JPH0441591B2 - - Google Patents

Info

Publication number
JPH0441591B2
JPH0441591B2 JP62225495A JP22549587A JPH0441591B2 JP H0441591 B2 JPH0441591 B2 JP H0441591B2 JP 62225495 A JP62225495 A JP 62225495A JP 22549587 A JP22549587 A JP 22549587A JP H0441591 B2 JPH0441591 B2 JP H0441591B2
Authority
JP
Japan
Prior art keywords
reaction
liquid
gas
honeycomb structure
supply hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62225495A
Other languages
Japanese (ja)
Other versions
JPS6467176A (en
Inventor
Takeshi Hiramitsu
Mitsuo Takada
Tadao Yokota
Hiroshi Nakano
Yasushi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIFUKEN
NIPPON GAISHI KK
Original Assignee
GIFUKEN
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIFUKEN, NIPPON GAISHI KK filed Critical GIFUKEN
Priority to JP62225495A priority Critical patent/JPS6467176A/en
Publication of JPS6467176A publication Critical patent/JPS6467176A/en
Publication of JPH0441591B2 publication Critical patent/JPH0441591B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は酢酸菌等好気性微生物を利用して、酢
酸醗酵用液等被反応液を反応させる反応方法およ
び反応装置に関する。 (従来技術) 近年、微生物を利用して被反応液を反応させる
方法の研究が盛んに行われており、その一例とし
て固定化酢酸菌を利用する方法が開発され注目を
あびている。下記の研究報告書には、好気性微生
物である酢酸菌をセラミツクスのハニカム構造体
に固定化し、このハニカム構造体を収容した反応
塔内に醗酵原液を通気しつつ供給し、同原液を連
続的に醗酵させて食酢を製造する方法が報告され
ている。「固定化酢酸菌による食酢の生産技術に
関する研究」(愛知県食品工業試験所、昭和60年
度研究成果普及講習会、1986年3月25日、近藤
等)。かかる方法によれば、酢酸菌が固定化され
ているので醗酵原液を連続的に供給して連続醗酵
が可能であり、固定化酢酸菌を利用しない従来法
に比し酢酸醗酵を効率よく行うことができる。 (発明が解決しようとする問題点) 本発明は、かかる酢酸醗酵を含む好気性微生物
を固定化してないるハニカム構造体を利用した反
応方法および反応装置において、被反応液と酸素
を含む気体との供給量を制御することにより反応
効率を一層高めることを目的とする。 (問題点を解決するための手段) 本発明はセラミツクスに固定化した微生物によ
る反応方法および反応装置に関するもので、その
第1の発明である反応方法は、好気性微生物を固
定化してなる多孔質セラミツクスのハニカム構造
体を収容した反応塔に被反応液と所定濃度の酸素
を含む気体を供給して、前記被反応液を泡状とし
て前記ハニカム構造体中を通過させることにより
前記微生物により反応させるとともに、前記被反
応液と気体の供給量を制御することにより同被反
応液の泡状態を前記ハニカム構造体の下端から上
端に至るまで維持することを特徴とする。 しかして、この第1の発明においては、前記被
反応液の供給量をLml/min、前記気体の供給量
をGml/minとした場合、これらの供給量をL/
G=a×10-4(但し0.7≦a≦7)の関係に制御す
ることが好ましい。 また、本発明の第2の発明である反応装置は、
有底筒体の下方部に所定濃度の酸素を含む気体を
供給する気体供給孔とその上方にて被反応液を供
給する被反応液供給孔を有するとともに同筒体の
上方部に反応液を排出する反応液排出孔を有する
反応塔と、この反応塔内の被反応液供給孔と反応
液排出孔間に配置され好気性微生物を固定化して
なる多孔質セラミツクスのハニカム構造体と、前
記反応塔内の被反応液供給孔と気体供給孔間に配
置され供給された前記気体を分散させて供給され
た前記被反応液を泡状となす多孔板を備えている
ことを特徴とする。 しかして、この第2の発明の反応装置において
は反応塔を1または直列接続された複数備えてお
り、反応塔は前記気体の循環手段を備えているこ
とが好ましい。 本発明のハニカム構造体は被反応液、反応生成
物に対する耐食性を有し、かつ機械的強度、耐熱
性、耐熱衝撃性について実用上問題がなければ如
何なる種類のセラミツクスであつてもよく、例え
ばムライト、コーデイエライト、シリカ、アルミ
ナ、ジルコニア、チタニア等適宜のものが使用さ
れる。また、本発明のハニカム構造体は好気性微
生物を固定化させる必要上多孔質体であることが
必要であり、すべての細孔が占める気孔率は20%
以上で平均細孔径は固定化させる微生物より大で
かつ約30倍までの範囲、5〜100μmの範囲であ
ることが好ましい。さらにまた、本発明のハニカ
ム構造体においては、その長手方向に延びる多数
の貫通孔内に泡状の被反応液を通過させるもので
あることから、上記貫通孔の水力直径は1〜10mm
の範囲であることが好ましい。 本発明で用いる微生物は酢酸菌等好気性微生物
であり、かかる微生物菌体は高濃度に培養されて
ハニカム構造体に物理的に吸着され、さらに適当
量の被反応液を加えて数日間培養することにより
固定化される。 本発明で用いる被反応液は例えば酢酸醗酵用原
料液で、含澱紛質原料を糖化しアルコール醗酵し
て得られるアルコール含有醸造物、清酒、ブドウ
ワイン、柿ワイン、これらの混合物等が挙げられ
る。 (発明の作用・効果) 本発明の反応方法によれば、ハニカム構造体に
固定化した好気性微生物に対して被反応液ととも
に十分な量の酸素を補給することができ、これに
より好気性微生物による連続反応を効率よく行う
ことができる。また、本発明の反応装置によれ
ば、反応塔内へ供給される気体が多孔板により微
小な気泡となつて被反応液中に導かれ、被反応液
は気体を含む泡状になる。この泡状の被反応液は
ハニカム構造体を通過する間維持され、ハニカム
構造体に固定化された好気性微生物に酸素を補給
するとともに自らは同微生物の作用により効率よ
く反応を受ける。 (実施例) (1) 反応装置() 第1図に示す反応装置10は本発明の第1実
施例に係る酢酸醗酵装置であり、当該反応装置
10は反応塔11と反応液槽12を備え、反応
塔11内にはハニカム構造体13と多孔板14
が配置されている。 反応塔11は上下両端を閉塞してなる筒状の
もので、その底部に気体供給孔11aを有する
とともにその下方側部に被反応液(以下これを
基質液という)を供給する基質液供給孔11b
を有し、かつその上方側部に反応液排出孔11
cを有している。ハニカム構造体13は反応塔
11内の基質液供給孔11bと反応液排出孔1
1cとの間に配置され、また多孔板14は反応
塔11内にて気体供給孔11aと基質液供給孔
11bとの間に配置されている。かかる反応塔
11のおいては、気体供給孔11aが気体供給
ポンプを備えた気体供給管路15aに接続さ
れ、基質液供給孔11bが液体供給ポンプを備
えた基質液供給管路15bに接続され、かつ反
応液排出孔11cが反応液排出管路15cに接
続されている。この反応液排出管路15cの他
端は反応液槽12の流入孔12aに接続されて
いる。 ハニカム構造体13はムライト質の多孔質セ
ラミツクスからなるもので、平均細孔径10μm
の無数の細孔を有しかつ全ての細孔が占める気
孔率が40%のものである。かかるハニカム構造
体13においてはその長手方向に延びる多数の
貫通孔を有し、各貫通孔の孔水力直径が3mmの
ものであつて、酢酸菌が固定化されている。多
孔板14はハニカム構造体13と同様の多孔質
セラミツクスからなるもので、平均細孔径10μ
mの無数の細孔を有する気孔率40%のものであ
る。 当該反応装置10においては、基質液である
酢酸醗酵用原料液が供給管路15bを通して反
応塔11内へ連続的に供給され、同時に空気が
そのまままたは酸素の含有量を調整されて供給
管路15aを通して反応塔11内へ連続的に供
給される。供給された空気は反応塔11内にて
多孔板14の作用により微小な無数の気泡とな
つて基質液中に導かれ、基質液は空気を含む泡
状となつてハニカム構造体13の各貫通孔内を
上方へ通過する。この間、同構造体13に固定
化された酢酸菌に酸素が補給されかつ基質液は
連続的に酢酸醗酵し、醗酵反応液は空気ととも
に排出管路15cを通して反応液槽12内へ導
かれる。 (2) 反応装置() 第2図に示す反応装置20は本発明の第2実
施例に係る酢酸醗酵装置であり、当該反応装置
20は第1実施例の反応装置10と同様反応塔
21、反応液槽22、ハニカム構造体23およ
び多孔板24を備えているが、気体供給管路2
5aの他端が反応液槽22の頂部に接続されて
いる点で反応装置10とは相違する。当該反応
装置20においては、供給された空気を供給管
路25a、排出管路25cを通して反応塔21
および反応液槽22間を循環させる閉鎖系のも
ので、空気の排出量を零または極めて小量にす
ることができる。酸素量の制御には酸素セン
サ、同センサからの電気的信号に応答して開閉
する電磁弁等が使用される。当該反応装置20
は基質液および反応物質が揮発性である場合に
特に有効である。 (3) 反応装置() 第3図に示す反応装置30は本発明の第3実
施例に係る酢酸醗酵装置であり、当該反応装置
30は中間槽36、第2反応塔31A、第2ハ
ニカム構造体33Aおよび第2多孔板34Aを
備えている点で他の2つの反応装置10,20
とは相違する。特に、当該反応装置30は反応
塔31と反応液槽32間に第2反応塔31Aお
よび中間槽36を介装して両反応塔31,31
Aを直列的に接続したことを特徴としているも
ので、反応塔31からの排出管路35cは中間
槽36の頂部に接続されている。第2反応塔3
1Aへ気体を供給する第2気体供給管路37a
は中間槽36の頂部と第2反応塔31Aの底部
に接続され、第2基質液供給管路37bは中間
槽36と第2反応塔31Aの下方側部に接続さ
れ、また第2排出管路37cは第2反応塔31
Aの上方側部と反応液槽32の頂部に接続され
ている。当該反応装置30は2つの反応塔3
1,31Aにより2段階に酢酸醗酵をさせるも
ので、これにより反応効率を高めることができ
る。 (4) 酢酸醗酵() 第1図に示す反応装置10を用いて酢酸の連
続醗酵試験を行つた。当該反応装置10におけ
る反応塔11は直径100mm、長さ380mmで有効容
積3のもので、この反応塔11内には直径98
mm、長さ100mmのハニカム構造体13が3個収
容され、かつその下方に多孔板14が収容され
ている。 ハニカム構造体13への酢酸菌の固定化には
菌株(アセトバクタアセテイ IFO03284)を
使用し、基質液であるアルコール濃度を10V/
V%に調整した清酒と柿ワインの等量混合液
300ml中にて菌株を30℃で36時間培養し、この
培養液を3個のハニカム構造体13を収容した
反応塔11内に入れるとともにさらに基質液
700mlを加えて3日間培養し、これにより酢酸
菌を各ハニカム構造体13を構成するセラミツ
クス部材に物理的に吸着し固定化させた。 当該反応装置10において反応塔11内を34
℃に維持し、第1表の「通気量」および「基質
液量」の各欄に示す条件で空気および基質液を
反応塔11内に供給した。かかる条件におい
て、安定した酢酸生成量が得られるまでに10日
を要し、その後変動はほとんどなく100日間以
上酢酸生成量は安定していた。この結果を表中
の「酢酸生成量」および「基質液状態」の各欄
に示す。なお、表中の「間隔」の欄には反応塔
11内におけるハニカム構造体13の下端と多
孔板14の上端間の距離を示し、また「基質液
状態」の欄には基質液の泡状態を下記の4段階
に区別して表示した。 (1) 泡状態僅少:基質液の上部にわずかに泡が
認められる。 (2) 泡状態過小:基質液の上部にのみ発泡が認
められる (3) 泡状態良好:全体が発泡し、かつ泡の状態
がほぼ均一である (4) 泡状態過大:基質液の一部に直径10mm以上
の大きな泡が認められる
(Industrial Application Field) The present invention relates to a reaction method and a reaction apparatus for reacting a reacted liquid such as an acetic acid fermentation liquid using aerobic microorganisms such as acetic acid bacteria. (Prior Art) In recent years, research has been actively conducted on methods of reacting reaction liquids using microorganisms, and as an example, a method using immobilized acetic acid bacteria has been developed and is attracting attention. In the research report below, acetic acid bacteria, which are aerobic microorganisms, are immobilized on a ceramic honeycomb structure, and a fermentation stock solution is supplied with ventilation into a reaction tower containing this honeycomb structure, and the same stock solution is continuously fed. A method for producing table vinegar by fermentation has been reported. "Research on vinegar production technology using immobilized acetic acid bacteria" (Aichi Prefectural Food Industry Research Institute, 1985 Research Results Dissemination Seminar, March 25, 1986, Kondo et al.). According to this method, since acetic acid bacteria are immobilized, continuous fermentation is possible by continuously supplying a fermentation stock solution, and acetic acid fermentation can be performed more efficiently than conventional methods that do not use immobilized acetic acid bacteria. I can do it. (Problems to be Solved by the Invention) The present invention provides a reaction method and a reaction apparatus using a honeycomb structure in which aerobic microorganisms are not immobilized, including acetic acid fermentation, in which a liquid to be reacted and a gas containing oxygen are The purpose is to further increase reaction efficiency by controlling the amount of supply of . (Means for Solving the Problems) The present invention relates to a reaction method and a reaction device using microorganisms immobilized on ceramics. A reactant liquid and a gas containing oxygen at a predetermined concentration are supplied to a reaction tower containing a ceramic honeycomb structure, and the reactant liquid is passed through the honeycomb structure in the form of a foam to cause a reaction by the microorganisms. In addition, by controlling the supply amounts of the reactant liquid and gas, the foam state of the reactant liquid is maintained from the lower end to the upper end of the honeycomb structure. Therefore, in this first invention, when the supply amount of the reactant liquid is Lml/min and the supply amount of the gas is Gml/min, these supply amounts are L/min.
It is preferable to control to the relationship G=a×10 −4 (0.7≦a≦7). Moreover, the reaction device which is the second invention of the present invention is
The bottomed cylinder has a gas supply hole for supplying a gas containing oxygen at a predetermined concentration in the lower part, and a reactant liquid supply hole for supplying the reacted liquid above the gas supply hole, and also has a reaction liquid in the upper part of the cylinder. a reaction tower having a reaction liquid discharge hole for discharging; a porous ceramic honeycomb structure disposed between a reactant liquid supply hole and a reaction liquid discharge hole in the reaction tower and immobilizing aerobic microorganisms; The reactor is characterized by comprising a perforated plate disposed between the reactant liquid supply hole and the gas supply hole in the column, which disperses the supplied gas and makes the supplied reactant liquid foam-like. Therefore, it is preferable that the reaction apparatus of the second invention includes one or more reaction towers connected in series, and the reaction tower is equipped with the above-mentioned gas circulation means. The honeycomb structure of the present invention may be made of any type of ceramic, as long as it has corrosion resistance against the reacted liquid and reaction products, and has no practical problems in terms of mechanical strength, heat resistance, and thermal shock resistance, such as mullite. , cordierite, silica, alumina, zirconia, titania, and the like are used as appropriate. In addition, the honeycomb structure of the present invention must be porous in order to immobilize aerobic microorganisms, and the porosity of all pores is 20%.
In the above, the average pore diameter is preferably up to about 30 times larger than the microorganism to be immobilized, and preferably in the range of 5 to 100 μm. Furthermore, in the honeycomb structure of the present invention, since the foamy reaction liquid is passed through a large number of through holes extending in the longitudinal direction, the hydraulic diameter of the through holes is 1 to 10 mm.
It is preferable that it is in the range of . The microorganisms used in the present invention are aerobic microorganisms such as acetic acid bacteria, and such microorganism cells are cultured at high concentration and physically adsorbed to the honeycomb structure, and then an appropriate amount of reactant liquid is added and cultured for several days. It is fixed by this. The reacted liquid used in the present invention is, for example, a raw material liquid for acetic acid fermentation, and includes alcohol-containing brewed products obtained by saccharifying starch-containing raw materials and alcohol fermentation, sake, grape wine, persimmon wine, and mixtures thereof. . (Actions and Effects of the Invention) According to the reaction method of the present invention, a sufficient amount of oxygen can be supplied to the aerobic microorganisms immobilized on the honeycomb structure together with the reacted liquid, and thereby the aerobic microorganisms Continuous reactions can be carried out efficiently. Further, according to the reaction apparatus of the present invention, the gas supplied into the reaction tower becomes minute bubbles and is guided into the reaction liquid by the porous plate, so that the reaction liquid becomes bubble-like containing gas. This foamy reactant liquid is maintained while passing through the honeycomb structure, supplies oxygen to the aerobic microorganisms immobilized on the honeycomb structure, and undergoes an efficient reaction by the action of the microorganisms. (Example) (1) Reaction Apparatus () The reaction apparatus 10 shown in FIG. 1 is an acetic acid fermentation apparatus according to the first example of the present invention, and the reaction apparatus 10 is equipped with a reaction column 11 and a reaction liquid tank 12. , a honeycomb structure 13 and a perforated plate 14 are provided in the reaction tower 11.
is located. The reaction tower 11 has a cylindrical shape with both upper and lower ends closed, and has a gas supply hole 11a at the bottom and a substrate liquid supply hole for supplying the reacted liquid (hereinafter referred to as substrate liquid) at the lower side thereof. 11b
and a reaction liquid discharge hole 11 on the upper side thereof.
It has c. The honeycomb structure 13 has a substrate liquid supply hole 11b and a reaction liquid discharge hole 1 in the reaction tower 11.
1c, and the porous plate 14 is arranged within the reaction tower 11 between the gas supply hole 11a and the substrate liquid supply hole 11b. In the reaction tower 11, the gas supply hole 11a is connected to a gas supply line 15a equipped with a gas supply pump, and the substrate liquid supply hole 11b is connected to a substrate liquid supply line 15b equipped with a liquid supply pump. , and the reaction liquid discharge hole 11c is connected to the reaction liquid discharge pipe 15c. The other end of this reaction liquid discharge pipe 15c is connected to the inflow hole 12a of the reaction liquid tank 12. The honeycomb structure 13 is made of mullite porous ceramics and has an average pore diameter of 10 μm.
It has countless pores, and the porosity of all the pores is 40%. The honeycomb structure 13 has a large number of through holes extending in its longitudinal direction, each through hole having a hydraulic diameter of 3 mm, and acetic acid bacteria are immobilized therein. The porous plate 14 is made of porous ceramics similar to the honeycomb structure 13, and has an average pore diameter of 10μ.
It has a porosity of 40% and has countless pores of m. In the reactor 10, a raw material liquid for acetic acid fermentation, which is a substrate liquid, is continuously supplied into the reaction tower 11 through the supply pipe 15b, and at the same time, air is supplied as it is or with the oxygen content adjusted, and is supplied to the supply pipe 15a. It is continuously supplied into the reaction column 11 through the reactor. In the reaction tower 11, the supplied air becomes numerous microscopic bubbles by the action of the porous plate 14 and is introduced into the substrate liquid, and the substrate liquid becomes bubbles containing air and flows through each hole in the honeycomb structure 13. Pass upward through the hole. During this time, oxygen is supplied to the acetic acid bacteria immobilized on the structure 13, the substrate liquid is continuously fermented with acetic acid, and the fermentation reaction liquid is guided into the reaction liquid tank 12 through the discharge pipe 15c together with air. (2) Reaction Apparatus () The reaction apparatus 20 shown in FIG. 2 is an acetic acid fermentation apparatus according to the second embodiment of the present invention, and the reaction apparatus 20 has a reaction column 21, similar to the reaction apparatus 10 of the first embodiment. Although it includes a reaction liquid tank 22, a honeycomb structure 23, and a perforated plate 24, the gas supply pipe 2
The reactor differs from the reactor 10 in that the other end of the reactor 5a is connected to the top of the reaction liquid tank 22. In the reactor 20, the supplied air is passed through the supply pipe 25a and the discharge pipe 25c to the reaction tower 21.
It is a closed system that circulates between the reaction liquid tank 22 and the reaction liquid tank 22, and the amount of air discharged can be reduced to zero or an extremely small amount. To control the amount of oxygen, an oxygen sensor and a solenoid valve that opens and closes in response to an electrical signal from the sensor are used. The reaction device 20
is particularly effective when the substrate liquid and reactants are volatile. (3) Reaction device () The reaction device 30 shown in FIG. 3 is an acetic acid fermentation device according to the third embodiment of the present invention, and the reaction device 30 includes an intermediate tank 36, a second reaction column 31A, and a second honeycomb structure. The other two reactors 10 and 20 are equipped with a body 33A and a second porous plate 34A.
It is different from In particular, the reaction apparatus 30 has a second reaction tower 31A and an intermediate tank 36 interposed between the reaction tower 31 and the reaction liquid tank 32, so that both reaction towers 31, 31
A is connected in series, and a discharge pipe 35c from the reaction tower 31 is connected to the top of the intermediate tank 36. Second reaction tower 3
Second gas supply pipe 37a that supplies gas to 1A
is connected to the top of the intermediate tank 36 and the bottom of the second reaction tower 31A, the second substrate liquid supply pipe 37b is connected to the lower side of the intermediate tank 36 and the second reaction tower 31A, and the second discharge pipe 37c is the second reaction tower 31
It is connected to the upper side of A and the top of the reaction liquid tank 32. The reactor 30 has two reaction towers 3
1,31A is used to carry out acetic acid fermentation in two stages, thereby increasing the reaction efficiency. (4) Acetic acid fermentation () A continuous fermentation test of acetic acid was conducted using the reaction apparatus 10 shown in FIG. The reaction column 11 in the reactor 10 has a diameter of 100 mm, a length of 380 mm, and an effective volume of 3, and the reaction column 11 has a diameter of 98 mm.
Three honeycomb structures 13 with a length of 100 mm and a length of 100 mm are housed, and a perforated plate 14 is housed below them. A bacterial strain (Acetobacter acetei IFO03284) was used to immobilize acetic acid bacteria on the honeycomb structure 13, and the alcohol concentration of the substrate solution was adjusted to 10V/
A mixture of equal amounts of sake and persimmon wine adjusted to V%
The bacterial strain was cultured in 300 ml at 30°C for 36 hours, and the culture solution was put into the reaction tower 11 containing three honeycomb structures 13, and the substrate solution was added.
700 ml was added and cultured for 3 days, whereby the acetic acid bacteria were physically adsorbed and immobilized on the ceramic members constituting each honeycomb structure 13. In the reactor 10, the inside of the reaction tower 11 is 34
℃, and air and substrate liquid were supplied into the reaction tower 11 under the conditions shown in the columns of "Aeration amount" and "Substrate liquid amount" in Table 1. Under these conditions, it took 10 days to obtain a stable amount of acetic acid produced, and after that, the amount of acetic acid produced remained stable for more than 100 days with almost no fluctuation. The results are shown in the "acetic acid production amount" and "substrate liquid state" columns in the table. In the table, the column "Spacing" indicates the distance between the lower end of the honeycomb structure 13 and the upper end of the porous plate 14 in the reaction tower 11, and the column "Substrate liquid state" indicates the foam state of the substrate liquid. were classified and displayed in the following four stages. (1) Slight foam: A slight amount of foam is observed at the top of the substrate liquid. (2) Insufficient foam: Foaming is observed only in the upper part of the substrate liquid (3) Good foam: The entire foam is foamed and the foam is almost uniform (4) Excessive foam: A portion of the substrate liquid Large bubbles with a diameter of 10 mm or more are observed in

【表】 上記醗酵試験において最良の結果を得たNo.6
の試験では得られた反応液の酢酸濃度は
5.4w/v%であり、また基質液中のエチルア
ルコールが約3v/v%揮散した。 以上の試験結果から、かかる酢酸醗酵試験に
おいては基質液を泡状態にてハニカム構造体内
を通過させることが必要であり、またハニカム
構造体内を通過する間基質液を泡状態に維持す
るには基質液の供給量L(ml/min)と通気量
G(ml/min)とが所定の関係にあることが好
ましい。この好ましい関係は第1表を参照すれ
ば下記の通りである。 L/G=a×10-4 (但し1≦a≦2) また、他の基質液におけるaの好ましい値は
第2表に示す通りである。従つて、aの値は
0.7≦a≦7の範囲であることが好ましい。
[Table] No. 6 that obtained the best results in the above fermentation test
In the test, the acetic acid concentration of the reaction solution obtained was
It was 5.4 w/v%, and about 3 v/v% of ethyl alcohol in the substrate solution was volatilized. From the above test results, it is necessary to pass the substrate liquid through the honeycomb structure in a foamy state in the acetic acid fermentation test, and in order to maintain the substrate liquid in a foamy state while passing through the honeycomb structure, the substrate liquid must be passed through the honeycomb structure in a foamy state. It is preferable that the liquid supply amount L (ml/min) and the ventilation amount G (ml/min) have a predetermined relationship. This preferable relationship is as follows with reference to Table 1. L/G=a×10 −4 (1≦a≦2) In addition, preferable values of a in other substrate liquids are as shown in Table 2. Therefore, the value of a is
It is preferable that the range is 0.7≦a≦7.

【表】 (5) 酢酸醗酵() 第3図に示す反応装置30を用いて酢酸の連
続醗酵試験を、供給する空気を循環することな
く反応液槽32から放出する開放系による試験
と、所定時間経過後供給する空気を循環させか
つ循環空気中に消費酸素量に対応する量の酸素
を供給する閉鎖系による試験とに別けて行つ
た。 各試験において両反応塔31,31A、ハニ
カム構造体33,33Aおよび多孔板33,3
4Aは反応装置10における反応塔11、ハニ
カム構造体13および多孔板14と同一のもの
であり、また醗酵条件について開放系試験にお
いては酢酸醗酵()の試験No.6と同一条件で
行い、かつ閉鎖系試験においては反応液槽32
からの気体排出量75ml/minとして行つた。得
られた反応液中の酢酸濃度は開放系試験におい
ては6.0W/V%、閉鎖系試験においては
7.3W/V%であり、反応塔が1塔のみからな
る場合に比して醗酵効率が著しく向上してい
る。
[Table] (5) Acetic acid fermentation () Continuous acetic acid fermentation tests were conducted using the reaction apparatus 30 shown in Fig. 3; tests were conducted using an open system in which supplied air was discharged from the reaction liquid tank 32 without circulation; A separate test was conducted using a closed system in which the air supplied after a period of time was circulated and an amount of oxygen corresponding to the amount of oxygen consumed was supplied to the circulating air. In each test, both reaction towers 31, 31A, honeycomb structures 33, 33A, and perforated plates 33, 3
4A is the same as the reaction column 11, honeycomb structure 13, and perforated plate 14 in the reaction apparatus 10, and the fermentation conditions were conducted under the same conditions as Test No. 6 for acetic acid fermentation () in the open system test, and In a closed system test, the reaction liquid tank 32
The gas discharge rate was 75 ml/min. The acetic acid concentration in the resulting reaction solution was 6.0W/V% in the open system test and 6.0W/V% in the closed system test.
7.3 W/V%, and the fermentation efficiency is significantly improved compared to the case where the reaction tower consists of only one tower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る反応装置の第1実施例を
示す概略構成図、第2図は同第2実施例を示す概
略構成図、第3図は同第3実施例を示す概略構成
図である。 符号の説明、10,20,30……反応装置、
11,21,31,31A……反応塔、12,2
2,32……反応液槽、13,23,33,33
A……ハニカム構造体、14,24,34,34
A……多孔板。
FIG. 1 is a schematic diagram showing the first embodiment of the reaction apparatus according to the present invention, FIG. 2 is a schematic diagram showing the second embodiment, and FIG. 3 is a schematic diagram showing the third embodiment of the reactor. It is. Explanation of symbols, 10, 20, 30... Reactor,
11,21,31,31A...Reaction tower, 12,2
2, 32... Reaction liquid tank, 13, 23, 33, 33
A...honeycomb structure, 14, 24, 34, 34
A...Perforated plate.

Claims (1)

【特許請求の範囲】 1 好気性微生物を固定化してなる多孔質セラミ
ツクスのハニカム構造体を収容した反応塔に被反
応液と所定濃度の酸素を含む気体を供給して、前
記被反応液を泡状として前記ハニカム構造体中を
通過させることにより前記微生物により反応させ
るとともに、前記被反応液と気体の供給量を制御
することにより同被反応液の泡状態を前記ハニカ
ム構造体の下端から上端に至るまで維持すること
を特徴とするセラミツクスに固定化した微生物に
よる反応方法。 2 前記被反応液の供給量をLml/min、前記気
体の供給量をGml/minとした場合、これらの関
係をL/G=a×10-4(但し0.7≦a≦7)の関係
に制御する特許請求の範囲第1項に記載の反応方
法。 3 有底筒体の下方部に所定濃度の酸素を含む気
体を供給する気体供給孔とその上方にて被反応液
を供給する被反応液供給孔を有するとともに同筒
体の上方部に反応液を排出する反応液排出孔を有
する反応塔と、この反応塔内の被反応液供給孔と
反応液排出孔間に配置された好気性微生物を固定
化してなる多孔質セラミツクスのハニカム構造体
と、前記反応塔内の被反応液供給孔と気体供給孔
間に配置され供給された前記気体を分散させて供
給された前記被反応液を泡状となす多孔板を備え
てなるセラミツクスに固定化した微生物による反
応装置。 4 前記反応塔を1または直列接続された複数備
えている特許請求の範囲第3項に記載の反応装
置。 5 前記反応塔が前記気体の循環手段を備えてい
る特許請求の範囲第3項または第4項に記載の反
応装置。
[Scope of Claims] 1. A reactant liquid and a gas containing oxygen at a predetermined concentration are supplied to a reaction tower containing a porous ceramic honeycomb structure in which aerobic microorganisms are immobilized, and the reactant liquid is bubbled. The reaction liquid is caused to react by the microorganisms by passing through the honeycomb structure, and the foam state of the reaction liquid is changed from the lower end to the upper end of the honeycomb structure by controlling the supply amount of the reactant liquid and gas. A reaction method using microorganisms immobilized on ceramics, which is characterized by being maintained until the end of the process. 2 When the supply amount of the reacted liquid is Lml/min and the supply amount of the gas is Gml/min, the relationship between these is L/G=a×10 -4 (however, 0.7≦a≦7). The reaction method according to claim 1, wherein the reaction method is controlled. 3 The bottomed cylinder has a gas supply hole for supplying a gas containing oxygen at a predetermined concentration in the lower part and a reaction liquid supply hole for supplying the reaction liquid above the gas supply hole, and a reaction liquid is provided in the upper part of the cylinder. a reaction tower having a reaction liquid discharge hole for discharging the reaction liquid; a porous ceramic honeycomb structure in which aerobic microorganisms are immobilized and arranged between the reaction liquid supply hole and the reaction liquid discharge hole in the reaction tower; A porous plate arranged between a reactant liquid supply hole and a gas supply hole in the reaction tower to disperse the supplied gas and fix the supplied reactant liquid in the form of a bubble in a ceramic. A reaction device using microorganisms. 4. The reaction apparatus according to claim 3, comprising one or more reaction towers connected in series. 5. The reaction apparatus according to claim 3 or 4, wherein the reaction tower is equipped with a means for circulating the gas.
JP62225495A 1987-09-09 1987-09-09 Method for reaction using microorganism immobilized on ceramics and reactor therefor Granted JPS6467176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62225495A JPS6467176A (en) 1987-09-09 1987-09-09 Method for reaction using microorganism immobilized on ceramics and reactor therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62225495A JPS6467176A (en) 1987-09-09 1987-09-09 Method for reaction using microorganism immobilized on ceramics and reactor therefor

Publications (2)

Publication Number Publication Date
JPS6467176A JPS6467176A (en) 1989-03-13
JPH0441591B2 true JPH0441591B2 (en) 1992-07-08

Family

ID=16830214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62225495A Granted JPS6467176A (en) 1987-09-09 1987-09-09 Method for reaction using microorganism immobilized on ceramics and reactor therefor

Country Status (1)

Country Link
JP (1) JPS6467176A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724575B2 (en) * 1989-07-19 1995-03-22 麒麟麦酒株式会社 Bioreactor carrier
JPH0724574B2 (en) * 1989-07-19 1995-03-22 麒麟麦酒株式会社 Bioreactor carrier

Also Published As

Publication number Publication date
JPS6467176A (en) 1989-03-13

Similar Documents

Publication Publication Date Title
De Ory et al. Optimization of immobilization conditions for vinegar production. Siran, wood chips and polyurethane foam as carriers for Acetobacter aceti
US4749654A (en) Method and apparatus for the submerged growth of cell cultures
FI88174B (en) IMMOBILIZATION OF A MICRO-ORGANISM, POROESA ORGANIC ORGANISM BUTTERFLOWER OF A MICRO-ORGANISM OCH HAERVID ANVAENDBARA BAERKROPPAR
Pankhania et al. Membrane aeration bioreactors for wastewater treatment: completely mixed and plug-flow operation
Gbewonyo et al. Enhancing gas‐liquid mass transfer rates in non‐Newtonian fermentations by confining mycelial growth to microbeads in a bubble column
US4948728A (en) Monolith reactor containing a plurality of flow passages and method for carrying out biological reactions
JPH03504925A (en) Device to oxygenate the culture medium
US5256570A (en) Bioreactor configured for various permeable cell supports and culture media
EP0073675B1 (en) Continuous fermentation apparatus and process
Dronawat et al. The effects of agitation and aeration on the production of gluconic acid by Aspergillus niger
SU967278A3 (en) Method and apparatus for contacting gas and liquid
JPH0441591B2 (en)
Shiraishi et al. Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith
Kitai et al. Performance of a perforated plate column as a multistage continuous fermentor
CA2448388A1 (en) Production of secondary metabolites
de Ory et al. Immobilization of cells on polyurethane foam
Toda Theoretical and methodological studies of continuous microbial bioreactors
EP0160681B1 (en) Aerobic microbiological method
EP0194401B1 (en) Biological method and matrix of mineral wool therefor
US11512272B2 (en) Solid state fermentation reactor equipped with active support material
JP3041378B2 (en) Packed bed type culture apparatus and culture method
EP0267470A1 (en) Porous glass fiber mats for attachment of cells and biologically active substances
JPS5813391A (en) Membrane of immobilized microorganism
JPH01243984A (en) Bioreactor element
JPS6090096A (en) Preparation of deoxidized water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees