JPH044215Y2 - - Google Patents

Info

Publication number
JPH044215Y2
JPH044215Y2 JP7777384U JP7777384U JPH044215Y2 JP H044215 Y2 JPH044215 Y2 JP H044215Y2 JP 7777384 U JP7777384 U JP 7777384U JP 7777384 U JP7777384 U JP 7777384U JP H044215 Y2 JPH044215 Y2 JP H044215Y2
Authority
JP
Japan
Prior art keywords
molten metal
slag
measuring
cover
measuring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7777384U
Other languages
Japanese (ja)
Other versions
JPS60189849U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7777384U priority Critical patent/JPS60189849U/en
Publication of JPS60189849U publication Critical patent/JPS60189849U/en
Application granted granted Critical
Publication of JPH044215Y2 publication Critical patent/JPH044215Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【考案の詳細な説明】 (考案の技術分野) 本考案は溶融金属計測プローブの計測素子(た
とえば温度検出素子、酸素量測定のための酸素濃
淡電池、その他の溶融金属中の成分測定のための
素子等)を保護する計測素子保護体に係るもので
ある。
[Detailed Description of the Invention] (Technical Field of the Invention) The present invention is applicable to measuring elements of molten metal measurement probes (e.g., temperature detection elements, oxygen concentration batteries for measuring the amount of oxygen, and other components for measuring components in molten metals). This relates to a measuring element protector that protects the measuring element (elements, etc.).

(考案の背景) 精錬炉、例えばコンピユータ制御による転炉に
おいて吹止温度、吹止成分を適中させるために
は、すくなくとも吹錬中に温度、成分(主として
炭素量、酸素量)等の制御情報を任意の時点(通
常、吹止0〜2分前の間)で知ることが不可欠で
ある。
(Background of the idea) In order to adjust the blow-off temperature and blow-off components in a refining furnace, such as a computer-controlled converter, it is necessary to provide control information such as temperature and components (mainly carbon content and oxygen content) at least during blowing. It is essential to know at any point in time (usually between 0 and 2 minutes before blow-off).

従来第6図に示す様にに吹錬中の転炉1内の溶
融金属3の温度、炭素量、酸素量等測定のためサ
ブランス9に計測プローブ11を装着して溶融金
属3中に浸漬する方法が広く用いられている。
Conventionally, as shown in FIG. 6, a measuring probe 11 is attached to a sublance 9 and immersed in the molten metal 3 in order to measure the temperature, carbon content, oxygen content, etc. of the molten metal 3 in the converter 1 during blowing. The method is widely used.

この場合第7a図(温度検出用)又は第7b図
(酸素量測定用)に示す様に計測プローブ11の
下端の計測素子14は金属のキヤツプ15により
保護されてスラグ層2を通過した後溶融金属3中
に到つた際にキヤツプ15が溶失して計測素子1
4が露出し目的とする計測を行うことになる。
In this case, as shown in Fig. 7a (for temperature detection) or Fig. 7b (for oxygen content measurement), the measuring element 14 at the lower end of the measuring probe 11 is protected by a metal cap 15 and melts after passing through the slag layer 2. When it reaches the metal 3, the cap 15 melts and the measuring element 1
4 will be exposed and the intended measurement will be performed.

ところが転炉1内には熔銑等溶融金属3とスク
ラツプが装入されており、スクラツプ配合率が高
い場合、次に示す様な種々の理由により、計測素
子14の破損事故が発生し、転炉1吹錬中の温度
測定不能となる可能性が大きくなる: A 物理的な破損(ハードスラグによる破損) スクラツプ配合率が高いとスラグの滓化が遅
れ、測温プローブ11による測定時には未反応状
態の石灰または生石灰がスラグ層2に多量に残つ
てハードスラグを形成しており、これにキヤツプ
15ならびに計測素子14が衝突し破損される。
However, molten metal 3 such as molten pig iron and scrap are charged into the converter 1, and if the scrap content ratio is high, damage to the measuring element 14 may occur due to the following reasons, and the converter may be damaged. There is a greater possibility that the temperature cannot be measured during blowing in the furnace 1: A. Physical damage (damage due to hard slag) If the scrap content is high, the slag formation into slag will be delayed and no reaction will occur when measured by the temperature probe 11. A large amount of lime or quicklime remains in the slag layer 2 to form a hard slag, and the cap 15 and the measuring element 14 collide with this and are damaged.

B 物理的な破損(未溶解スクラツプ塊による破
損) スクラツプ配合率が高いためサブランス9等の
自動挿入装置を使用する精錬途上の測定時にはス
クラツプが完全に溶解しておらず、この様な未溶
解スクラツプ塊5に溶融金属3中に露出された計
測素子14が衝突して破損される。
B Physical damage (damage due to undissolved scrap lumps) Due to the high scrap content ratio, the scrap is not completely dissolved during measurement during refining using an automatic insertion device such as Sublance 9, and such undissolved scrap The measuring element 14 exposed in the molten metal 3 collides with the lump 5 and is damaged.

C 物理的な破損(流動する低温スラグ、粒鉄等
による破損) スクラツプ配合率が高いことにより滓化が遅れ
た硬い低温スラグやスラグ層2内に多量に存在す
る粒鉄等がメインランス7の酸素ジエツト8の攪
拌により流動し、計測素子14に衝突し、或いは
接触し、計測素子14を物理的に破損させる。
C Physical damage (damage due to flowing low-temperature slag, granulated iron, etc.) Hard low-temperature slag that has delayed slag formation due to the high scrap content and granulated iron present in large quantities in the slag layer 2 may cause damage to the main lance 7. It flows due to the stirring of the oxygen jet 8, collides with or comes into contact with the measuring element 14, and physically damages the measuring element 14.

D 科学的な溶損 計測素子14にスラグが密着して化学反応を起
し、素子を構成する部材(例えばSiO2管、Pt系
熱電対素線等)を破壊する。
D. Scientific erosion The slag adheres to the measuring element 14 and causes a chemical reaction, which destroys the elements (for example, SiO 2 tube, Pt thermocouple wire, etc.) that constitute the element.

これらいずれの例も吹錬を終えた静止浴の場合
には大きな問題とならないが、吹錬中の測定時に
は前述の通り、メインランス7の酸素ジエツト8
による攪拌が伴なうためこれら問題発生がより助
長されることになる。
None of these examples poses a major problem in the case of a static bath after blowing, but when measuring during blowing, as mentioned above, the oxygen jet 8 of the main lance 7
The occurrence of these problems is further exacerbated by the agitation caused by this.

経験によれば、スクラツプ配合率0〜15%の条
件下では吹錬中の温度測定成功率は通常95%以上
であるが、スクラツプ配合率がこれより高く、か
つスラグの生成状況が良好でないときは、温度測
定成功率は60〜90%と大幅に低下する。
According to experience, the success rate of temperature measurement during blowing is usually more than 95% under conditions of scrap content of 0 to 15%, but when the scrap content is higher than this and the slag formation conditions are not good. , the temperature measurement success rate drops significantly to 60-90%.

例えばスクラツプ率25%、測定温度1540℃附
近、炭素量0.60%附近では、通常温度成功率90%
以上を得ることは困難である。
For example, when the scrap rate is 25%, the measurement temperature is around 1540℃, and the carbon content is around 0.60%, the normal temperature success rate is 90%.
It is difficult to obtain more than that.

この様にスクラツプ配合率が高まればそれだけ
吹錬中の測定不良率も高まることが知られてい
る。
It is known that the higher the scrap content ratio, the higher the defect rate measured during blowing.

(公知文献等の開示) 硬化スラグによる温度検出素子その他の成分検
出素子の浸漬時の破損を防止するために従来にお
いて実公昭52−52625号、実開昭58−154461号、
実開昭58−178668号等が公知である。
(Disclosure of publicly known documents, etc.) In order to prevent temperature detection elements and other component detection elements from being damaged during immersion due to hardened slag, conventional methods have been used such as Utility Model Publication No. 52-52625, Utility Model Application Publication No. 58-154461,
Utility Model Application Publication No. 58-178668 is publicly known.

(考案の目的) 本考案は以上の従来の方法を改良し、吹錬途上
で未溶解スクラツプ塊や硬いスラグが存在する場
合においても、計量素子をより十分に破損から保
護することの出来る溶融金属計測プローブの計測
素子保護体の提供を目的とする。
(Purpose of the invention) The present invention improves the conventional method described above, and provides a method for molten metal that can more fully protect the metering element from damage even when unmelted scrap lumps or hard slag are present during blowing. The purpose is to provide a measuring element protector for a measuring probe.

以下本考案の保護体を図面に示す実施例に従つ
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The protector of the present invention will be described below with reference to embodiments shown in the drawings.

第1図は本考案の保護体を、計測素子例えば温
度検出素子を備えた計測プローブと共に示し、該
計測プローブ11は本体12下端面を形成するセ
ラミツクス等で作られた支持体19を有する。
FIG. 1 shows the protector of the present invention together with a measuring probe equipped with a measuring element, such as a temperature detecting element, and the measuring probe 11 has a support 19 made of ceramics or the like forming the lower end surface of the main body 12.

該支持体19は下方に突出する計測素子14を
支持する。
The support body 19 supports the measuring element 14 that projects downward.

該計測素子14は金属製のキヤツプ15に被覆
され、該キヤツプ15はカバー22に被覆され
る。
The measuring element 14 is covered with a metal cap 15, and the cap 15 is covered with a cover 22.

該カバー22は金属、セラミツクス、厚紙、木
屑等、計測素子14を前述の要因による破損から
保護するに足る強度を有し、スラグ層2通過中の
機械的・熱的衝撃に耐える材料で作られる。
The cover 22 is made of a material, such as metal, ceramics, cardboard, wood chips, etc., that has sufficient strength to protect the measuring element 14 from damage caused by the aforementioned factors, and that can withstand mechanical and thermal shock while passing through the slag layer 2. .

又カバー22は本体12下端面に接合される
(実施例では接着剤23を使用したものを示して
いる。)。
Further, the cover 22 is joined to the lower end surface of the main body 12 (in the embodiment, an adhesive 23 is used).

次にキヤツプ15とカバー22間の空間内には
通電、加熱等により反応してガス発生するガス発
生物質25が封入される。
Next, in the space between the cap 15 and the cover 22, a gas generating substance 25 which reacts and generates gas when energized, heated, etc. is sealed.

ガス発生物質25としては特に限定しないが、
例えば、爆発性物質として公知であるN−O結合
をもつもの、N−N結合をもつもの、O−O結合
をもつもの、O−ハロゲン結合をもつもの等があ
り場合によつては発熱材と共に用いられる。
Although the gas generating substance 25 is not particularly limited,
For example, there are materials with N-O bonds, N-N bonds, O-O bonds, O-halogen bonds, etc. that are known as explosive substances, and in some cases, heat-generating materials. used with

更にガス発生物質25として火薬等爆薬の爆発
的な膨脹力を調節したものも使用可能である。
Further, as the gas generating substance 25, it is also possible to use explosives such as gunpowder whose explosive expansion power is adjusted.

この際のガス発生は本体12からカバー22を
分離するに足るだけの圧力を供し得るものであれ
ばよい。
The gas generated at this time may be of any type as long as it can provide enough pressure to separate the cover 22 from the main body 12.

ガス発生物質25を反応させる方法としては各
種の方法が考えられる。
Various methods can be considered for causing the gas generating substance 25 to react.

そのひとつとして、ガス発生物質25にヒータ
ーを備えたリード線21を接続し、任意の時点で
通電加熱可能として、ガス発生させる方法があ
る。
One method is to connect a lead wire 21 equipped with a heater to the gas generating substance 25 so that it can be heated with electricity at any time to generate gas.

通常はサブランス9等の自動挿入装置の下降が
停止した時の信号または、所定位置に到達した時
の信号によつて、ガス発生時機を決定する。
Usually, the gas generation timing is determined based on a signal when the automatic insertion device such as the sub-lance 9 stops descending or a signal when it reaches a predetermined position.

その他の方法として、第2図及び第3図に示す
通り、本体12とカバー22の間に例えば0.2〜
2.0mm程度の隙間26を開けておき、計測プロー
ブ11が溶融金属3に浸漬されたとき、溶融金属
3がこの隙間26から侵入し、ガス発生物質25
に接触してガス発生させる方法がある(この場
合、隙間26からスラグが流入しないよう、スラ
グと溶融金属3の粘性ならびに表面張力の差を考
慮して設計する必要がある)。
As another method, as shown in FIGS. 2 and 3, for example, 0.2 to 0.2
A gap 26 of about 2.0 mm is left open, and when the measurement probe 11 is immersed in the molten metal 3, the molten metal 3 enters through this gap 26 and the gas generating substance 25
There is a method of generating gas by contacting the molten metal 3 (in this case, it is necessary to take into account the difference in viscosity and surface tension between the slag and the molten metal 3 in order to prevent the slag from flowing in through the gap 26).

また、これ以外の方法としては、第4図に示す
通り、熱伝導性の良好な金属棒等熱伝導物質27
の一端をガス発生物質25に接触させ他端を計測
プローブ11外周面近くに装備することにより、
溶融金属3の熱をガス発生物質25に伝えこれを
反応させることも可能である(この場合、スラグ
層2通過時の熱影響を受けない様、断熱カバー等
を設けることが望ましい)。
In addition, as a method other than this, as shown in FIG.
By placing one end in contact with the gas generating substance 25 and the other end near the outer peripheral surface of the measurement probe 11,
It is also possible to transfer the heat of the molten metal 3 to the gas generating substance 25 and cause it to react (in this case, it is desirable to provide a heat insulating cover or the like so as not to be affected by the heat when passing through the slag layer 2).

又本考案の他の保護体として第5図に示す様に
カバー22を本体12下端面に密着させ、又キヤ
ツプ15を省略してもよい。
Further, as another protective member of the present invention, a cover 22 may be brought into close contact with the lower end surface of the main body 12 as shown in FIG. 5, and the cap 15 may be omitted.

以上の実施例に示した本考案の保護体の作用は
次の通り。
The action of the protector of the present invention shown in the above embodiments is as follows.

すなわち第6図に示すようにサブランス9等の
自動挿入装置に計測プローブ11を装着して吹錬
中の転炉1内に下降させる。
That is, as shown in FIG. 6, a measuring probe 11 is attached to an automatic insertion device such as a sublance 9, and the measuring probe 11 is lowered into the converter 1 during blowing.

これにより計測プローブ11下端の保護体は先
ずスラグ層2、そしてスラグと溶融金属3の混り
合つた層、更に溶融金属3の順に通過し溶融金属
3中の所定の位置で停止する。
As a result, the protector at the lower end of the measurement probe 11 first passes through the slag layer 2, then the mixed layer of slag and molten metal 3, and then the molten metal 3, and stops at a predetermined position in the molten metal 3.

スラグ層2およびスラグと溶融金属3の混合層
を通過するとき、計測素子14は保護体のカバー
22により保護される。
When passing through the slag layer 2 and the mixed layer of slag and molten metal 3, the measuring element 14 is protected by a protective cover 22.

また溶融金属3中に浸漬されたのちも保護体は
暫時装着された状態であるため、計測素子14が
未溶解スクラツプ塊5などの固体浮遊物に初期段
階において接触することは回避される。
Furthermore, since the protective body remains temporarily attached even after being immersed in the molten metal 3, the measurement element 14 is prevented from coming into contact with floating solid matter such as undissolved scrap mass 5 in the initial stage.

次に保護体が溶融金属3中の測定点に至るとガ
ス発生物質25は通電、温度上昇等に起因して反
応しガス発生する。
Next, when the protector reaches the measuring point in the molten metal 3, the gas generating substance 25 reacts due to electricity supply, temperature rise, etc. and generates gas.

これによりカバー22内の圧力が増大し該カバ
ー22は本体12下端面から分離される。
This increases the pressure within the cover 22 and separates the cover 22 from the lower end surface of the main body 12.

また溶融金属3の対流が存在することから、カ
バー22の接合が一部でも解除されると、その部
分からカバー22が分離され得る。
Further, since convection of the molten metal 3 exists, if even a part of the cover 22 is released, the cover 22 can be separated from that part.

カバー22の分離により、キヤツプ15がある
場合には該キヤツプ15は溶融金属3と接触し、
直ちに溶失する。
The separation of the cover 22 brings the cap 15, if present, into contact with the molten metal 3;
Dissolves immediately.

これにより計測素子14は溶融金属3中に露出
して計測を開始することになる。
As a result, the measurement element 14 is exposed in the molten metal 3 and starts measurement.

本考案の保護体は以上の実施例に示した以外に
次の構成にしてもよい。
The protector of the present invention may have the following configuration other than that shown in the above embodiments.

すなわち計測素子14は広義の概念であり、例
えば計測プローブ11の本体12下端面に試料導
入管((図示せず)を配置して溶融金属の試料採
取を行う場合の該試料導入管等も計測素子14と
解釈するものとする。
In other words, the measurement element 14 is a concept in a broad sense, and for example, when a sample introduction tube (not shown) is arranged on the lower end surface of the main body 12 of the measurement probe 11 to collect a sample of molten metal, the measurement element 14 can also be used for measurement. It shall be interpreted as element 14.

(考案の効果) 本考案の溶融金属計測プローブの計測素子保護
体は以上の実施例に示した構成及び作用において
次の効果を有する。
(Effects of the Invention) The measuring element protector of the molten metal measuring probe of the present invention has the following effects in the configuration and operation shown in the above embodiments.

(1) 本考案の保護体は実用新案登録請求の範囲に
記載した構成であり、特に計測素子はスラグ層
通過中の機械的・熱的衝撃に耐える材料で作ら
れたカバーで被覆されるため浸漬時にハードス
ラグ、低温スラグ、粒鉄および未溶解スクラツ
プ塊から十分保持されこれらにより破損される
心配はない。
(1) The protector of the present invention has the structure described in the claims for utility model registration, and in particular, the measuring element is covered with a cover made of a material that can withstand mechanical and thermal shock while passing through the slag layer. During immersion, it is sufficiently protected from hard slag, low-temperature slag, granulated iron, and undissolved scrap lumps, and there is no risk of damage from these.

(2) 本考案の保護体は同上の構成であり、特にカ
バー内にガス発生物質が封入されているため、
溶融金属中でガスが発生しカバー内の圧力が上
昇することによりカバーは確実に分離される。
(2) The protector of the present invention has the same structure as above, and in particular, since the gas generating substance is enclosed within the cover,
Gas is generated in the molten metal and the pressure within the cover increases to ensure that the cover is separated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の保護体を計測プローブと共に
示す断面正面図、第2図は同上他の保護体を示す
断面正面図、第3図は第2図−断面図、第4
図は本考案の他の保護体を示す断面正面図、第5
図は同上他の保護体を示す断面正面図、第6図は
従来公用の計測プローブを示す概念図、第7a図
及び第7b図は従来の計測プローブのキヤツプの
断面正面図。 1……転炉、2……スラグ層、3……溶融金
属、5……未溶解スクラツプ塊、7……メインラ
ンス、8……酸素ジエツト、9……サブランス、
11……計測プローブ、12……本体、14……
計測素子、15……キヤツプ、19……支持体、
21……リード線、22……カバー、23……接
着剤、25……ガス発生物質、26……隙間、2
7……熱伝導物質。
Fig. 1 is a sectional front view showing the protector of the present invention together with a measurement probe, Fig. 2 is a sectional front view showing another protector similar to the above, Fig. 3 is a cross-sectional view of Fig. 2, and Fig. 4 is a sectional front view showing the protector of the present invention together with a measurement probe.
The figure is a cross-sectional front view showing another protector of the present invention.
FIG. 6 is a conceptual diagram showing a conventional measuring probe for public use; FIG. 7a and FIG. 7b are cross-sectional front views of the cap of a conventional measuring probe. 1... Converter, 2... Slag layer, 3... Molten metal, 5... Unmelted scrap lump, 7... Main lance, 8... Oxygen jet, 9... Sublance,
11...Measuring probe, 12...Main body, 14...
Measuring element, 15...cap, 19...support,
21... Lead wire, 22... Cover, 23... Adhesive, 25... Gas generating substance, 26... Gap, 2
7...Thermal conductive material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 計測プローブの本体下端面において下方に突出
する計測素子を被覆しスラグ層通過中の機械的・
熱的衝撃に耐える材料で作られ前記下端面に接合
されるカバーと、該カバー内に封入され通電、加
熱等によりガス発生するガス発生物質とからなる
溶融金属計測プローブの計測素子保護体。
The measuring element that protrudes downward on the lower end surface of the measuring probe body is coated to prevent mechanical damage while passing through the slag layer.
A measuring element protector for a molten metal measuring probe, comprising a cover made of a material that can withstand thermal shock and bonded to the lower end surface, and a gas generating substance that is sealed within the cover and generates gas when energized, heated, etc.
JP7777384U 1984-05-25 1984-05-25 Measuring element protector for molten metal measuring probe Granted JPS60189849U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7777384U JPS60189849U (en) 1984-05-25 1984-05-25 Measuring element protector for molten metal measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7777384U JPS60189849U (en) 1984-05-25 1984-05-25 Measuring element protector for molten metal measuring probe

Publications (2)

Publication Number Publication Date
JPS60189849U JPS60189849U (en) 1985-12-16
JPH044215Y2 true JPH044215Y2 (en) 1992-02-07

Family

ID=30621148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7777384U Granted JPS60189849U (en) 1984-05-25 1984-05-25 Measuring element protector for molten metal measuring probe

Country Status (1)

Country Link
JP (1) JPS60189849U (en)

Also Published As

Publication number Publication date
JPS60189849U (en) 1985-12-16

Similar Documents

Publication Publication Date Title
US3463005A (en) Immersion molten metal sampler device
US5275488A (en) BOF drop-in thermocouple
KR100385828B1 (en) Falling Input Probe
US4964736A (en) Immersion measuring probe for use in molten metals
US3758397A (en) Apparatus for oxygen determination
US3574598A (en) Method for controlling basic oxygen steelmaking
US4842418A (en) Two temperature measuring probe
US3723279A (en) Apparatus for oxygen determination
US4007106A (en) Device for measuring oxygen concentration in molten-metal
JPH044215Y2 (en)
US3785947A (en) Electrode assembly to determine the oxygen content of molten metal
US4261202A (en) Apparatus for determining carbon contents in molten metal
US3904486A (en) Oxygen probe with self-contained source of oxygen gas, method of use and oxygen generating composition therefor
US5792329A (en) Apparatus to measure an electro-chemical activity
US3505062A (en) Method for positioning an oxygen lance
JPH044214Y2 (en)
US2384024A (en) Thermocouple tube
JPH10176954A (en) Apparatus for measuring temperature of molten metal
KR100337988B1 (en) Method for measuring electrochemical activity
US5223125A (en) Oxygen sensor for aluminum killed, high silicon steel melts
Fitterer et al. The Rapid Determination of Oxygen in Commercial Steel with the Solid Electrolyte Probe
JPS5820901Y2 (en) thermocouple protection tube
JPH0318945Y2 (en)
Mellberg et al. An Electrochemical Study of Silica Diffusion in Liquid CaO-SiO2-Al2O3-CaF2 Slags
JPH0120691Y2 (en)