JPH0441941B2 - - Google Patents

Info

Publication number
JPH0441941B2
JPH0441941B2 JP60218463A JP21846385A JPH0441941B2 JP H0441941 B2 JPH0441941 B2 JP H0441941B2 JP 60218463 A JP60218463 A JP 60218463A JP 21846385 A JP21846385 A JP 21846385A JP H0441941 B2 JPH0441941 B2 JP H0441941B2
Authority
JP
Japan
Prior art keywords
slit
rotating
disk
slit disk
spiral groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60218463A
Other languages
Japanese (ja)
Other versions
JPS6276434A (en
Inventor
Shunichiro Sasaki
Kunihiko Ookubo
Kenji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP21846385A priority Critical patent/JPS6276434A/en
Publication of JPS6276434A publication Critical patent/JPS6276434A/en
Publication of JPH0441941B2 publication Critical patent/JPH0441941B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N21/5911Densitometers of the scanning type

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光吸収測定法の応用機器、とり分け
クロマトスキヤナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an application device for optical absorption measurement, particularly to a chromatography scanner.

(従来の技術) 紫外、可視あるいは時には赤外の分光光度計又
はその他の光吸収分析を行なわせる場合、出口ス
リツトの幅、高さを変えることにより波長分解能
及び線幅(バンド幅とも称される)並びに試料へ
の入射光量を変えることができる。しかし、通常
の固定スリツトを用いた方式では試料内、もしく
は試料表面上での空間方向に対する1次元又は2
次元方向の吸光度分布を遂次連続的に分析し調べ
るのには適さない。
(Prior Art) When performing ultraviolet, visible or sometimes infrared spectrophotometry or other optical absorption analysis, the wavelength resolution and linewidth (also called bandwidth) can be improved by varying the width and height of the exit slit. ) and the amount of light incident on the sample can be changed. However, in the conventional method using a fixed slit, one-dimensional or two-dimensional
It is not suitable for continuously analyzing and investigating the absorbance distribution in the dimensional direction.

そこで、1つの方式として試料上での入射光す
なわち照射点を、試料を固定しておいてから逐次
移動させるフライングスポツト方式が提案されて
いる。
Therefore, as one method, a flying spot method has been proposed in which the incident light, that is, the irradiation point on the sample is moved sequentially after the sample is fixed.

第4図にフライングスポツト方式のクロマトス
キヤナの一例を示す。
FIG. 4 shows an example of a flying spot type chromatography scanner.

1a,1bは光源ランプ、2は集光鏡、3はカ
ツトフイルタ、4は入口スリツト、5はコリメー
タ鏡、6は平面回折格子、7はパルスモータであ
る。パルスモータ7の回転軸には回転スリツト円
板9が取りつけられ、回転スリツト円板9には回
転角に比例して中心からの距離の増分が現われる
螺旋状みぞ穴があけられている。8は出口スリツ
ト部組立であり、そのスリツト板には回転スリツ
ト円板9の螺旋状みぞ穴と交差する位置に出口ス
リツトの幅方向を規定する方形穴8aがあけられ
ており、回転スリツト円板9と重ならない位置に
幅と高さの固定された複数種類の方形穴8bがあ
けられている。パルスモータ7と出口スリツト部
組立8は、矢印で示されるA,B方向に直線的に
移動することのできる摺動基台10に取りつけら
れている。11は遮光板である。
1a and 1b are light source lamps, 2 is a condenser mirror, 3 is a cut filter, 4 is an entrance slit, 5 is a collimator mirror, 6 is a plane diffraction grating, and 7 is a pulse motor. A rotating slit disk 9 is attached to the rotating shaft of the pulse motor 7, and the rotating slit disk 9 is provided with a spiral groove whose distance from the center increases in proportion to the rotation angle. Reference numeral 8 denotes an exit slit part assembly, and the slit plate has a square hole 8a that defines the width direction of the exit slit at a position intersecting with the spiral groove of the rotating slit disc 9. A plurality of types of rectangular holes 8b having fixed widths and heights are drilled at positions that do not overlap with the holes 9. The pulse motor 7 and the exit slit assembly 8 are mounted on a sliding base 10 that can move linearly in directions A and B indicated by arrows. 11 is a light shielding plate.

フライングスポツト方式のジグザク走査を行な
う場合には、螺旋状の細長い溝穴を打ち抜いた回
転スリツト円板をその半径上で平行に合わせて置
かれた(僅かな空〓は必要になるが)細長い方形
スリツト8aの前後(図の場合は後)で回転さ
せ、両者の交差する部分に生じた穴をもれ出る光
束が方形スリツトの高さ方向に移動する現象を利
用する。そして、固定スリツトによる測定方式に
切換えるにはこの回転スリツト円板9のシステム
を主光束の位置から完全に移動させ、固定スリツ
ト用の方形穴8bのいずれかを主光束の位置に位
置決めする。
When performing zigzag scanning using the flying spot method, a rotating slit disk with a spiral slotted hole is placed parallel to the disk on its radius (although a slight gap is required). The slit 8a is rotated before and after the slit 8a (in the case of the figure, at the rear), and the phenomenon is utilized in which the light flux leaking through the hole formed at the intersection of the two moves in the height direction of the rectangular slit. To switch to the measurement method using a fixed slit, the system of rotating slit disk 9 is completely moved from the position of the main beam, and one of the square holes 8b for the fixed slit is positioned at the position of the main beam.

(発明が解決しようとする問題点) 第4図のクロマトスキヤナでは、回転スリツト
円板9の直径が大きくなると、フライングスポツ
ト方式から固定スリツト方式への切替えの際に相
当の距離に渡り直線移動させねばならないので、
機械設計上からもスペースロスが大きいことがわ
かる。また固定スリツトを取りつけている出口ス
リツト部組立8が摺動基台10に対して取りつけ
られる際、周囲の他の機械部品との「当り」を避
けるため、場合によつては無理のある(即ち完全
に振動やたわみの影響をカバーしきれない)状態
で取りつけられてしまう可能性もある。
(Problem to be Solved by the Invention) In the chromatographic scanner shown in Fig. 4, when the diameter of the rotating slit disk 9 increases, it moves in a straight line over a considerable distance when switching from the flying spot method to the fixed slit method. Because I have to let
It can be seen from the mechanical design that the space loss is large. Furthermore, when the exit slit assembly 8 to which the fixed slit is attached is attached to the sliding base 10, in some cases it may be unreasonable (i.e. There is also the possibility that the product may be installed in a condition that does not completely cover the effects of vibration and deflection.

回転スリツト円板9は一方向にのみ回転させら
れる。そのため、フライングスポツト方式のジグ
ザク走査では光が螺旋状みぞ穴を通過する部分
と、回転スリツト円板9に遮られて全く光の通過
しない部分とが存在する。そのため検出器の光電
子増倍管の負高圧レベルの急変や測光信号の応答
異常というような測光上の不都合が生じる。
The rotating slit disk 9 can only be rotated in one direction. Therefore, in the zigzag scanning of the flying spot method, there are parts where the light passes through the spiral grooves and parts where the rotating slit disk 9 blocks the light and no light passes through it. This causes problems in photometry, such as a sudden change in the negative high voltage level of the photomultiplier tube of the detector and an abnormal response of the photometry signal.

本発明の目的は、フライングスポツト方式のジ
グザク走査において、測光上の不都合が生じない
ようにするとともに、フライングスポツト方式と
固定スリツト方式との間の切替えに際し、回転ス
リツト円板及び固定スリツトとその周辺機構部分
をスライド移動させなくてもすむようにして、複
雑で調整工数のかかるスライド式移動機構を不要
にすることにある。
The purpose of the present invention is to prevent photometric problems from occurring in the zigzag scanning of the flying spot method, and also to prevent the rotation of the rotating slit disk, the fixed slit, and their surroundings when switching between the flying spot method and the fixed slit method. To eliminate the need for a complicated slide-type moving mechanism requiring many adjustment steps by eliminating the need to slide a mechanism part.

(問題点を解決するための手段) 一実施例を示す第1図Aを参照して説明する
と、本発明のクロマトスキヤナでは、ほぼ半円領
域に回転角に比例して中心からの距離の増分が現
われる螺旋状みぞ穴13があけられ、残りのほぼ
半円領域に方形の穴14−1〜14−5があけら
れた回転スリツト円板12を出口スリツト位置に
設け、フライングスポツト方式のジグザク走査を
行なう場合には螺旋状みぞ穴13を光束が通過す
る範囲内で回転スリツト円板12を正逆往復回転
させ、固定スリツト方式の走査を行なう場合には
回転スリツト円板12の方形の穴14−1〜14
−5を選択してその選択された方形の穴を光束が
通過する位置に回転スリツト円板12を固定す
る。
(Means for Solving the Problems) To explain with reference to FIG. 1A showing one embodiment, in the chromatography scanner of the present invention, the distance from the center is increased in a substantially semicircular area in proportion to the rotation angle. A rotating slit disk 12 is provided at the exit slit position, in which a spiral slot 13 through which the increments appear and rectangular holes 14-1 to 14-5 are formed in the remaining approximately semicircular area, and a flying spot type zigzag When performing scanning, the rotating slit disk 12 is rotated forward and backward within the range where the light beam passes through the spiral slot 13, and when scanning using the fixed slit method, the square hole of the rotating slit disk 12 is rotated. 14-1~14
-5 is selected and the rotating slit disk 12 is fixed at a position through which the light beam passes through the selected rectangular hole.

(実施例) 第1図Aは一実施例における回転スリツト円板
12をパルスモータ7に取りつけた状態の正面図
を表わし、同図Bは側面図である。
(Embodiment) FIG. 1A shows a front view of a rotary slit disk 12 attached to a pulse motor 7 in one embodiment, and FIG. 1B is a side view.

回転スリツト円板12は支持板16に貼りつけ
られてパルスモータ7の回転軸に取りつけられて
いる。
The rotating slit disk 12 is attached to a support plate 16 and attached to the rotating shaft of the pulse motor 7.

回転スリツト円板12の半円の領域に螺旋状み
ぞ穴スリツト13が打ち抜かれている。みぞ穴ス
リツト13は回転スリツト円板12が図で時計方
向に回転するとx軸(図上の水平軸のこと)とこ
のみぞ穴スリツトとが交差する位置は、中心であ
る原点からの半径で表わして r=r1+(r2−r1)θ/180 となる。15は回転角原点検出用穴であり、θは
回転角原点検出用穴15が設けられている位置か
ら反時計まわりの角度(度)である。回転スリツ
ト円板12が時計回りをする場合、rの大きさは
r1→r2に向つて増大し、その後、反時計回りをす
る場合にはr2→r1に向けて減少する。このことか
ら図上でy軸(鉛直軸)上のt=rm{=(r1
r2)/2}なる位置を分光器の出口スリツトを通
る主光束(要するに光軸)の位置に定め、円板を
±90°の回転角で正逆両方向に交互に回転させる
と、y=r1からy=r2までの範囲内でみぞ穴13
から漏れ出る光束の位置が周期的振動をする。そ
して、回転スリツト円板12の回転中に、回転ス
リツト円板12を通過する光が完全に遮断される
こともない。
A helical slot slit 13 is punched out in the semicircular area of the rotary slit disk 12. When the rotary slit disk 12 rotates clockwise in the figure, the position where the x-axis (horizontal axis in the figure) intersects this groove slit 13 is expressed as a radius from the origin, which is the center. Therefore, r=r 1 + (r 2 − r 1 )θ/180. 15 is a hole for detecting the rotational angle origin, and θ is an angle (degree) counterclockwise from the position where the rotational angle origin detection hole 15 is provided. When the rotating slit disk 12 rotates clockwise, the size of r is
It increases toward r 1 → r 2 and then decreases toward r 2 → r 1 when rotating counterclockwise. From this, on the diagram, t=rm{=(r 1 +
r 2 )/2} is set as the position of the principal beam passing through the exit slit of the spectrometer (in short, the optical axis), and the disk is rotated alternately in both forward and reverse directions at a rotation angle of ±90°, then y= Slot 13 within the range from r 1 to y=r 2
The position of the light flux leaking from the light oscillates periodically. Furthermore, while the rotating slit disk 12 is rotating, the light passing through the rotating slit disk 12 is not completely blocked.

また、回転スリツト円板12の残りの半円の領
域には、幅(円周方向)と高さ(半径方向)が固
定された5種類の方形スリツト14−1〜14−
5が打ち抜かれている。方形スリツト14−1〜
14−5は回転角原点検出用穴15が設けられて
いる位置から時計まわりにそれぞれθ1〜θ5の位置
に設けられている。
Furthermore, in the remaining semicircular area of the rotating slit disk 12, there are five types of rectangular slits 14-1 to 14-1 with fixed widths (circumferential direction) and heights (radial direction).
5 is punched out. Square slit 14-1~
14-5 are provided at positions θ 1 to θ 5 clockwise from the position where the rotation angle origin detection hole 15 is provided.

これらの方形スリツト14−1〜14−5のい
ずれかを選択するには、回転角原点検出用穴15
がフオトカプラの溝を横切つて原点検出をした
後、そこからの必要パルス数を円板駆動用のパル
スモータ7に送り込んで特定の幅、高さの方形ス
リツト14−1〜14−5を主光束の位置に位置
決めする。この操作は本体機器に接続されている
操作部のキーボードからの入力により行なうこと
ができる。
To select one of these rectangular slits 14-1 to 14-5, use the rotation angle origin detection hole 15.
After detecting the origin by crossing the groove of the photocoupler, the necessary number of pulses from there are sent to the pulse motor 7 for driving the disk, which drives the rectangular slits 14-1 to 14-5 with a specific width and height. Position at the position of the light beam. This operation can be performed by inputting from the keyboard of the operation section connected to the main device.

回転スリツト円板12の各半円の領域に異なる
パターンのスリツト穴を打ち抜くので、回転スリ
ツト円板12を貼りつける支持円板16には双方
の領域に対して質量の片寄りがなく、うまくバラ
ンスが取れて回転スリツト円板12が正常に回転
するように逃がし穴(スリツト部分以外の穴)を
打ち抜いておく。
Since slit holes of different patterns are punched in each semicircular area of the rotating slit disk 12, the support disk 16 to which the rotating slit disk 12 is attached has no bias in mass with respect to both areas, and is well balanced. A relief hole (a hole other than the slit portion) is punched out so that the rotary slit disk 12 can rotate normally by removing the hole.

第1図Aの回転スリツト円板12を用いてフラ
イングスポツト方式のジグザク走査を行なうとき
は、光束が螺旋状みぞ穴13を通過する半円の範
囲内で回転スリツト円板12を正逆両方向に交互
に回転させる。光束は絶えず回転スリツト円板1
2のみぞ穴13から漏れ出し、また、光束が他の
半円領域の方形スリツト14−1〜14−5を通
過することもない。そのため、測光系には、急激
な光量変化による光電子増倍管の負高圧レベルの
突発的変動や測光信号の応答異常のような悪影響
は現われない。
When performing zigzag scanning using the flying spot method using the rotating slit disk 12 shown in FIG. Rotate alternately. The light flux is constantly rotating slit disk 1
In addition, the light beam does not leak out from the two slots 13, and the light beam does not pass through the rectangular slits 14-1 to 14-5 in the other semicircular areas. Therefore, adverse effects such as sudden fluctuations in the negative high voltage level of the photomultiplier tube or abnormal response of the photometric signal due to sudden changes in the amount of light do not appear in the photometric system.

このフライングスポツト方式のジグザク走査の
様子を示すと第2図のようになる。図で22は幅
方向スリツト、23は結像用光学素子(球面鏡で
もよい)、24は折曲げ鏡である。25は薄層プ
レート又は二次元泳動ゲルである。回転スリツト
円板12と幅方向スリツト22を通過した光スポ
ツトは、薄層プレート又は二次元泳動ゲル25上
でX方向(すなわち左右)に移動し、薄層プレー
ト25はX−Yステージ(図示略)により光スポ
ツトの移動方向Xと直交するY方向に移動させら
れる。
The state of zigzag scanning using this flying spot method is shown in FIG. In the figure, 22 is a widthwise slit, 23 is an imaging optical element (a spherical mirror may be used), and 24 is a bending mirror. 25 is a thin layer plate or a two-dimensional migration gel. The light spot that has passed through the rotating slit disk 12 and the widthwise slit 22 moves in the X direction (i.e. left and right) on the thin layer plate or two-dimensional migration gel 25, and the thin layer plate 25 is moved on an X-Y stage (not shown). ), the light spot is moved in the Y direction perpendicular to the moving direction X.

固定スリツト方式に切り替える場合は、所定の
方形スリツト14−1〜14−5を主光束の位置
へ位置決めし、回転スリツト円板12を固定す
る。このとき、回転スリツト円板12の方形スポ
ツトを通過した光スポツトは固定されており、薄
層プレート又は二次元泳動ゲル25がX−Yステ
ージによりX,Y方向にジグザグ走査させられる
か、Y方向のみにリニア走査させられる。
When switching to the fixed slit method, predetermined rectangular slits 14-1 to 14-5 are positioned at the position of the main beam, and the rotating slit disk 12 is fixed. At this time, the light spot passing through the rectangular spot of the rotating slit disc 12 is fixed, and the thin layer plate or two-dimensional migration gel 25 is scanned in a zigzag manner in the X and Y directions by an X-Y stage, or Only linear scanning can be performed.

第3図に他の実施例を示す。 FIG. 3 shows another embodiment.

分光器出口スリツト上で結像(試料面上へのピ
ント合わせ)がスリツト高さ方向と幅方向とで多
少ずれがあり、両方向各々に分けて出口スリツト
位置を取扱わなければならない場合、回転スリツ
ト円板12の固定スリツトとしては高さ方向の大
きさを変えた数種類を打ち抜き、回転スリツト円
板12に対して光束の進行方向から見て前又は後
(図の場合は後)に幅方向を規定する可変のスリ
ツト26を設ける。ただし、この場合は図のよう
に2枚の刃先のギヤツプを連続可変させてしまう
ようなタイプが適する。
If the image formation (focusing on the sample surface) on the spectrometer exit slit is slightly misaligned in the slit height direction and width direction, and the exit slit position must be handled separately in both directions, the rotating slit circle As the fixed slits of the plate 12, several types of slits with different sizes in the height direction are punched out, and the width direction is defined in the front or rear (in the case of the figure, the rear) as seen from the traveling direction of the light beam with respect to the rotating slit disk 12. A variable slit 26 is provided. However, in this case, a type that allows the gap between the two cutting edges to be continuously varied as shown in the figure is suitable.

(発明の効果) 本発明によれば、次のような効果を達成するこ
とができる。
(Effects of the Invention) According to the present invention, the following effects can be achieved.

(1) フライングスポツト方式での測定実行中は螺
旋状みぞ穴の切られている範囲内のみで正逆交
互往復回転させるので、途中で光束が完全に遮
断されたり、固定用スリツトの方形穴が光束を
よぎるということがない。そのため、測光系
に、光電子増倍管の負高圧レベルの急変や測光
信号の応答異常というような悪影響を与えるこ
とがない。
(1) During measurement using the flying spot method, the device is rotated back and forth alternately in forward and reverse directions only within the area of the spiral groove, so the light beam may be completely blocked or the rectangular hole in the fixing slit may be completely blocked. It never crosses the beam of light. Therefore, there is no adverse effect on the photometry system, such as a sudden change in the negative high voltage level of the photomultiplier tube or an abnormal response of the photometry signal.

(2) フライングスポツト方式用のスリツトから固
定用スリツトへの切替えは、回転スリツト円板
の回転の制御だけで行なうことが可能になるの
で、モータを含めた回転スリツト円板の機構全
体を直線移動させる必要がない。同時にそのよ
うな移動のための複雑な機構が不必要となる。
また、コストダウにもなる。
(2) Switching from the flying spot type slit to the fixed slit can be done by simply controlling the rotation of the rotating slit disk, so the entire mechanism of the rotating slit disk including the motor can be moved in a straight line. There's no need to do it. At the same time, complex mechanisms for such movements are unnecessary.
It also reduces costs.

(3) 固定スリツト方式の走査を行なうために、回
転スリツト円板の方形の穴によつて方形スリツ
トの高さ又は幅を規定するようにし、可変スリ
ツトを別に設けて方形スリツトの幅又は高さを
規定するようにすれば、分光器出口スリツト上
でスリツトの高さ方向と幅方向で結像にずれが
ある場合にも良好に適用することができる。
(3) In order to perform scanning using the fixed slit method, the height or width of the rectangular slit is defined by a rectangular hole in the rotating slit disk, and a variable slit is provided separately to determine the width or height of the rectangular slit. If this is defined, it can be suitably applied even when there is a deviation in image formation on the spectrometer exit slit in the height direction and width direction of the slit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例で用いられる回転ス
リツト円板をモータに取りつけた状態を表わし、
同図Aは回転スリツト円板側から見た正面図、同
図Bは側面図である。第2図は同実施例における
フライングスポツト方式のジグザク走査を示す概
略図、第3図は他の実施例を示す側面図、第4図
は従来のクロマトスキヤナを示す平面図である。 12……回転スリツト円板、13……螺旋状み
ぞ穴、14−1〜14−5……方形スリツト、1
5……回転角原点検出用穴。
FIG. 1 shows a rotary slit disk used in an embodiment of the present invention attached to a motor.
Figure A is a front view seen from the rotary slit disk side, and Figure B is a side view. FIG. 2 is a schematic view showing a flying spot zigzag scan in the same embodiment, FIG. 3 is a side view showing another embodiment, and FIG. 4 is a plan view showing a conventional chromatography scanner. 12...Rotating slit disk, 13...Spiral groove, 14-1 to 14-5...Square slit, 1
5... Hole for detecting the rotation angle origin.

Claims (1)

【特許請求の範囲】 1 ほぼ半円領域に回転角に比例して中心からの
距離の増分が現われる螺旋状みぞ穴があけられ、
残りのほぼ半円領域に方形の穴があけられた回転
スリツト円板を出口スリツト位置に設け、フライ
ングスポツト方式のジグザグ走査を行なう場合に
は前記螺旋状みぞ穴を光束が通過する範囲内で前
記回転スリツト円板を正逆往復回転させ、固定ス
リツト方式の走査を行なう場合には前記回転スリ
ツト円板の方形の穴を選択してその方形の穴を主
光束が通過する位置に前記回転スリツト円板を固
定することを特徴とするクロマトスキヤナ。 2 ほぼ半円領域に回転角に比例して中心からの
距離の増分が現われる螺旋状みぞ穴があけられ、
残りのほぼ半円領域に高さと幅のうちの一方を異
ならせ他方を十分な大きさにした複数種類の方形
の穴があけられた回転スリツト円板を出口スリツ
ト位置に設け、光束進行方向に対して前記回転ス
リツト円板の前方又は後方でその回転スリツト円
板に接近して前記方形の穴の十分な大きさをもつ
た側の寸法を規定する可変スリツトを設け、フラ
イングスポツト方式のジグザク走査を行なう場合
には、前記可変スリツトを十分な大きさに広げた
状態にして前記螺旋状みぞ穴を光束が通過する範
囲内で前記回転スリツト円板を正逆往復回転さ
せ、固定スリツト方式の走査を行なう場合には、
前記可変スリツトで前記方形の穴の十分な大きさ
をもつた側の寸法を規定し、前記回転スリツト円
板の方形の穴を選択してその方形の穴を主光束が
通過する位置に前記回転スリツト円板を固定する
ことを特徴とするクロマトスキヤナ。
[Claims] 1. A spiral groove is drilled in a substantially semicircular area, and the distance from the center increases in proportion to the rotation angle,
A rotating slit disk with a rectangular hole drilled in the remaining approximately semicircular area is provided at the exit slit position, and when performing zigzag scanning using the flying spot method, the spiral groove is provided within the range through which the light beam passes. When performing fixed slit scanning by rotating a rotating slit disk forward and backward, select a rectangular hole in the rotating slit disk and place the rotating slit circle at a position through which the principal beam passes through the rectangular hole. Chromatoscanyana characterized by fixed plates. 2. A spiral groove is drilled in an approximately semicircular area, and the distance from the center increases in proportion to the rotation angle.
A rotating slit disk in which multiple types of rectangular holes with one of the heights and widths are different and the other of sufficient size is provided in the remaining approximately semicircular area is provided at the exit slit position. On the other hand, a variable slit is provided in front or behind the rotary slit disk and close to the rotary slit disk to define the dimension of the sufficiently large side of the rectangular hole, and a flying spot type zigzag scan is performed. When performing fixed slit scanning, the variable slit is widened to a sufficient size and the rotating slit disk is rotated in forward and reverse directions within the range through which the light beam passes through the spiral groove. When performing
The dimension of the sufficiently large side of the square hole is defined by the variable slit, the square hole of the rotating slit disk is selected, and the square hole is rotated to a position through which the principal beam passes. A chromatographic scanner characterized by a fixed slit disk.
JP21846385A 1985-09-30 1985-09-30 Chromatoscanner Granted JPS6276434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21846385A JPS6276434A (en) 1985-09-30 1985-09-30 Chromatoscanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21846385A JPS6276434A (en) 1985-09-30 1985-09-30 Chromatoscanner

Publications (2)

Publication Number Publication Date
JPS6276434A JPS6276434A (en) 1987-04-08
JPH0441941B2 true JPH0441941B2 (en) 1992-07-09

Family

ID=16720298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21846385A Granted JPS6276434A (en) 1985-09-30 1985-09-30 Chromatoscanner

Country Status (1)

Country Link
JP (1) JPS6276434A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287140C (en) 2000-09-25 2006-11-29 松下电器产业株式会社 Device for chromatographic quantitative measurement
JP4797233B2 (en) * 2000-09-25 2011-10-19 パナソニック株式会社 Compact sample concentration measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913088A (en) * 1972-05-18 1974-02-05
JPS5123795A (en) * 1974-08-21 1976-02-25 Shimadzu Corp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913088A (en) * 1972-05-18 1974-02-05
JPS5123795A (en) * 1974-08-21 1976-02-25 Shimadzu Corp

Also Published As

Publication number Publication date
JPS6276434A (en) 1987-04-08

Similar Documents

Publication Publication Date Title
CA2395293C (en) Optical scheme for high flux low-background two-dimensional small angle x-ray scattering
JP3385164B2 (en) How to operate the spectrometer
US4575243A (en) Monochromator
EP1396716B1 (en) X-ray optical system for small angle scattering measurements
JPH04109103A (en) Light spot position detecting device
US6307917B1 (en) Soller slit and X-ray apparatus
JPH0441941B2 (en)
US20150138536A1 (en) Data knitting tandem dispersive range monochromator
US4410785A (en) Method and apparatus for perforation of sheet material by laser
WO2000033120A1 (en) Device for scanning an object
US3671754A (en) Scanning apparatus for biological microdensitometry
EP0634636A1 (en) Michelson-type interferometer
JP4312152B2 (en) Spectrum identification apparatus and method
JPH08145795A (en) Double/single color meter
JP3540301B2 (en) Precise shape measurement method using laser light
CN110308168B (en) X-ray diffraction apparatus
JP3308326B2 (en) Spectroscope
US4494821A (en) Laser printing system with developable helicoid reflector
JPS62240842A (en) Chromatographic scanner
JP2533169B2 (en) X-ray diffractometer
JPH10227898A (en) Solar slit device of x-ray analyzer
JPH083445B2 (en) Optical spectrum detector
JP3098806B2 (en) X-ray spectrometer and EXAFS measurement device
JP2000258249A (en) Spectrum analyzer
JP2000146692A (en) Spectroscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees