JPH0441903A - Water feed control device - Google Patents

Water feed control device

Info

Publication number
JPH0441903A
JPH0441903A JP14691690A JP14691690A JPH0441903A JP H0441903 A JPH0441903 A JP H0441903A JP 14691690 A JP14691690 A JP 14691690A JP 14691690 A JP14691690 A JP 14691690A JP H0441903 A JPH0441903 A JP H0441903A
Authority
JP
Japan
Prior art keywords
water supply
control valve
pump
supply control
water feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14691690A
Other languages
Japanese (ja)
Inventor
Hajime Tsurumi
鶴見 肇
Takao Konishi
小西 崇夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14691690A priority Critical patent/JPH0441903A/en
Publication of JPH0441903A publication Critical patent/JPH0441903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably secure the preset water feed flow by providing a signal switch in a water feed system, controlling the water feed pump rotating speed with the output signal of the function generator of the first controller when a plant is activated, and controlling it with that of the second controller during the normal operation. CONSTITUTION:A water feed control valve 22 and a water feed control valve 23 are connected in series to a water feed system including a turbine driving water feed pump 20, a water feed control valve bypass valve 24 and the system of the water feed control valve 22 are arranged in parallel, the opening of a steam governor valve 29 controlling the rotating speed of a pump driving turbine 21 is controlled by the calculated result to a low-value selecting circuit 36, and a switch 2 is provided before an adder 32 in this circuit. A water feed header pressure generator 3 is connected at the downstream of the water feed control valve 23, the signal of the preset function outputted from a function generator 4 is fed to the switch 2 based on the output signal, and the water feed control valve 22 is controlled by a PI controller 1 receiving the differential signal between the water feed flow command 30 and the discharge flow of the turbine driving water feed pump 20 when a plant is activated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は給水制御装置に係り、特に火力発電プラント内
の駆動用タービンにより駆動されるタービン駆動給水ポ
ンプを使用する給水制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a water supply control device, and particularly to water supply control using a turbine-driven water pump driven by a driving turbine in a thermal power plant. Regarding equipment.

(従来の技術) 近年の火力発電プラントは省エネルギ一対策としてプラ
ントを起動する際、モータ駆動給水ポンプを用いずに、
タービン駆動給水ポンプを使用する傾向にある。これに
よりプラント内に豊富にある蒸気を動力として再利用す
ることができる。
(Conventional technology) In recent years, thermal power plants do not use motor-driven water pumps when starting up the plants as a measure to save energy.
There is a trend towards using turbine-driven water pumps. This allows the abundant steam within the plant to be reused as power.

しかし、上記タービン駆動給水ポンプをプラント起動時
のようにボイラ給水圧力が無圧に近い状態から使用する
場合は、上記駆動用タービンに運用最低回転数が設定さ
れているので、制御の安定性を図るため給水ポンプ出口
に設置された給水制御弁と組み合わせて制御するように
なっている。
However, when using the turbine-driven feed water pump in a state where the boiler feed water pressure is close to zero, such as when the plant is started up, the drive turbine has a minimum operating speed set, so the stability of the control is reduced. In order to achieve this, it is controlled in combination with a water supply control valve installed at the water supply pump outlet.

第6図は従来のこの種の給水制御装置の給水系統図を示
している。図中符号20はタービン駆動給水ポンプ(T
−BEP)を示しており、このタービン駆動給水ポンプ
20は駆動用タービン21により駆動され、回転するよ
うになっている。そしてこのタービン駆動給水ポンプ2
0からボイラ(図示せず)への給水系統には給水制御弁
22と給水制御抜弁23が直列に、さらに給水制御弁バ
イパス弁24が上記給水制御弁22の系統と並列に配置
されている。
FIG. 6 shows a water supply system diagram of a conventional water supply control device of this type. The reference numeral 20 in the figure is a turbine-driven water pump (T
-BEP), and this turbine-driven water supply pump 20 is driven by a driving turbine 21 to rotate. And this turbine driven water supply pump 2
In the water supply system from 0 to the boiler (not shown), a water supply control valve 22 and a water supply control vent valve 23 are arranged in series, and a water supply control valve bypass valve 24 is arranged in parallel with the system of the water supply control valve 22.

上記給水制御弁22はタービン駆動給水ポンプ20の吐
出側に設けられた吐出圧力発信器25と圧力設定値信号
発生器26とからの信号とが等しくなるように減算器2
7を経てPIコントローラ28により制御される。
The water supply control valve 22 is operated by a subtractor 2 so that the signals from the discharge pressure transmitter 25 and the pressure set value signal generator 26 provided on the discharge side of the turbine-driven water pump 20 become equal.
7 and is controlled by the PI controller 28.

一方、上記駆動用タービン21の上流の蒸気供給系統A
には蒸気加減弁29が設けられており、上記駆動用ター
ビン21の回転数はこの蒸気加減弁29により制御され
る。この蒸気加減弁29の開度は給水流量指令(FWD
)30とタービン駆動給水ポンプの吐出流量とを入力す
る減算器27と上記タービン駆動給水ポンプに開度指令
信号を出力するPIコントローラ28とを経て、最低回
転数信号発生器31と上記開度指令信号とを入力する加
算器32と、この演算結果と上記駆動用タービンの回転
数を検出するピックアップ33からの信号とを入力する
減算器27と、Pコントローラ34と、タービン駆動給
水ポンプ起動プログラム3°5からの指令信号と上記P
コントローラ34からの信号とを低値選択回路36に入
力し、この演算結果を上記蒸気加減弁29に開度指令信
号として入力するようになっている。
On the other hand, the steam supply system A upstream of the driving turbine 21
A steam control valve 29 is provided, and the rotation speed of the driving turbine 21 is controlled by this steam control valve 29. The opening degree of this steam control valve 29 is determined by the water supply flow rate command (FWD).
) 30 and the discharge flow rate of the turbine-driven water supply pump, and a PI controller 28 that outputs an opening command signal to the turbine-driven water pump, the minimum rotation speed signal generator 31 and the opening command are input. an adder 32 that inputs a signal, a subtracter 27 that inputs this calculation result and a signal from a pickup 33 that detects the rotation speed of the driving turbine, a P controller 34, and a turbine-driven water pump starting program 3. The command signal from °5 and the above P
The signal from the controller 34 is input to the low value selection circuit 36, and the result of this calculation is input to the steam control valve 29 as an opening command signal.

上記回路において、最低信号回転数発生器31は駆動用
タービン21の最低回転数を規定するものである。また
、タービン駆動給水ポンプ起動プログラム35はポンプ
起動時に動作する回路であり、起動完了後の通常運転中
は上記タービン駆動給水ポンプ20の制御に関与しない
In the above circuit, the minimum signal rotation speed generator 31 defines the minimum rotation speed of the driving turbine 21. Further, the turbine-driven water pump starting program 35 is a circuit that operates when the pump is started, and does not participate in the control of the turbine-driven water pump 20 during normal operation after completion of startup.

次に、ポンプ起動時から通常運転に至るまでの制御の内
容に簡単に説明する。上記タービン駆動給水ポンプ起動
プログラム35によってタービン駆動給水ポンプ20が
起動されると、ポンプの回転数は最低回転数を示し、給
水制御弁22は全閉状態に保持される。その後、給水流
量指令30が増加するにつれてポンプの回転数が増加し
、これによりポンプ吐出圧力が上昇する。これをポンプ
吐出圧力発信器25により検出して給水制御弁22が開
かれ、ボイラへの給水が得られる。さらにこの値はBF
P吐出流量として上記減算器27にフィードバックされ
るようになっている。
Next, we will briefly explain the details of the control from pump startup to normal operation. When the turbine-driven water supply pump 20 is started by the turbine-driven water supply pump starting program 35, the rotation speed of the pump shows the minimum rotation speed, and the water supply control valve 22 is kept in a fully closed state. Thereafter, as the water supply flow rate command 30 increases, the number of rotations of the pump increases, thereby increasing the pump discharge pressure. This is detected by the pump discharge pressure transmitter 25, the water supply control valve 22 is opened, and water is supplied to the boiler. Furthermore, this value is BF
It is fed back to the subtractor 27 as the P discharge flow rate.

ところで、第7図はこの種の給水制御装置の動作を給水
ポンプ吐出流量−吐出圧力曲線(Q−Hカーブ)上に表
わした特性曲線図である。初期段階において、タービン
駆動給水ポンプの回転数がα1(「p■)、給水制御弁
の圧力設定値がβ(kg/cm2g)のとき、タービン
駆動給水ポンプの運転点はX で、その時の流量はγ、
 (tlh)となる。
By the way, FIG. 7 is a characteristic curve diagram showing the operation of this type of water supply control device on a water supply pump discharge flow rate-discharge pressure curve (QH curve). In the initial stage, when the rotational speed of the turbine-driven water supply pump is α1 (p■) and the pressure setting value of the water supply control valve is β (kg/cm2g), the operating point of the turbine-driven water supply pump is X, and the flow rate at that time is is γ,
(tlh).

■ ここで給水流量指令が増加し、タービン駆動給水ポンプ
の回転数がα2 (rps)まで増加すると運転点はx
2に変化する。このときBFP吐出圧力が僅かに上昇す
るので、これを一定値β(kg/cs” g)に保持す
るために給水制御弁が開動作する。これによりタービン
駆動給水ポンプの運転点はX 2−となり、その時の流
量はγ2(tlh)となる。
■ If the feed water flow rate command increases and the rotation speed of the turbine-driven water pump increases to α2 (rps), the operating point will be x.
Changes to 2. At this time, the BFP discharge pressure increases slightly, so the feed water control valve opens to maintain it at a constant value β (kg/cs'' g).As a result, the operating point of the turbine-driven water pump becomes X 2- Therefore, the flow rate at that time is γ2 (tlh).

(発明が解決しようとする課題) しかしながら、上述の給水制御装置では給水ポンプ吐出
流量−吐出圧力曲線(Q−Hカーブ)の左端に近い領域
を使用しているためタービン駆動給水ポンプの回転数が
僅かに変化しても大幅な流量変化が発生してしまい、制
御系のゲインが非常に高くなる。また、給水系統に実際
の流量が得られるまでには回路中に2段のPIコントロ
ーラの他、多数の装置が介在しているので制御系の遅れ
時間が大きくなるという問題がある。このため安定した
制御が得難く、給水流量の低下によるブラントトリップ
やボイラチューブの破損を引き起こすおそれもある。
(Problem to be solved by the invention) However, since the above-mentioned water supply control device uses a region close to the left end of the water pump discharge flow rate-discharge pressure curve (Q-H curve), the rotation speed of the turbine-driven water pump is Even a slight change in flow rate will result in a large change in flow rate, and the gain of the control system will become extremely high. In addition, there is a problem in that the delay time of the control system becomes long because a large number of devices in addition to the two-stage PI controller are involved in the circuit until the actual flow rate is obtained in the water supply system. For this reason, it is difficult to obtain stable control, and there is a risk of blunt tripping or damage to the boiler tube due to a decrease in the water supply flow rate.

そこで、本発明の目的は、上述した従来の技術が有する
問題点を解消し、制御系のゲインと制御遅れ時間を適正
なものとし、タービン駆動給水ポンプを起動時の低流量
時から通常運転時に至るまで所定の給水流量を安定して
確保することができる給水制御装置を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the problems of the above-mentioned conventional technology, to make the gain and control delay time of the control system appropriate, and to provide a turbine-driven water pump that can be operated from a low flow rate at startup to a normal operation. It is an object of the present invention to provide a water supply control device that can stably secure a predetermined water supply flow rate throughout the period.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明は駆動タービンによ
り駆動されるタービン駆動給水ポンプの吐出側に給水制
御弁と給水制御後弁と給水制御弁バイパス弁とを配置し
2、上記給水制御弁の開閉調整により給水流量を制御す
る第1の制御部を備え、さらに給水流量指令と上記給水
ポンプ吐出流量との偏差を検出して上記駆動タービンの
蒸気加減弁の開度を調整し、上記給水ポンプ回転数を制
御する第2の制御部とを備えた給水制御装置において、
上記第1の制御部を上記給水制御弁に開度指令を送るP
Iコントローラと、上記給水制御後弁の下流に設けられ
た給水ヘッダ圧力発信器と、この給水ヘッダ圧力発信器
からの信号を入力し、所定の出力信号を発生させる関数
発生器とで構成し、さらに給水系統内に信号切替器を設
け、この信号切替器の切替えによりプラント起動時は上
記第1の制御部の関数発生器の出力信号により上記給水
ポンプの回転数を制御し、通常運転中は上記第2の制御
部により上記給水ポンプ回転数を制御することを特徴と
するものであり、また、上記第1の制御部を上記給水制
御弁に開度指令を送るPIコントローラと、上記給水制
御弁の開度検出器と、この開度検出器からの信号を入力
し、所定の出力信号を発生させる関数発生器とで構成し
、さらに給水系統内に信号切替器を設け、この信号切替
器の切替えによりプラント起動時は上記第1の制御部の
関数発生器の出力信号により上記給水ポンプの回転数を
制御し、通常運転中は上記第2の制御部により上記給水
ポンプ回転数を制御することを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a water supply control valve, a water supply control post-control valve, and a water supply control valve bypass valve on the discharge side of a turbine-driven water supply pump driven by a driving turbine. 2, comprising a first control section that controls the feed water flow rate by adjusting the opening and closing of the feed water control valve; A water supply control device comprising a second control unit that adjusts the opening degree and controls the rotation speed of the water supply pump,
Sends an opening command to the first control section to the water supply control valve P
It is composed of an I controller, a water supply header pressure transmitter provided downstream of the water supply control post-valve, and a function generator that receives a signal from the water supply header pressure transmitter and generates a predetermined output signal, Furthermore, a signal switch is provided in the water supply system, and by switching this signal switch, the rotation speed of the water pump is controlled by the output signal of the function generator of the first control section when the plant is started, and during normal operation, The water supply pump rotation speed is controlled by the second control section, and the first control section is configured to include a PI controller that sends an opening command to the water supply control valve, and a PI controller that sends an opening command to the water supply control valve. It consists of a valve opening detector and a function generator that inputs the signal from this opening detector and generates a predetermined output signal, and furthermore, a signal switch is installed in the water supply system, and this signal switch When the plant is started up, the rotation speed of the water supply pump is controlled by the output signal of the function generator of the first control section, and during normal operation, the rotation speed of the water supply pump is controlled by the second control section. It is characterized by this.

(作 用) 本発明によれば、駆動タービンにより駆動されるタービ
ン駆動給水ポンプの吐出側に給水制御弁と給水制御後弁
と給水制御弁バイパス弁とを配置し、上記給水制御弁の
開閉調整により給水流量を制御する第1の制御部を備え
、さらに給水流量指令と上記給水ポンプ吐出流量との偏
差を検出して上記駆動タービンの蒸気加減弁の開度を調
整し、上記給水ポンプ回転数を制御する第2の制御部と
を備えた給水制御装置において、上記第1の制御部を上
記給水制御弁に開度指令を送るPIコントローラと、上
記給水制御後弁の下流に設けられた給水ヘッダ圧力発信
器と、この給水ヘッダ圧力発信器からの信号を入力し、
所定の出力信号を発生させる関数発生器とで構成し、さ
らに給水系統内に信号切替器を設け、この信号切替器の
切替えによりプラント起動時は上記第1の制御部の関数
発生器の出力信号により上記給水ポンプの回転数を制御
し、通常運転中は上記第2の制御部により上記給水ポン
プ回転数を制御することにより、夕一ビン駆動給水ポン
プの回転数が給水ヘッダ圧力の上昇に伴って所定の関数
に従って上昇するので、給水制御弁のみの制御領域を越
えた場合、給水制御弁バイパス弁を全開し、蒸気加減弁
の開度を調整してタービン駆動給水ポンプの回転数のみ
による制御にスムーズに移行するーことができる。
(Function) According to the present invention, a water supply control valve, a post-water supply control valve, and a water supply control valve bypass valve are arranged on the discharge side of a turbine-driven water supply pump driven by a driving turbine, and the opening and closing of the water supply control valve is adjusted. a first control unit that controls the feed water flow rate according to the method, and further detects a deviation between the feed water flow rate command and the feed water pump discharge flow rate, adjusts the opening degree of the steam control valve of the drive turbine, and adjusts the rotation speed of the feed water pump. a PI controller that sends an opening command to the water supply control valve; and a water supply control device provided downstream of the water supply control valve. Input the header pressure transmitter and the signal from this water supply header pressure transmitter,
A function generator that generates a predetermined output signal is further provided in the water supply system, and by switching this signal switch, the output signal of the function generator of the first control section is changed at the time of plant startup. The rotation speed of the feed water pump is controlled by the second control section during normal operation, so that the rotation speed of the water bottle drive water pump increases as the water supply header pressure increases. Therefore, if it exceeds the control range of the feedwater control valve alone, the feedwater control valve bypass valve is fully opened, the opening of the steam control valve is adjusted, and the rotation speed of the turbine-driven feedwater pump is controlled solely. You can smoothly transition to

また、上記第1の制御部を上記給水制御弁に開度指令を
送るPIコントローラと、上記給水制御弁の開度検出器
と、この開度検出器からの信号を入力し、所定の出力信
号を発生させる関数発生器とで構成し、さらに給水系統
内に信号切替器を設け、この信号切替器の切替えにより
プラント起動時は上記第1の制御部の関数発生器の出力
信号により上記給水ポンプの回転数を制御し、通常運転
中は上記第2の制御部により上記給水ポンプ回転数を制
御することにより、タービン駆動給水ポンプの回転数が
給水制御弁の開度の上昇に伴って所定の関数に従って上
昇するので、給水制御弁のみの制御領域を越えた場合、
給水制御弁バイパス弁を全開し、蒸気加減弁の開度を調
整してタービン駆動給水ポンプの回転数のみによる制御
にスムーズに移行することができる。
Further, the first control section is connected to a PI controller that sends an opening command to the water supply control valve, an opening detector of the water supply control valve, and a signal from this opening detector, and a predetermined output signal. Furthermore, a signal switch is provided in the water supply system, and when the signal switch is switched, the output signal of the function generator of the first control section is used to switch the water supply pump to the water supply pump. During normal operation, the second control section controls the rotation speed of the water supply pump, so that the rotation speed of the turbine-driven water supply pump reaches a predetermined level as the opening degree of the water supply control valve increases. It rises according to the function, so if it exceeds the control area of only the water supply control valve,
By fully opening the feedwater control valve bypass valve and adjusting the opening degree of the steam control valve, it is possible to smoothly shift to control based only on the rotation speed of the turbine-driven feedwater pump.

(実施例) 以下本発明による給水制御装置の一実施例を第1図乃至
第5図を参照して説明する。
(Embodiment) An embodiment of the water supply control device according to the present invention will be described below with reference to FIGS. 1 to 5.

第1図において、従来例と同様の構成部分については第
6図と同一の符号を付して以下の説明を行う。
In FIG. 1, the same components as in the conventional example are given the same reference numerals as in FIG. 6 and will be described below.

図中符号20はタービン駆動給水ポンプ(T−BEP)
を示しており、このタービン駆動給水ポンプ20は駆動
用タービン21に駆動され、回転するようになっている
。そしてこのタービン駆動給水ポンプ20からボイラへ
の給水系統には給水制御弁22と給水制御抜弁23が直
列に、さらに給水制御弁バイパス弁24が上記給水制御
弁の系統と並列に配置されている。
Reference numeral 20 in the figure is a turbine-driven water pump (T-BEP)
This turbine-driven water supply pump 20 is driven by a driving turbine 21 and rotates. In the water supply system from the turbine-driven water pump 20 to the boiler, a water supply control valve 22 and a water supply control vent valve 23 are arranged in series, and a water supply control valve bypass valve 24 is arranged in parallel with the water supply control valve system.

上記給水制御弁22には給水流量指令とタービン駆動給
水ポンプの吐出流量との偏差信号を受けるPlコントロ
ーラ1が接続されている。
A Pl controller 1 is connected to the water supply control valve 22, which receives a deviation signal between the water supply flow rate command and the discharge flow rate of the turbine-driven water pump.

一方、上記駆動用タービン21の回転数は蒸気加減弁2
9により制御され、この蒸気加減弁29の開度は従来例
と同様に給水流量指令(FWD)30とタービン駆動給
水ポンプ吐出流量とを入力値とし、低値選択回路36に
至るまでの演算結果を上記蒸気加減弁29に開度指令信
号として入力するようになっている。この回路内の加算
器32の前には切替器2が設けられている。
On the other hand, the rotation speed of the driving turbine 21 is determined by the steam control valve 2.
9, and the opening degree of this steam control valve 29 is determined by using the feed water flow rate command (FWD) 30 and the turbine-driven water pump discharge flow rate as input values, as in the conventional example, and the calculation result up to the low value selection circuit 36. is input to the steam control valve 29 as an opening command signal. A switch 2 is provided in front of the adder 32 in this circuit.

また、上記給水制御抜弁23の下流には給水ヘッダ圧力
発信器3が接続されている。この給水ヘッダ圧力発信器
3は上記給水系統からの給水ヘッド圧力を信号として出
力するものである。さらにこの給水ヘッダ圧力発信器3
には関数発生器4が接続されており、入力信号に応じた
所定関数の信号を上記切替器2に出力することができる
Further, a water supply header pressure transmitter 3 is connected downstream of the water supply control vent valve 23. This water supply header pressure transmitter 3 outputs the water supply head pressure from the water supply system as a signal. Furthermore, this water supply header pressure transmitter 3
A function generator 4 is connected to the switch 2, and can output a signal of a predetermined function to the switch 2 according to the input signal.

上記切替器2はプラント起動時はb−c側に接続されて
いるので、プラント起動時は上記給水制御弁22は給水
流量指令とタービン駆動給水ポンプの吐出流量との偏差
信号を受けたPIコントローラ1により制御されるよう
になっている。
Since the switching device 2 is connected to the b-c side when the plant is started, the water supply control valve 22 is connected to the PI controller that receives the deviation signal between the water supply flow rate command and the discharge flow rate of the turbine-driven water supply pump. 1.

すなわち、タービン駆動給水ポンプ2oの回転数指令と
しては上記給水ヘッダ圧力発信器3の信号から関数発生
器4により作られるプログラム指令値が与えられる。
That is, a program command value generated by a function generator 4 from a signal from the water supply header pressure transmitter 3 is given as a rotation speed command for the turbine-driven water supply pump 2o.

第3図は上記関数発生器4により設定される出力信号(
給水ポンプ回転数指令)を示したものである。この関数
曲線を説明すると、給水ヘッダ圧力発信器3からの信号
が一定値p1までは出力信号はゼロを示し、この間のタ
ービン駆動給水ポンプ20の回転数は最低回転数を保持
されるようになっている。そして、上記給水ヘッダ圧力
が上昇してタービン駆動給水ポンプ2oの吐出圧力との
差、すなわち給水制御弁22の前後差圧が小さくなって
きたところで上記関数発生器4の出力を所定の関数に従
って増加させ、上記給水制御弁22に必要な前後差圧を
確保する。その後、給水ヘッダ圧力発信器3からの信号
が一定値p2まで上昇した段階で上記関数発生器4の出
力を一定値p2に保持する。さらに給水制御弁22の開
度が増加し、全開点近傍になった段階で上記給水制御弁
バイパス弁24を開すると同時に上記切替器2をa−c
側に切り替える。以後は従来と同様に通常運転において
、タービン駆動給水ポンプ20の回転数制御により給水
制御を行う。
FIG. 3 shows the output signal (
water supply pump rotation speed command). To explain this function curve, the output signal shows zero until the signal from the water supply header pressure transmitter 3 reaches a certain value p1, and during this time the rotation speed of the turbine-driven water supply pump 20 is maintained at the minimum rotation speed. ing. Then, when the water supply header pressure rises and the difference with the discharge pressure of the turbine-driven water supply pump 2o, that is, the differential pressure across the water supply control valve 22 becomes small, the output of the function generator 4 is increased according to a predetermined function. to ensure the necessary differential pressure across the water supply control valve 22. Thereafter, when the signal from the water supply header pressure transmitter 3 rises to a constant value p2, the output of the function generator 4 is held at a constant value p2. Furthermore, the opening degree of the water supply control valve 22 increases, and at the stage when it is near the fully open point, the water supply control valve bypass valve 24 is opened, and at the same time the switching device 2 is switched between a and c.
Switch to the side. Thereafter, water supply control is performed by controlling the rotational speed of the turbine-driven water supply pump 20 during normal operation as in the past.

次に本発明の給水制御装置の作用を第4図および第5図
を用いて説明する。
Next, the operation of the water supply control device of the present invention will be explained using FIGS. 4 and 5.

第4図は給水制御弁開度とCv値との関係を示した特性
図である。この両者の関係は給水流量指令値とBFT吐
出流量との関係に置き換えて考えることができる。した
がって、本発明の給水制御装置の制御系は適正なゲイン
で制御することができる。また、制御系が減算器と給水
制御弁用PIコントローラとで構成されていることから
、適正な制御時間を設定することができ、安定した制御
を実現できる。
FIG. 4 is a characteristic diagram showing the relationship between the water supply control valve opening degree and the Cv value. The relationship between the two can be replaced with the relationship between the water supply flow rate command value and the BFT discharge flow rate. Therefore, the control system of the water supply control device of the present invention can be controlled with an appropriate gain. Further, since the control system is composed of a subtracter and a PI controller for the water supply control valve, an appropriate control time can be set, and stable control can be realized.

また、第5図は本給水制御装置の動作を給水ポンプ吐出
流量−吐出圧力曲線(Q−Hカーブ)上に表わした特性
曲線図である。初期段階では給水流量及び給水ヘッダ圧
力が小さく、タービン駆動給水ポンプの運転点はyl、
給水ヘッダ圧力はzlである。このとき、は給水制御弁
の前後差圧は上記値の差(yl−z、)で、給水流量は
ε1表わすことができる。
Further, FIG. 5 is a characteristic curve diagram showing the operation of the present water supply control device on a water supply pump discharge flow rate-discharge pressure curve (QH curve). At the initial stage, the feed water flow rate and feed water header pressure are small, and the operating point of the turbine-driven feed water pump is yl,
The water supply header pressure is zl. At this time, the differential pressure across the water supply control valve is the difference (yl-z,) between the above values, and the water supply flow rate can be expressed as ε1.

その後、給水流量が増加し、給水ヘッダ圧力も上昇した
段階において、タービン駆動給水ポンプの回転数をその
まま保持した場合にはタービン駆動給水ポンプの運転点
はy2、給水ヘッダ圧力はz2となる。このときの給水
制御弁前後差圧(y 2  Z 2 )では給水制御弁
が全開となっても流量ε2を確保することができない。
After that, at a stage when the water supply flow rate increases and the water supply header pressure also rises, if the rotation speed of the turbine-driven water supply pump is maintained as it is, the operating point of the turbine-driven water supply pump becomes y2 and the water supply header pressure becomes z2. With the differential pressure across the water supply control valve (y 2 Z 2 ) at this time, the flow rate ε2 cannot be ensured even if the water supply control valve is fully opened.

そこで、第3図に示したような給水ポンプ回転数指令を
出力させることでタービン駆動給水ポンプの回転数を最
低回転数δ1 (rpm)からδ2(rpm)に上昇さ
せ、運転点をy2.まで高め、給水制御弁前後差圧を(
y2=−z2)まで増加させるようにする。
Therefore, the rotation speed of the turbine-driven water pump is increased from the minimum rotation speed δ1 (rpm) to δ2 (rpm) by outputting the water supply pump rotation speed command as shown in FIG. 3, and the operating point is changed to y2. Increase the differential pressure across the water supply control valve to (
y2=-z2).

給水制御弁が全開状態に近くなった段階でタービン駆動
給水ポンプの回転数による制御に切り替える。したがっ
て、運転点はy21.以後は給水ポンプ吐出流量−吐出
圧力曲線(Q−Hカーブ)とシステムヘッド曲線との交
点()’3.Y4・・・)で示される。
When the water supply control valve is close to being fully open, control is switched to control based on the rotation speed of the turbine-driven water supply pump. Therefore, the operating point is y21. From now on, the intersection point ()'3 between the water supply pump discharge flow rate-discharge pressure curve (Q-H curve) and the system head curve will be explained. Y4...).

次に給水制御弁の開度信号を上記関数発生器に入力する
ようにした制御装置について説明する。
Next, a control device that inputs the opening degree signal of the water supply control valve to the function generator will be described.

第2図において、給水制御弁22には上述の発明と同様
に給水流量指令とタービン駆動給水ポンプの吐出流量と
の偏差信号を受けるPIコントローラ1が接続されてい
る。また、この給水制御弁22には開度検出器5が備え
られており、この開度検出器5により得られた開度信号
は関数発生器6に入力される。
In FIG. 2, the PI controller 1 that receives a deviation signal between the water supply flow rate command and the discharge flow rate of the turbine-driven water pump is connected to the water supply control valve 22, as in the above-described invention. The water supply control valve 22 is also equipped with an opening detector 5, and an opening signal obtained by the opening detector 5 is input to a function generator 6.

第3図は上記関数発生器6により設定される出力信号(
給水ポンプ回転数指令)を示したものである。この関数
曲線を説明すると、給水制御弁22の開度検出器5から
の開度信号が一定値p1までは出力信号はゼロを示し、
この間タービン駆動給水ポンプ20の回転数は最低回転
数を保持されるようになっている。そして、上記給水制
御弁22の開度が増加し、給水制御弁22の前後差圧が
小さくなってきたところで上記関数発生器6の出力を所
定の関数に従って増加させ、上記給水制御弁22に必要
な前後差圧を確保する。その後、給水制御弁22の開度
信号が一定値p2まで上昇した段階で上記関数発生器の
出力を一定値に保持する。さらに給水制御弁22の開度
が増加し、全開点近傍になった段階で上記給水制御弁バ
イパス弁24を開すると同時に上記切替器2をa−c側
に切り替える。以後は従来と同様に通常運転において、
タービン駆動給水ポンプの回転数制御により給水制御を
行う。
FIG. 3 shows the output signal (
water supply pump rotation speed command). To explain this function curve, the output signal shows zero until the opening signal from the opening detector 5 of the water supply control valve 22 reaches a constant value p1,
During this time, the rotational speed of the turbine-driven water supply pump 20 is maintained at the minimum rotational speed. Then, when the opening degree of the water supply control valve 22 increases and the differential pressure across the water supply control valve 22 becomes small, the output of the function generator 6 is increased according to a predetermined function, and the output of the water supply control valve 22 is increased according to a predetermined function. Ensure a sufficient differential pressure between the front and rear. Thereafter, when the opening signal of the water supply control valve 22 rises to a constant value p2, the output of the function generator is held at a constant value. Furthermore, the opening degree of the water supply control valve 22 increases, and when the water supply control valve bypass valve 24 is opened at a stage near the full opening point, the switching device 2 is switched to the a-c side. From then on, in normal operation as before,
Water supply is controlled by controlling the rotation speed of the turbine-driven water supply pump.

なお、本発明においても第4図及び第5図に示した動作
を得ることができる。
Note that the operations shown in FIGS. 4 and 5 can also be obtained in the present invention.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、プラ
ント起動時において給水流量指令が給水制御弁に直接入
力されるため、適正なゲインと遅れ時間とを得ることが
できるとともに、タービン駆動給水ポンプの回転数が給
水ヘッダ圧力の上昇に伴って関数的に上昇するため、給
水制御弁のみの制御領域を越えた場合、給水制御弁バイ
パス弁を全開し、蒸気加減弁の開度を調整してタービン
駆動給水ポンプの回転数のみによる制御にスムーズに移
行することができる。
As is clear from the above explanation, according to the present invention, since the feed water flow rate command is directly input to the feed water control valve at the time of plant startup, it is possible to obtain an appropriate gain and delay time, and also to obtain a turbine-driven water supply. Since the pump rotation speed increases functionally as the water supply header pressure rises, if it exceeds the control range of only the water supply control valve, the water supply control valve bypass valve should be fully opened and the opening of the steam control valve should be adjusted. This allows a smooth transition to control based only on the rotation speed of the turbine-driven water pump.

また、タービン駆動給水ポンプの回転数が給水制御弁の
開度の上昇に伴って所定の関数に従って上昇するので、
タービン駆動給水ポンプを起動時の低流量時から通常運
転時に至るまで所定の給水流量を安定して確保すること
ができるとともに、給水制御弁のみの制御領域を越えた
場合、給水制御弁バイパス弁を全開し、蒸気加減弁の開
度を調整してタービン駆動給水ポンプの回転数のみによ
る制御にスムーズに移行することができる等の効果を奏
する。
In addition, since the rotation speed of the turbine-driven water supply pump increases according to a predetermined function as the opening degree of the water supply control valve increases,
It is possible to stably secure a predetermined water supply flow rate from the low flow rate at startup to normal operation of the turbine-driven water supply pump, and when the flow rate exceeds the control range of the water supply control valve alone, the water supply control valve bypass valve can be activated. It is possible to fully open the steam control valve, adjust the opening degree of the steam control valve, and smoothly shift to control based only on the rotational speed of the turbine-driven water supply pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による給水制御装置の一実施
例を示した給水系統図、第3図は本発明による関数発生
器による出力の一例を示した関数曲線図、第4図は本発
明による給水制御弁の開度とCv値をの関係を示した特
性図、第5図は本発明による給水制御装置の給水ポンプ
吐出流量−吐出圧力曲線(Q−Hカーブ)とシステムヘ
ッド曲線との関係特性図、第6図は従来の給水制御装置
の一例を示した給水系統図、第7図は従来の給水制御装
置の給水ポンプ吐出流量−吐出圧力曲線(Q−Hカーブ
)である。 1.28・・・PIコントローラ、2・・・切替器、3
・・・給水ヘッダ圧力発信器、4,6・・・関数発生器
、5・・・開度検出器、20・・・タービン駆動ポンプ
、21・・・駆動用タービン、22・・・給水制御弁、
23、・・給水制御装置弁、24・・・給水制御弁バイ
パス弁、27・・・減算器、29・・・蒸気加減弁、3
0・・・給水流量指令、31・・・最低信号回転数発生
器、32・・・加算器、33・・・ピックアップ、34
・・・Pコントローラ、35・・・タービン駆動給水ポ
ンプ起動プログラム、36・・・低値選択回路。
1 and 2 are water supply system diagrams showing one embodiment of the water supply control device according to the present invention, FIG. 3 is a function curve diagram showing an example of the output from the function generator according to the present invention, and FIG. A characteristic diagram showing the relationship between the opening degree and Cv value of the water supply control valve according to the present invention, and Fig. 5 is a water supply pump discharge flow rate-discharge pressure curve (Q-H curve) and system head curve of the water supply control device according to the present invention. Fig. 6 is a water supply system diagram showing an example of a conventional water supply control device, and Fig. 7 is a water pump discharge flow rate-discharge pressure curve (Q-H curve) of a conventional water supply control device. . 1.28...PI controller, 2...Switcher, 3
...Water supply header pressure transmitter, 4, 6...Function generator, 5...Opening degree detector, 20...Turbine drive pump, 21...Drive turbine, 22...Water supply control valve,
23... Water supply control device valve, 24... Water supply control valve bypass valve, 27... Subtractor, 29... Steam control valve, 3
0...Water supply flow rate command, 31...Minimum signal rotation speed generator, 32...Adder, 33...Pickup, 34
...P controller, 35...Turbine-driven water supply pump starting program, 36...Low value selection circuit.

Claims (1)

【特許請求の範囲】 1、駆動タービンにより駆動されるタービン駆動給水ポ
ンプの吐出側に給水制御弁と給水制御後弁と給水制御弁
バイパス弁とを配置し、上記給水制御弁の開閉調整によ
り給水流量を制御する第1の制御部を備え、さらに給水
流量指令と上記給水ポンプ吐出流量との偏差を検出して
上記駆動タービンの蒸気加減弁の開度を調整し、上記給
水ポンプ回転数を制御する第2の制御部とを備えた給水
制御装置において、上記第1の制御部を上記給水制御弁
に開度指令を送るPIコントローラと、上記給水制御後
弁の下流に設けられた給水ヘッダ圧力発信器と、この給
水ヘッダ圧力発信器からの信号を入力し、所定の出力信
号を発生させる関数発生器とで構成し、さらに給水系統
内に信号切替器を設け、この信号切替器の切替えにより
プラント起動時は上記第1の制御部の関数発生器の出力
信号により上記給水ポンプの回転数を制御し、通常運転
中は上記第2の制御部により上記給水ポンプ回転数を制
御することを特徴とする給水制御装置。 2、駆動タービンにより駆動されるタービン駆動給水ポ
ンプの吐出側に給水制御弁と給水制御後弁と給水制御弁
バイパス弁とを配置し、上記給水制御弁の開閉調整によ
り給水流量を制御する第1の制御部を備え、さらに給水
流量指令と上記給水ポンプ吐出流量との偏差を検出して
上記駆動タービンの蒸気加減弁の開度を調整し、上記給
水ポンプ回転数を制御する第2の制御部とを備えた給水
制御装置において、上記第1の制御部を上記給水制御弁
に開度指令を送るPIコントローラと、上記給水制御弁
の開度検出器と、この開度検出器からの信号を入力し、
所定の出力信号を発生させる関数発生器とで構成し、さ
らに給水系統内に信号切替器を設け、この信号切替器の
切替えによりプラント起動時は上記第1の制御部の関数
発生器の出力信号により上記給水ポンプの回転数を制御
し、通常運転中は上記第2の制御部により上記給水ポン
プ回転数を制御することを特徴とする給水制御装置。
[Claims] 1. A water supply control valve, a post-water supply control valve, and a water supply control valve bypass valve are arranged on the discharge side of a turbine-driven water supply pump driven by a driving turbine, and water is supplied by adjusting the opening and closing of the water supply control valve. A first control unit that controls the flow rate, further detects a deviation between the feed water flow rate command and the feed water pump discharge flow rate, adjusts the opening degree of the steam control valve of the drive turbine, and controls the rotation speed of the feed water pump. a PI controller that sends an opening command to the water supply control valve; and a water supply header pressure provided downstream of the water supply control valve; It consists of a transmitter and a function generator that inputs the signal from this water supply header pressure transmitter and generates a predetermined output signal, and furthermore, a signal switch is installed in the water supply system, and by switching the signal switch, When starting up the plant, the rotation speed of the water supply pump is controlled by the output signal of the function generator of the first control section, and during normal operation, the rotation speed of the water supply pump is controlled by the second control section. water supply control device. 2. A first system in which a water supply control valve, a post-water supply control valve, and a water supply control valve bypass valve are arranged on the discharge side of a turbine-driven water supply pump driven by a driving turbine, and the water supply flow rate is controlled by adjusting the opening and closing of the water supply control valve. a second control unit that further detects a deviation between the feed water flow rate command and the feed water pump discharge flow rate, adjusts the opening degree of the steam control valve of the drive turbine, and controls the rotation speed of the feed water pump; A water supply control device comprising: a PI controller that sends an opening command to the water supply control valve; an opening detector of the water supply control valve; and a signal from the opening detector. Input,
A function generator that generates a predetermined output signal is further provided in the water supply system, and by switching this signal switch, the output signal of the function generator of the first control section is changed at the time of plant startup. A water supply control device, characterized in that the rotation speed of the water supply pump is controlled by the second control unit during normal operation.
JP14691690A 1990-06-05 1990-06-05 Water feed control device Pending JPH0441903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14691690A JPH0441903A (en) 1990-06-05 1990-06-05 Water feed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14691690A JPH0441903A (en) 1990-06-05 1990-06-05 Water feed control device

Publications (1)

Publication Number Publication Date
JPH0441903A true JPH0441903A (en) 1992-02-12

Family

ID=15418465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14691690A Pending JPH0441903A (en) 1990-06-05 1990-06-05 Water feed control device

Country Status (1)

Country Link
JP (1) JPH0441903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515975B2 (en) * 2005-12-15 2009-04-07 Honeywell Asca Inc. Technique for switching between controllers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515975B2 (en) * 2005-12-15 2009-04-07 Honeywell Asca Inc. Technique for switching between controllers

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
JPH0333495A (en) Control device for condensate pump
JPH0441903A (en) Water feed control device
JP2000297608A (en) Control device for feed water pump of power station
JPH06337103A (en) Controller for water supply flow rate in water supply pump
JP3670780B2 (en) Pump flow control method
JPH06147409A (en) Controlling device for recirculation valve for feed water pump
JPS6149519B2 (en)
JPH0783401A (en) Exhaust gas flow controller for plant facility
JPH05195713A (en) Turbine starting device
JPH1082504A (en) Method and apparatus for controlling water supply of boiler
JPH05272707A (en) Boiler water feeding control device
JPH09242508A (en) Method and device for stopping combined cycle plant
JPH03271603A (en) Controlling device for boiler feed water pump
JPH0256481B2 (en)
JPH0666159A (en) Fuel gas feeding device for gas turbine
JPS6326802B2 (en)
JPH04103902A (en) Method and device for controlling feedwater to boiler
JPH059604B2 (en)
JPH07180506A (en) Steam turbine controller
JPS63223489A (en) Condensate control system
JP2001152809A (en) Turbine control device
JPH11351503A (en) Pressure control valve for boiler and device therefor
JPH09178110A (en) Method and apparatus for controlling water supply
JPH02240599A (en) Pressure controller for nuclear reactor