JPH0441789B2 - - Google Patents

Info

Publication number
JPH0441789B2
JPH0441789B2 JP59006762A JP676284A JPH0441789B2 JP H0441789 B2 JPH0441789 B2 JP H0441789B2 JP 59006762 A JP59006762 A JP 59006762A JP 676284 A JP676284 A JP 676284A JP H0441789 B2 JPH0441789 B2 JP H0441789B2
Authority
JP
Japan
Prior art keywords
antenna
auxiliary
main antenna
interference
weighting coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59006762A
Other languages
Japanese (ja)
Other versions
JPS60150304A (en
Inventor
Naoki Inagaki
Hidekazu Kiuchi
Hiroshi Sawanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59006762A priority Critical patent/JPS60150304A/en
Publication of JPS60150304A publication Critical patent/JPS60150304A/en
Publication of JPH0441789B2 publication Critical patent/JPH0441789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • H01Q3/2629Combination of a main antenna unit with an auxiliary antenna unit
    • H01Q3/2635Combination of a main antenna unit with an auxiliary antenna unit the auxiliary unit being composed of a plurality of antennas

Description

【発明の詳細な説明】 (発明の分野) 本発明は、任意の方向から入射する妨害波、特
に広帯域特性を有する妨害波に対し、自動的にか
つ周波数特性として広帯域なパターンナルを形成
することにより、これを抑圧するレーダ方式に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention is directed to automatically forming a pattern with a broadband frequency characteristic for interference waves incident from any direction, especially interference waves having broadband characteristics. Therefore, it relates to a radar system that suppresses this.

(従来技術) 従来レーダの分野において、妨害波抑圧装置と
してよく利用されているサイドローブキヤンセラ
では、主アンテナと一般にN個の補助アンテナを
直線上又は主アンテナの開口面上で主アンテナの
周囲に配置したアンテナ構成を有している。この
ようなアンテナ構成では、主アンテナの開口面に
対し垂直な方向から到来する妨害波に対しては広
帯域は抑圧特性が得られるが、一般に斜めな方向
から到来する妨害波に対しては、妨害波の周波数
によつて主アンテナと補助アンテナとで受信信号
の位相差が変化するため広帯域な抑圧特性が得ら
れないという欠点があつた。このことを数式を用
いて簡単に説明する。
(Prior art) In the conventional radar field, a sidelobe canceller, which is often used as an interference wave suppression device, connects a main antenna and generally N auxiliary antennas around the main antenna in a straight line or on the aperture of the main antenna. It has an antenna configuration located at With such an antenna configuration, broadband suppression characteristics can be obtained for interference waves arriving from a direction perpendicular to the aperture of the main antenna, but in general, interference waves arriving from an oblique direction are suppressed. Since the phase difference between the received signals between the main antenna and the auxiliary antenna changes depending on the frequency of the waves, a drawback is that broadband suppression characteristics cannot be obtained. This will be briefly explained using a mathematical formula.

主アンテナでの受信信号をx0(t)、一般にN個の
補助アンテナでの受信信号をxK(t)(K=1,…
…,N)とすると、サイドローブキヤンセラの出
力信号y(t)は y(t)=NK=0 wKxK(t)=WT− X −(t) ……(1) W:重み付け係数ベクトル − X −:受信信号ベクトル W=W0 W1 〓 wN − X −(t)=x0(t) x1(t) 〓 xN(t) として与えられる。
The received signal at the main antenna is x 0 (t), and generally the received signals at N auxiliary antennas are x K (t) (K=1,...
…, N), the output signal y(t) of the sidelobe canceller is y(t)= NK=0 w K x K (t)=W T − X −(t) ……(1) W: weighting coefficient vector −X −: received signal vector W=W 0 W 1 〓 w N − X −(t)=x 0 (t) x 1 (t) 〓 x N (t).

(1)式において妨害信号を最大限に抑圧する(す
なわち、サイドローブキヤンセラ出力信号パワー
を最小とする)ための重み付け係数は、 Wppt=μΦ-1S* ……(2) で与えられることが知られている。
In equation (1), the weighting coefficient for maximally suppressing the interference signal (that is, minimizing the sidelobe canceller output signal power) is given by W ppt = μΦ -1 S * ...(2) It is known.

μ:定数 Φ:入力信号の共分散マトリクス S:ステアリン Φ=E{x0(t)x* 0(t)}E{x0(t)x* 1(t)}……E{x0(t
)x* N(t)} E{x1(t)x0(t)} 〓 E{xN(t)x* 0(t)} E{xN(t)x* N(t)} S=1 0 〓 0 E:期待値オペレータ ここでは、簡単のため補助アンテナが1つの場
合を考えると、(2)式は Wppt=μ′E{x1(t) x* 1(t)} −E{xo(t) x*(t)} ……(3) μ′:比例定数 と表わされる。
μ: Constant Φ: Covariance matrix of input signal S: Stearin Φ=E{x 0 (t)x * 0 (t)}E{x 0 (t)x * 1 (t)}...E{x 0 (t
)x * N (t)} E{x 1 (t)x 0 (t)} 〓 E{x N (t)x * 0 (t)} E{x N (t)x * N (t)} S=1 0 〓 0 E: Expected value operator Here, for simplicity, considering the case where there is one auxiliary antenna, equation (2) is W ppt = μ′E {x 1 (t) x * 1 (t) } −E{xo(t) x * (t)} ...(3) μ': Expressed as proportionality constant.

一般に妨害波が第1図に示すように法線方向か
らθの角度で入射するものとし、広帯域妨害信号
の簡単な例として、2つの正弦波が合成されてい
る場合を考える。
Generally, it is assumed that the interference wave is incident at an angle θ from the normal direction as shown in FIG. 1, and as a simple example of a broadband interference signal, consider the case where two sine waves are combined.

入力信号を x(t)=a1ejw1t+a2ejw2t ……(4) とすると、主アンテナにおける受信信号x0(t)及び
補助アンテナでの受信信号x1(t)は、主アンテナの
利得をG0、補助アンテナの利得をG1とすると、 x0(t)=G0(a1ejw1t +a2ejw2t) ……(5) x1(t)=G1{a1ej(w1t+1) +a2ej(w2t+2)} ……(6) で与えられる。ここで、φ1,φ2は主アンテナの
開口面に対して、妨害信号が斜めから入射するこ
とにより生じる位相差であり、次式によつて表わ
される。
If the input signal is x(t) = a 1 e jw1t + a 2 e jw2t ...(4), the received signal x 0 (t) at the main antenna and the received signal x 1 (t) at the auxiliary antenna are Let the gain of _ _ _ _ _ _ _ (w1t+1) +a2e j(w2t+2) } ......(6) is given. Here, φ 1 and φ 2 are phase differences caused by oblique incidence of the interference signal with respect to the aperture surface of the main antenna, and are expressed by the following equation.

φ1=w1L/2πCsinθ、φ2=w2L/2πCsinθ (7) L:主アンテナと補助アンテナ間の距離 このとき(3)式から最適な重み付け係数は w0=(a2 1+a2 2)G0 ……(8) w1=−(a2 1e-j2+a2 2e-j2)/G1 ……(9) と求まり、(1)式から、サイドローブキヤンセラ出
力y(t)は y(t)=a1a2 2ejw1t{1−e-j(1-2)} +a2 1a2ejw2t{1−e-j(1-2)}……(10) となる。(10)式において、θ=0のとき、φ1=φ2
=0となり、すなわち主アンテナ開口面に対し法
線方向から入射する妨害波の場合には、周波数
w1,w2によらず妨害波は除去される。又、一般
にθ≠0の場合にはw1=w2ならばφ1=φ2とな
り、妨害波除去が可能であることを示しており、
θ≠0、w1≠w2の場合(すなわち、広帯域妨害
が斜めから入射する場合)には妨害波は完全には
除去されない。
φ 1 = w 1 L/2πCsinθ, φ 2 = w 2 L/2πCsinθ (7) L: Distance between the main antenna and the auxiliary antenna At this time, from equation (3), the optimal weighting coefficient is w 0 = (a 2 1 + a 2 2 ) G 0 ... (8) w 1 = - (a 2 1 e -j2 + a 2 2 e -j2 )/G 1 ... (9) From equation (1), the side Lobe canceller output y(t) is y(t)=a 1 a 2 2 e jw1t {1−e -j(1-2) } +a 2 1 a 2 e jw2t {1−e -j(1-2) }...(10). In equation (10), when θ=0, φ 12
= 0, that is, in the case of interference waves incident from the normal direction to the main antenna aperture, the frequency
Interfering waves are removed regardless of w 1 and w 2 . In addition, in general, when θ≠0, if w 1 = w 2 then φ 1 = φ 2 , indicating that interference wave removal is possible.
When θ≠0 and w 1 ≠w 2 (that is, when broadband interference is incident obliquely), the interference waves are not completely removed.

以上説明してきたように、主アンテナの開口面
上主アンテナの周囲に補助アンテナを配置する従
来技術では主アンテナ開口面に対して妨害波が直
角方向から入射した場合には問題ないが、主アン
テナ開口面に対して斜め方向から入射する広帯域
の妨害波に対しては、主アンテナと補助アンテナ
とで伝搬路長が異なり、それによる位相差が周波
数によつて変化するため充分除去できないという
問題点があつた。
As explained above, with the conventional technology in which auxiliary antennas are placed around the main antenna on the aperture of the main antenna, there is no problem when interference waves are incident from a direction perpendicular to the aperture of the main antenna. The problem with broadband interference waves that are incident obliquely to the aperture surface is that the main antenna and the auxiliary antenna have different propagation path lengths, and the resulting phase difference changes depending on the frequency, making it impossible to sufficiently eliminate them. It was hot.

(発明の目的および構成) 本発明は、主アンテナを中心として、補助アン
テナを主アンテナの方位方向ビーム走査面内の周
囲に配置することにより従来のサイドローブキヤ
ンセラでは対処できなかつた上記問題点を解決で
きる方式を提供するものである。
(Objective and Structure of the Invention) The present invention solves the above-mentioned problems that could not be solved with conventional sidelobe cancellers by arranging auxiliary antennas around the main antenna in the azimuthal beam scanning plane of the main antenna. This method provides a method that can solve the problem.

即ち本発明によれば、広帯域妨害波がどの方向
から入射してきても、主アンテナと補助アンテナ
を結ぶ線と、妨害波の入射方向に対し、90゜に近
い角度で配置された主アンテナと補助アンテナの
組合せが存在するから、広帯域特性をもつたパタ
ーンナルが形成できる。
In other words, according to the present invention, no matter from which direction broadband interference waves are incident, a line connecting the main antenna and the auxiliary antenna and a line connecting the main antenna and the auxiliary antenna arranged at an angle close to 90 degrees with respect to the direction of incidence of the interference wave. Since there are combinations of antennas, a pattern with broadband characteristics can be formed.

(発明の実施例) 以下本発明の実施例を図面を参照して説明す
る。
(Embodiments of the invention) Examples of the invention will be described below with reference to the drawings.

本発明による、妨害波抑圧レーダ方式の一実施
例を説明する第3図及び第4図におけるアンテナ
配置は、第2図のように配置するものとする。
The antenna arrangement in FIGS. 3 and 4 for explaining an embodiment of the interference wave suppression radar system according to the present invention is as shown in FIG. 2.

第3図を用いて妨害波抑圧の実施例を説明す
る。第3図はN個の補助アンテナをすべて使つて
最適重み付け係数Wpptを計算する方式を説明する
ための図である。
An example of interference wave suppression will be explained using FIG. FIG. 3 is a diagram for explaining a method for calculating the optimal weighting coefficient W ppt using all N auxiliary antennas.

主アンテナ300及びN個の補助アンテナ30
1〜30Nによつて受信されたレーダ受信信号x0
(t)及びxK(t)(k=1,2,……,N)は、重み
付け係数演算回路310に送られて、(2)式に基づ
き所定のアルゴリズムに従つて最適な重み付け係
数が計算される。乗算器320〜32Nは、それ
ぞれ対応した補助アンテナの受信信号xK(t)(k
=1,……,N)に、重み付け係数演算回路31
0から与えられた重み付け係数w0〜wNを乗算し、
w0x0(t)〜wNxN(t)を計算する。そして、加算器3
30において、 y(t)=NK=0 wKxK(t) の演算を行い、出力信号y(t)が出力端子340に
得られる。このとき、アンテナの配置は第2図に
示されているように、主アンテナ300のまわり
に、補助アンテナ301〜30Nが主アンテナの
方位方向ビーム走査面内に配置されているから、
いかなる方向から入射した妨害波でも対処でき
る。本発明では補助アンテナを周囲上に配置する
ことにより、妨害波の到来する方向に対し、法線
方向となるような補助アンテナが必ず1つは存在
するので、その補助アンテナからの信号に対して
は直線上に配置した場合と同様の重み付け係数を
入力信号に乗じて加算することにより、位相差の
変化が微小であるため抑圧が可能となる。
Main antenna 300 and N auxiliary antennas 30
Radar reception signal received by 1~30N x 0
(t) and x K (t) (k=1, 2, ..., N) are sent to the weighting coefficient calculation circuit 310, and the optimal weighting coefficient is calculated according to a predetermined algorithm based on equation (2). Calculated. Multipliers 320 to 32N each receive a received signal x K (t)(k
=1,...,N), the weighting coefficient calculation circuit 31
Multiply the weighting coefficient w 0 ~ w N given from 0,
Calculate w 0 x 0 (t) ~ w N x N (t). And adder 3
30, the calculation y(t)= NK=0 w K x K (t) is performed, and an output signal y(t) is obtained at the output terminal 340. At this time, as shown in FIG. 2, the antenna arrangement is such that the auxiliary antennas 301 to 30N are arranged around the main antenna 300 in the beam scanning plane in the azimuth direction of the main antenna.
It can deal with interference waves coming from any direction. In the present invention, by arranging the auxiliary antennas around the periphery, there is always one auxiliary antenna that is normal to the direction in which the interfering waves arrive, so that the signal from the auxiliary antenna is By multiplying the input signal by a weighting coefficient similar to the case where the input signals are arranged on a straight line and adding the same, it is possible to suppress the phase difference because the change in phase difference is minute.

もう一つの実施例を、第4図を用いて説明す
る。妨害波到来方向検出器410は主アンテナ4
00において受信された信号を用い、妨害波受信
信号強度がアンテナの指向特性に従つて変化する
ことを利用し、所定のアルゴリズムに従つて妨害
波の到来方向を検出する。次に妨害波到来方向に
対し、主アンテナと補助アンテナとを結ぶ線が
90゜に近い補助アンテナ(一般に複数)を選択す
る。このように選択された主アンテナと補助アン
テナからの受信信号を用い、(2)式に基づき、所定
のアルゴリズムに従つて重み付け係数演算回路4
20で最適な重みづけ係数を算定する。この場合
選択されなかつた補助アンテナに対しては重みづ
け係数を0とする。乗算器430〜43Nは、こ
のようにして与えられた重み付け係数をそれぞれ
の入力信号に乗じ、加算器440をすべて加算す
る。
Another embodiment will be explained using FIG. 4. The interference wave arrival direction detector 410 is connected to the main antenna 4
Using the signal received at 00, the arrival direction of the interfering wave is detected according to a predetermined algorithm by utilizing the fact that the received interfering signal strength changes according to the directivity characteristics of the antenna. Next, the line connecting the main antenna and the auxiliary antenna is
Select auxiliary antennas (generally more than one) that are close to 90°. Using the received signals from the main antenna and auxiliary antenna selected in this way, the weighting coefficient calculation circuit 4 calculates the weighting coefficient according to a predetermined algorithm based on equation (2).
20, calculate the optimal weighting coefficient. In this case, the weighting coefficient is set to 0 for the auxiliary antenna that is not selected. Multipliers 430 to 43N multiply the respective input signals by the weighting coefficients given in this way, and adder 440 adds them all.

(発明の効果) 以上説明してきたように、本発明によれば如何
なる方向から入射する広帯域妨害波に対しても自
動的に妨害波到来方向に広帯域特性をもつたパタ
ーンナルが形成でき、妨害波の除去が可能となる
という効果がある。
(Effects of the Invention) As explained above, according to the present invention, a pattern having broadband characteristics can be automatically formed in the interference wave arrival direction for broadband interference waves incident from any direction. This has the effect of making it possible to remove.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサイドローブキヤンセラにおける、従
来のアンテナ配置を説明するための図、第2図は
本発明におけるアンテナ配置を説明するための
図、第3図及び第4図は本発明の実施例を説明す
るための図である。 100,200,300,400……主アンテ
ナ、101,201〜20N,301〜30N,
401〜40N……補助アンテナ、310,42
0……重み付け係数演算回路、320〜32N,
430〜43N……乗算器、330,440……
加算器、340,450……出力端子、410…
…妨害波到来方向検出器。
FIG. 1 is a diagram for explaining the conventional antenna arrangement in a sidelobe canceller, FIG. 2 is a diagram for explaining the antenna arrangement in the present invention, and FIGS. 3 and 4 are examples of the present invention. FIG. 100, 200, 300, 400...main antenna, 101, 201~20N, 301~30N,
401~40N...Auxiliary antenna, 310, 42
0...Weighting coefficient calculation circuit, 320 to 32N,
430~43N... Multiplier, 330,440...
Adder, 340, 450... Output terminal, 410...
...Interference wave arrival direction detector.

Claims (1)

【特許請求の範囲】[Claims] 1 主アンテナの方位方向ビーム走査面内で前記
主アンテナを中心とする周囲上にN個(N≧3)
の補助アンテナを配置したアンテナ構成を有し、
前記主アンテナでの受信信号と、各補助アンテナ
での受信信号とにそれぞれ所定の重み付け係数を
乗じて加算するもので、妨害波の到来方向に対し
て法線方向にある補助アンテナの受信信号の重み
付係数を重く、他の補助アンテナの受信信号の重
み付係数を軽くすることにより妨害波を抑圧する
ことを特徴とする妨害波抑圧レーダ方式。
1 N pieces (N≧3) around the main antenna in the azimuthal beam scanning plane of the main antenna
It has an antenna configuration with an auxiliary antenna of
The signal received by the main antenna and the signal received by each auxiliary antenna are multiplied by predetermined weighting coefficients and added, and the signal received by the auxiliary antenna in the direction normal to the arrival direction of the interference wave is An interference wave suppression radar system characterized in that interference waves are suppressed by increasing weighting coefficients and decreasing weighting coefficients for signals received by other auxiliary antennas.
JP59006762A 1984-01-18 1984-01-18 Disturbing wave suppressing radar system Granted JPS60150304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59006762A JPS60150304A (en) 1984-01-18 1984-01-18 Disturbing wave suppressing radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59006762A JPS60150304A (en) 1984-01-18 1984-01-18 Disturbing wave suppressing radar system

Publications (2)

Publication Number Publication Date
JPS60150304A JPS60150304A (en) 1985-08-08
JPH0441789B2 true JPH0441789B2 (en) 1992-07-09

Family

ID=11647183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59006762A Granted JPS60150304A (en) 1984-01-18 1984-01-18 Disturbing wave suppressing radar system

Country Status (1)

Country Link
JP (1) JPS60150304A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2674708B2 (en) * 1988-12-14 1997-11-12 三菱電機株式会社 Side lobe canceller
JPH0758857B2 (en) * 1990-09-07 1995-06-21 三菱電機株式会社 Side robe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210384A (en) * 1983-05-16 1984-11-29 Oki Electric Ind Co Ltd Reception system for low frequency signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210384A (en) * 1983-05-16 1984-11-29 Oki Electric Ind Co Ltd Reception system for low frequency signal

Also Published As

Publication number Publication date
JPS60150304A (en) 1985-08-08

Similar Documents

Publication Publication Date Title
Morgan Partially adaptive array techniques
US6867726B1 (en) Combining sidelobe canceller and mainlobe canceller for adaptive monopulse radar processing
JPS6088375A (en) Coherent sidelobe canceller
EP0098339A1 (en) An adaptive system for the attenuation of an intentional disturbance applied to a phased array type radar with mechanical scanning
US4060833A (en) Transducer arrangement for a surface acoustic wave device to inhibit the generation of multiple reflection signals
JP3525388B2 (en) Radar equipment
US5596550A (en) Low cost shading for wide sonar beams
JP4559884B2 (en) Radar signal processing device
US4525716A (en) Technique for cancelling antenna sidelobes
JP3009624B2 (en) Filter coefficient operation device of FIR type digital filter for digital beamformer, FIR type digital filter for digital beamformer and digital beamformer
CN111817765B (en) Generalized sidelobe cancellation broadband beam forming method based on frequency constraint
US6021096A (en) Method for the formation of radiated beams in direction finder systems
JPH0441789B2 (en)
CN115061098A (en) Method for suppressing radar long-distance support interference and on-line interference
JP3046949B2 (en) Transceiver
Pal et al. Frequency invariant MVDR beamforming without filters and implementation using MIMO radar
EP0096144B1 (en) System for the cancellation of intentional disturbance applied to a monopulse phased array radar
Erokhin et al. Frequency-invariant beamforming with real fir-filters
Griffiths et al. An introduction to adaptive processing in a passive sonar system
US3503069A (en) System for nulling array sensitivity patterns
Hossain et al. Robust and efficient broadband beamforming algorithms in the presence of steering angle mismatch using variable loading
JPH10242737A (en) Fir type digital filter and its coefficient arithmetic unit, digital beam forming device and adaptive digital beam forming device
Scott Transversal filter techniques for adaptive array applications
Ali et al. Robust Beamformer in the Presence of Mutual Coupling
BniLam et al. 2D angle of arrival estimations and bandwidth recognition for broadband signals

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term