したもので、第1図はその
一実施例の構成図、第2図は目標値フィルタ手段を付加
した一般的な2自由度PI制御装置の概略構成図、第3
図は従来装置における目標値フィルタ手段の一構成要素
となる進み/遅れ要素の等価変換図、第4図は目標値フ
ィルタ手段に制御対象モデルの単位伝達関数をもたない
場合ともつ場合の目標値変化に対する応答特性図、第5
図および第6図はそれぞれ本発明装置の他の実施例を示
す構成図、第7図は目標値フィ2・・・制御対象、3・
・・偏差演算手段、4・・・PI調節手段、5・・・加
算1段、10・・・目標値フィルタ手段、11.16・
・・係数手段、12・・・加算手段、13・・・減算手
段、14.14′・・・制御対象モデル手段、15・・
・1次遅れ手段、17.18・・・減算手段、19・・
・加算手段。
出願人代理人 弁理士 鈴江武彦
特定できないことを説明する図である。1 to 4 are shown to explain an embodiment of a two-degree-of-freedom control device according to the present invention, and FIG. 1 is a configuration diagram of one embodiment, and FIG. 2 is a target value filter means. Schematic configuration diagram of a general two-degree-of-freedom PI control device with added
The figure is an equivalent conversion diagram of the lead/lag element which is one component of the target value filter means in a conventional device. Figure 4 shows the target value when the target value filter means does not have the unit transfer function of the controlled object model and when it does have it. Response characteristic diagram for value changes, 5th
6 and 6 are respectively configuration diagrams showing other embodiments of the device of the present invention, and FIG.
... Deviation calculation means, 4 ... PI adjustment means, 5 ... 1 stage of addition, 10 ... Target value filter means, 11.16.
... Coefficient means, 12... Addition means, 13... Subtraction means, 14.14'... Controlled object model means, 15...
・First-order delay means, 17.18... Subtraction means, 19...
- Addition means. This is a diagram explaining that the applicant's agent, patent attorney Takehiko Suzue, cannot be identified.
Claims (1)
制御目標値と制御対象からの制御量との偏差に基づいて
PID(P:比例、I:積分、D:微分)調節演算のう
ち、少なくともPI調節手段によってPI調節演算を実
行し、得られた操作出力を前記制御対象に印加して制御
量が目標値となるように制御する2自由度制御装置にお
いて、前記目標値フィルタ手段は、 前記PI調節手段の積分時間を時定数とする1次遅れ要
素と、 前記制御対象の伝達関数のうち制御対象モデルの単位伝
達関数を含んだ伝達関数をもった制御対象モデル手段と を組合わせて構成したことを特徴とする2自由度制御装
置。[Claims] PID (P: proportional, I: integral, D: differential) adjustment based on the deviation between the control target value obtained through the target value filter means and the controlled amount from the controlled object by introducing the target value. In a two-degree-of-freedom control device that performs a PI adjustment calculation among the calculations by at least a PI adjustment means and applies the obtained operation output to the controlled object so that the control amount becomes a target value, the target value is The filter means includes: a first-order lag element whose time constant is the integration time of the PI adjustment means; and a controlled object model means having a transfer function that includes a unit transfer function of the controlled object model among the controlled object transfer functions. A two-degree-of-freedom control device characterized by being configured by combining the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14848290A JP2752230B2 (en) | 1990-06-08 | 1990-06-08 | 2-DOF control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14848290A JP2752230B2 (en) | 1990-06-08 | 1990-06-08 | 2-DOF control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0442303A true JPH0442303A (en) | 1992-02-12 |
JP2752230B2 JP2752230B2 (en) | 1998-05-18 |
Family
ID=15453746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14848290A Expired - Lifetime JP2752230B2 (en) | 1990-06-08 | 1990-06-08 | 2-DOF control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2752230B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660208A1 (en) * | 1993-12-27 | 1995-06-28 | Yamatake-Honeywell Co. Ltd. | Controller |
CN105319966A (en) * | 2014-07-30 | 2016-02-10 | 南京南瑞继保电气有限公司 | Method used for avoiding simultaneous redundant system duty exit after restored inter-system communication |
-
1990
- 1990-06-08 JP JP14848290A patent/JP2752230B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660208A1 (en) * | 1993-12-27 | 1995-06-28 | Yamatake-Honeywell Co. Ltd. | Controller |
US5537310A (en) * | 1993-12-27 | 1996-07-16 | Yamatake-Honeywell Co., Ltd. | Internal Model Controller with automatically correcting gain of the internal model controller |
CN105319966A (en) * | 2014-07-30 | 2016-02-10 | 南京南瑞继保电气有限公司 | Method used for avoiding simultaneous redundant system duty exit after restored inter-system communication |
CN105319966B (en) * | 2014-07-30 | 2017-10-20 | 南京南瑞继保电气有限公司 | It is a kind of to avoid after communication recovers between system redundant system while exiting method on duty |
Also Published As
Publication number | Publication date |
---|---|
JP2752230B2 (en) | 1998-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0298701A (en) | Controller | |
JP2882586B2 (en) | Adaptive control device | |
JPH07104681B2 (en) | Process control equipment | |
JPH06119001A (en) | Controller | |
JPH0442303A (en) | Double freedom degree controller | |
JP2839626B2 (en) | 2-DOF adjustment device | |
JPH0235501A (en) | Fuzzy control system | |
US5200681A (en) | Process control system | |
JP3034404B2 (en) | 2-DOF PID adjustment device | |
JPH0556522B2 (en) | ||
JPH07152406A (en) | Two degree of freedom controller device | |
CN113568421B (en) | Flexible satellite attitude controller and method for combining maneuvering control and stability control | |
JPS62241002A (en) | Auto-tuning controller | |
JPH04312101A (en) | Two-frredom degree type adjustment device | |
JPH06282304A (en) | Two-degrees-of-freedom pid adjusting device including controlled system model | |
JP3004152B2 (en) | 2-DOF PID adjustment device | |
JPH04326402A (en) | Fuzzy controller | |
JP2772059B2 (en) | 2-DOF PID controller | |
Wang et al. | A single neuron PID controller based on immune tuning and it's application | |
JPH0666041B2 (en) | Two degree of freedom sampled value PID controller | |
JPH0415705A (en) | Fuzzy controller | |
JP2766395B2 (en) | Control device | |
JPS62241004A (en) | Auto-tuning controller | |
JPS62241003A (en) | Auto-tuning controller | |
JPH07311601A (en) | Two-degree-of-freedom pid adjusting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080227 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |