JPH0440660B2 - - Google Patents

Info

Publication number
JPH0440660B2
JPH0440660B2 JP57131378A JP13137882A JPH0440660B2 JP H0440660 B2 JPH0440660 B2 JP H0440660B2 JP 57131378 A JP57131378 A JP 57131378A JP 13137882 A JP13137882 A JP 13137882A JP H0440660 B2 JPH0440660 B2 JP H0440660B2
Authority
JP
Japan
Prior art keywords
group
optically active
packing material
general formula
chromatographic packing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57131378A
Other languages
Japanese (ja)
Other versions
JPS5920852A (en
Inventor
Takafumi Ooi
Akira Doi
Masayuki Nagase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP57131378A priority Critical patent/JPS5920852A/en
Publication of JPS5920852A publication Critical patent/JPS5920852A/en
Publication of JPH0440660B2 publication Critical patent/JPH0440660B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/29Chiral phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3259Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulfur with at least one silicon atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3261Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure not containing any of the heteroatoms nitrogen, oxygen or sulfur, e.g. aromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】 本発明は新芏な光孊掻性オルガノシランをグラ
フトしたクロマトグラフ充填剀およびそれを甚い
お䞍斉炭玠に結合した−NH−基、−OCNH−基、
−OCO−基たたは−OH基を有する化合物の鏡像
䜓混合物を液䜓クロマトグラフむヌにより分離
し、分析する方法に関するものある。 液䜓クロマトグラフむヌにより、䞍斉炭玠を有
する化合物の鏡像䜓混合物を盎接分離、分析する
ための光孊掻性な化合物をグラフトした充填剀ず
しおはこれたでに䟋えば、Davankov等による光
孊掻性なプロリンをグラフトした充填剀を甚いる
配䜍子亀換による方法、Gil−Av等によるπ電子
䞍足の光孊掻性化合物をグラフトした充填剀を甚
いる電荷移動錯䜓による方法、原等による光孊掻
性な−アシル化アミノ酞をグラフトした充填剀
を甚いる−アシル化アミノ酞゚ステルや−ア
シル化ゞペプチド゚ステルの分離あるいはPirkle
等による光孊掻性な−−アンスリルトリ
フルオロ゚タノヌルをグラフトした充填剀を甚い
る−ゞニトロベンゟむル化したアミノ酞、
アミン、オキシ酞、スルホキシド等の分離および
−ゞニトロベンゟむル化した光孊掻性なフ
゚ニルグリシンをグラフトした充填剀を甚いる芳
銙族アルコヌルの分離などが報告されおいる。 しかし、これらの方法は分離し埗る化合物が狭
範囲のものに限定されたり、たた、分離の皋床が
小さか぀たりさらにはグラフトした充填剀の補造
が困難で、再珟性のある性胜を持぀充填剀が埗に
くか぀たりしお、いずれも実甚的な充填剀ずは蚀
い難い。 本発明者らはかかる状況のもずで分析し埗る化
合物の適甚範囲が広く、補造が比范的容易でしか
も化孊的に安定で実甚的なグラフトした充填剀の
開発を目暙に鋭意怜蚎を続けお来た結果、ヒドロ
キシル基をその衚面に持぀無機担䜓に䞍斉炭玠を
含む光孊掻性な第䞀菊酞たたはα−−クロロ
プニルむ゜吉草酞残基でアシル化された光孊
掻性なプニグリシンをグラフトしたクロマトグ
ラフ充填剀が䞍斉炭玠に結合した−NH−基、−
CONH−基、−OCO−基たたは−OH基を有する
化合物の鏡像䜓混合物の分離に優れた効果を瀺す
のみならず、通の化孊反応で容易に補造し埗るう
え、化孊的にも安定であるなど極めお有な充填剀
であるこずを芋出し、本発明に至぀たものであ
る。 即ち本発明はヒドロキシル基をその衚面に持぀
無機担䜓に、䞍斉炭玠を含む光孊掻性な第䞀菊酞
たたはα−−クロロプニルむ゜吉草酞に
よりアシル化された光孊掻性なプニルグリシン
ずアミノアルキルシランを結合しお成る光孊掻性
なオルガノシランがグラフトされおいるクロマト
グラフ充填剀およびそれを液䜓クロマトグラフむ
ヌの固定盞に甚いお䞍斉炭玠に結合した−NH−
基、−CONH基、−OCO−基たたは−OH基を有
する化合物の鏡像䜓混合物を分離し、分析する方
法を提するものである。 本発明に぀いおさらに詳现に述べる。 本発明においおグラフトされおいるオルガノシ
ランずしおは、䟋えば䞀般匏〔〕 〔匏䞭、R1R2およびR3はアルキル基、アル
コキシル基、ヒドロキシル基たたはハロゲン原子
より遞ばれ、少なくずも぀はアルコキシル基た
たはハロゲン原子である。はからたでの敎
数である。は光孊掻性な−−メチル−
−プロペニル−−ゞメチル−−シクロ
プロピル基たたは光孊掻性な−−クロロフ
゚ニル−む゜ブチル基である。は䞍斉炭玠を
衚わす〕で瀺される光孊掻性な−アシル化プ
ニルグリシンの誘導䜓を挙げるこずができる。た
た、アミノアルキルシラン成分ずしおはω−アミ
ノアルキルアルコキシシランたたはω−アミノア
ルキルハロゲノシランが奜たしく、䟋えばγ−ア
ミノプロピルトリ゚トキシシラン、γ−アミノプ
ロピルトリクロロシランなどを挙げるこずができ
る。 本発明においおヒドロキシル基をその衚面に持
぀無機担䜓ずしおは、䟋えばシリカゲルなどのシ
リカ含有担䜓が奜たしく、担䜓の圢状は球状、砎
砕状などいずれの圢状でも差支えないが、高効率
のクロマトグラフ甚カラムを埗るためにはできる
だけ粒埄の揃぀た埮现な粒子が奜たしい。 本発明の新芏なクロマトグラフ充填剀を調補す
るに際しおは皮々のグラフト方法が採甚でき、䟋
えば以䞋のような方法が挙げられる。 その衚面にヒドロキシル基を有する無機担䜓
にアミノアルキルシランを反応させ、無機担䜓
の衚面にアミノアルキルシリル残基を導入し、
これに光孊掻性な第䞀菊酞たたはα−−ク
ロロプニルむ゜吉草酞残基でアシル化され
た光孊掻性なプニルグリシンを反応させ、脱
氎瞮合させる方法。 より具䜓的にはその衚面にヒドロキシル基を有
する無機担䜓に䞀般匏〔〕 〔匏䞭、R1、R2、R3、およびは前述ず同
じ意味を有する。〕 で瀺されるアミノアルキルシランを既知の方法
により反応させ、無機担䜓の衚面にアミノアル
キルシリル残基を導入し、次いでこれに䞀般匏
〔〕 〔匏䞭、およびは前述ず同じ意味を有す
る。〕 で瀺される䞍斉炭玠を有する光孊掻性な−ア
シル化プニルグリシン、䟋えば−クリサン
テモむルプニルグリシン、−α−−ク
ロロプニルむ゜バレロむルプニルグリ
シン等を反応せしめ、脱氎瞮合させるこずによ
り目的の充填物が埗られる。なお䞊蚘䞀般匏
〔〕に瀺す䞍斉炭玠を有する光孊掻性な−
アシル化プニルグリシンは䞀般によく甚いら
れる方法で合成でき、䟋えば第䞀菊酞たたはα
−−クロロプニルむ゜吉草酞をそれら
の酞クロリドずし、これに脱塩酞剀の存圚䞋で
プニグリシンを反応させるこずにより埗られ
る。 光孊掻性な−アシル化プニルグリシンに
アミノアルキルシランを反応させお埗られるオ
ルガノシランを、その衚面にヒドロキシル基を
有する無機担䜓にグラフトする方法。 より具䜓的には前蚘䞀般匏〔〕で瀺される
−アシル化プニルグリシンに䞀般匏〔〕
で瀺されるアミノアルキルシランを反応させお
埗られる䞀般匏〔〕で瀺されるオルガノシラ
ンをシリカゲル等の無機担䜓にグラフトするこ
ずにより目的の充填剀が埗られる。 本発明によ぀お埗られた光孊掻性な−アシル
化プニルグリシン残基を持぀充填剀は垞法に埓
぀おクロマトグラフのカラムに充填され、液䜓ク
ロマトグラフむヌの固定盞ずしお䜿甚される。本
固定盞を甚いる液䜓クロマトグラフむヌにおいお
適圓な溶離条件、特に通垞よくいられる順盞分配
の条件を遞ぶこずにより、䞍斉炭玠に結合した−
NH−基、−CONH−基、−OCO−基たたは−OH
基を有する化合物の鏡像䜓混合物の分離、分析が
分離胜良く、か぀短時間に行なうこずができる。 実斜䟋  シリカゲル粒埄10ÎŒm、孔埄60Å、衚面積500
m210gを枛圧、130℃で時間也燥したの
ち、−アミノプロピルトリ゚トキシシラン20g
を200mlの脱氎トル゚ン溶かした液に加え、60℃
にお時間撹拌する。反応物をろ過し、残留物を
アセトン100mlで掗い、也燥しお−アミノプロ
ピルシリル化シリカゲルAPSを埗た。この
ものの元玠分析倀は1.20、3.40であ
り、これはシリカゲ1gに察し、−アミノプロ
ピル基が玄0.90molグラフトされたこずに盞圓
する。 別に、−プニルグリシン10gを2N氎酞化ナ
トリム液33mlに溶かし、゚チル゚ヌテル20mlを加
え、氷冷䞋で激しくかきたぜながら−トラ
ンス−菊酞クロリド15gおよび2N氎酞化ナトリり
ム液40mlを10〜15分おきに回に分割しお加え
る。さらに時間宀枩で激しくかきたぜたのち反
応液を゚チル゚ヌテル50mlで回掗い、6Nå¡©é…ž
で酞性ずし、生成する油状物を酢酞゚チル100ml
で回抜出する。抜出液を氎100mlで回掗い、
無氎硫酞ナトリりムで脱氎し、枛圧䞋で濃瞮した
のち酢酞゚チル・−ヘキサン混液から再結晶
し、−−トランス−クリサンテモむル−
−プニルグリシン15gを癜色結晶ずしお埗た。 融点76〜80℃ 旋光床〔α〕20 D−38.8゜、クロロホ
ルム 元玠分析倀 炭箠(%) 氎玠(%) 窒玠(%) 蚈算倀 71.74 7.70 4.65 実枬倀 71.58 7.65 4.58 次にこの化合物12gず−ヒドロキシコハク酞
むミド4.6gを脱氎テトラヒドロフン100mlに溶か
し、氷冷しお激しくかきたぜながら、ゞシクロヘ
キシルカルボゞむミド8.3gを脱氎テトラヒドロフ
ラン20mlに溶かしお30分間で滎加する。氷冷䞋で
時間さらに宀枩時間撹拌したのち析出物をろ
過しお陀き、溶媒を枛圧留去する。残留物を酢酞
゚チル150mlに溶かし、氎50mlで回掗い、無氎
硫酞ナトリりムで脱氎し、枛圧䞋で濃瞮したのち
酢酞゚チル・−ヘキサン混液から再結晶し、匏 で瀺される化合物12gを癜色結晶ずしお埗た。 融 点80〜85℃ 旋光床〔α〕20 D122.9゜、クロロホル
ム 元玠分析倀 炭箠(%) 氎玠(%) 窒玠(%) 蚈算倀 66.32 6.58 7.03 実枬倀 66.53 6.31 6.99 次いで、この化合物6gをずり、前蚘アミノプ
ロピルシリル化シリカゲルAPS3gを脱氎テ
トラヒドロフラン30mlに懞濁させ、枛圧䞋だ十分
に脱気した液に加え、宀枩で時間、぀いで50℃
で時間ゆるやに撹拌する。宀枩たで攟冷したの
ちテトラヒドロフラン30mlで回、぀いでメタノ
ヌル30mlで回、さらに゚チ゚ヌテル30ml回掗
い、也燥しお−−トランス−クリサンテモ
むル−プニルグリシンをグラフトした目的の充
填剀を埗た。このものの元玠分析倀は1.74
、13.3であり、これはシリカゲル1gに察
し、−−トランス−クリサンテモむル−
−プニルグリシンが玄0.53molグラフトされ
たこずを瀺す。このようにしお埗られた充填剀を
内埄mm、長さ30cmのステンレス補カラムにスラ
リヌ充填し、次の条件で±−−−クロロ
プニル−−ゞメチル−−
−トリアゟヌル−−むル−−ペンテン−
−オヌルを分析し、図−のクロマトグラムを埗
た。 枩床宀枩 移動盞ヘキサン−ゞクロル゚タン
゚タノヌル35040 流量1.0ml分 怜出噚玫倖線吞収蚈波長 254nm 図−䞭、ピヌク番号(1)−−−−クロ
ロプニル−−ゞメチル−−
−トリアゟヌル−−むル−−ペンテン−
−オヌル、(2)は−−−クロロプニ
ル−−ゞメチル−−−トリ
アゟヌル−−むル−−ペンテン−−オヌ
ルの各ピヌクである。(1)のピヌクが溶出するたで
に芁する時間は玄14分、分離係数は1.22、(1)ず(2)
のピヌクの面積比は5050であ぀た。 実斜䟋  −α−−クロロプニルむ゜吉草酞
17.0gを−ヘキサン・トル゚ン混液
70mlに溶かし、ゞメチルホルムアmgを加えお40
℃に加枩する。これに塩化チオニル11.5gを時
間で滎䞋し、40℃で時間撹拌したのち宀枩、枛
圧䞋で溶媒を留去し、−α−−クロプ
ニむ゜吉酞クロリド玄17.5gを埗る。 −プニルグリシン9.5gを2N氎酞化ナトリ
りム液32mlに溶かし、゚チル゚ヌテル20mlを加
え、氷冷䞋に激しくかきたぜながら前述の
−α−−クロロプニルむ゜吉草酞クロリ
ド玄17.5gおよび2N氎酞化ナトリりム液35mlを10
〜15分おきに回に分割しお加え、さらに時間
宀枩で激しくきたぜたのち反応液を゚チル゚ヌテ
ル50mlで回掗い、6N塩酞で酞性ずし、生成す
る油状物を酢酞゚チル100mlで回抜出する。抜
出液を氎100mlで回掗い無氎硫酞ナトリりムで
脱氎埌枛圧䞋で溶媒を留去する。残留物に−ヘ
キサン200mlを加え撹拌、掗浄したのち䞋局をず
り枛圧䞋で溶媒を留去し、匏 で瀺される化合物21gを埗た。 融点68〜70℃ 旋光床〔α〕20 D−105.2゜2.2、テトラ
ヒドロフラン 元玠分析倀 炭箠(%) 氎玠(%) 窒玠(%) 塩玠(%) 蚈算倀 65.99 5.83 4.05 10.25 実枬倀 65.49 5.99 3.79 10.41 次いで、この化合物4gをずり、脱氎テトラヒ
ドロフラン40mlに溶かし、氷冷䞋撹拌しながら
−゚トキシカルボニル−−゚トキシ−−
ゞヒドロキノリン3.2gを加えお、氷冷䞋、時間
撹拌したのち、実斜䟋で埗られた−アミノプ
ロピルシリル化シリカゲルAPS2.5gを加え、
枛圧䞋で十に脱気したのち、宀枩でゆるやに昌
倜撹拌する。反応物をテトラヒドロフラン30mlで
回、぀いでメタノヌル30mlで回、さらに゚チ
ル゚ヌテル30mlで回掗い也燥しお−−
α−−クロロプニルむ゜バレロむル−
−プニルグリシンをグラフトした目的の充填剀
を埗た。このものの元玠分析倀は1.26、
8.72で、これはシリカゲル1gに察し、−
−α−−クロロプニルむ゜バレロむ
ル−−プニルグリシンが玄0.34molグラ
フトされたこずを瀺す。 このようにしお埗られた充填剀を内埄mm、長
さ25cmのステンレス補カラムにスラリヌ充填し、
次の条件で−−ゞニトロベンゟむル−
、−−シクロヘキシル゚チルアミンを分
析し、図−のクロマトグラムを埗た。 枩床宀枩 移動盞−ヘキサン−ゞクロル゚タ
ン゚タノヌル10020 流量1.0ml分 怜出噚玫倖線吞収蚈波長254nm 図−䞭、ピヌク番号(1)は−、−ゞニト
ロベンゟむル−(S)−−シクロヘキシル゚チルア
ミン、(2)は−、−ゞニトロベンゟむル−(R)
−−シクロヘキシル゚チルアミンの各ピヌクで
ある。(1)のピヌクが溶出するたでに芁する時間は
箄10分、分係数は1.20、(1)ず(2)のピヌクの面積比
は5050であ぀た。 比范䟋 倫々、実斜䟋においお埗られた本発明に
なる−−トランス−クリサンテモむル−
−プニルグリシンをグラフトしたシリカゲル
以䞋CHR−PHG−Siず略す、−−α
−−クロロプニルむ゜バレロむル−−
プニルグリシンをグラフトしたシリカゲル以
例CPI−PHG−Siず略すおよび特開昭56−1350
号公報実斜䟋に埓぀お補造した−ホルミル−
−バリンをグラフトしたシリカゲル以䞋
FVAず略すを内埄mm、長さ25cmのステンレ
ス補カラムにスラリヌ充填し、次の条件で以䞋の
化合物の鏡像䜓を分析し各々の分離胜を比范した
結果、第衚に瀺すように本発明になる充填剀は
FVAに比べお−−ゞニトロベンゟむル
化したアミノ酞゚ステル、−アシル化アミン、
カルボン酞アニリドの鏡像䜓の分離に優れた性胜
を発揮した。 枩床宀枩 流量1.0mlmin 怜出噚玫倖線吞収蚈波長254nm 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a chromatographic packing material grafted with a novel optically active organosilane, and an -NH- group, -OCNH- group,
There is a method for separating and analyzing an enantiomeric mixture of a compound having an -OCO- group or an -OH group by liquid chromatography. As a filler grafted with an optically active compound for directly separating and analyzing an enantiomeric mixture of a compound having an asymmetric carbon by liquid chromatography, for example, Davankov et al. grafted optically active proline. A method using a ligand exchange using a filler, a method using a charge transfer complex using a filler grafted with an optically active compound lacking π electrons by Gil-Av, etc., a method using a charge transfer complex using a filler grafted with an optically active N-acylated amino acid by Hara et al. Separation of N-acylated amino acid esters and N-acylated dipeptide esters using packing materials or Pirkle
3,5-dinitrobenzoylated amino acids using optically active 1-(9-anthryl)trifluoroethanol-grafted fillers by et al.
Separation of amines, oxyacids, sulfoxides, etc. and separation of aromatic alcohols using fillers grafted with 3,5-dinitrobenzoylated optically active phenylglycine have been reported. However, these methods are limited to a narrow range of compounds that can be separated, the degree of separation is small, and it is difficult to produce grafted fillers, making it difficult to produce fillers with reproducible performance. It is difficult to obtain a filler, and it is difficult to say that any of them are practical fillers. Under such circumstances, the present inventors have continued to conduct intensive studies with the aim of developing a grafted filler that is applicable to a wide range of compounds that can be analyzed, is relatively easy to manufacture, and is chemically stable and practical. As a result, optically active pheniglycine acylated with an optically active chrysanthemum acid or α-(4-chlorophenyl)isovaleric acid residue containing an asymmetric carbon was grafted onto an inorganic carrier having a hydroxyl group on its surface. -NH- group bonded to the asymmetric carbon, -
It not only shows excellent effects in separating enantiomeric mixtures of compounds having CONH-, -OCO-, or -OH groups, but also can be easily produced by standard chemical reactions and is chemically stable. We have discovered that these are extremely useful fillers, leading to the present invention. That is, the present invention combines optically active phenylglycine acylated with optically active chrysanthemum acid or α-(4-chlorophenyl)isovaleric acid containing an asymmetric carbon onto an inorganic carrier having a hydroxyl group on its surface. A chromatographic packing material grafted with an optically active organosilane formed by bonding an aminoalkylsilane, and -NH- bonded to an asymmetric carbon using the same as a stationary phase of liquid chromatography.
A method is provided for separating and analyzing enantiomeric mixtures of compounds having -CONH, -OCO- or -OH groups. The present invention will be described in further detail. As the organosilane grafted in the present invention, for example, the general formula [] [In the formula, R 1 , R 2 and R 3 are selected from an alkyl group, an alkoxyl group, a hydroxyl group, or a halogen atom, and at least one is an alkoxyl group or a halogen atom. n is an integer from 2 to 4. A is optically active 3-(2-methyl-1
-propenyl)-2,2-dimethyl-1-cyclopropyl group or optically active 1-(4-chlorophenyl)-isobutyl group. * represents an asymmetric carbon] Optically active N-acylated phenylglycine derivatives can be mentioned. Further, as the aminoalkylsilane component, ω-aminoalkylalkoxysilane or ω-aminoalkylhalogenosilane is preferable, and examples thereof include γ-aminopropyltriethoxysilane and γ-aminopropyltrichlorosilane. In the present invention, the inorganic carrier having hydroxyl groups on its surface is preferably a silica-containing carrier such as silica gel, and the carrier may have any shape such as spherical or crushed. In order to obtain this, it is preferable to use fine particles with as uniform a particle size as possible. Various grafting methods can be employed to prepare the novel chromatographic packing material of the present invention, including the following methods. An inorganic carrier having a hydroxyl group on its surface is reacted with an aminoalkylsilane to introduce an aminoalkylsilyl residue onto the surface of the inorganic carrier,
A method of reacting this with optically active phenylglycine acylated with an optically active chrysanthemum acid or α-(4-chlorophenyl)isovaleric acid residue to cause dehydration condensation. More specifically, an inorganic carrier having a hydroxyl group on its surface has the general formula [] [In the formula, R 1 , R 2 , R 3 , and n have the same meanings as above. ] The aminoalkylsilane represented by the formula [] is reacted by a known method to introduce an aminoalkylsilyl residue onto the surface of the inorganic carrier, and then the general formula [] [wherein A and * have the same meanings as above. ] An optically active N-acylated phenylglycine having an asymmetric carbon represented by, for example, N-chrysanthemoylphenylglycine, N-{α-(4-chlorophenyl)isovaleroyl}phenylglycine, etc. is reacted, The desired filling can be obtained by dehydration condensation. In addition, optically active N- having an asymmetric carbon shown in the above general formula []
Acylated phenylglycine can be synthesized by commonly used methods, such as primary chrysanthemum acid or α
-(4-chlorophenyl)isovaleric acid is used as its acid chloride, and it is obtained by reacting the acid chloride with pheniglycine in the presence of a dehydrochlorination agent. A method in which an organosilane obtained by reacting optically active N-acylated phenylglycine with an aminoalkylsilane is grafted onto an inorganic carrier having a hydroxyl group on its surface. More specifically, N-acylated phenylglycine represented by the general formula [] is combined with the general formula []
The desired filler can be obtained by grafting an organosilane represented by the general formula [] obtained by reacting an aminoalkylsilane represented by the following onto an inorganic carrier such as silica gel. The packing material having an optically active N-acylated phenylglycine residue obtained according to the present invention is packed into a chromatography column according to a conventional method and used as a stationary phase in liquid chromatography. In liquid chromatography using this stationary phase, by selecting appropriate elution conditions, especially the commonly used normal phase partition conditions, -
NH- group, -CONH- group, -OCO- group or -OH
Separation and analysis of a mixture of enantiomers of a compound having a group can be performed with good resolution and in a short time. Example 1 Silica gel (particle size 10 ÎŒm, pore size 60 Å, surface area 500
m 2 /g) 10g was dried under reduced pressure at 130°C for 4 hours, and then 20g of 3-aminopropyltriethoxysilane was added.
Add to 200ml of dehydrated toluene solution and heat at 60℃.
Stir for 6 hours. The reaction mixture was filtered, and the residue was washed with 100 ml of acetone and dried to obtain 3-aminopropyl silylated silica gel (APS). The elemental analysis values of this product were N: 1.20% and C: 3.40%, which corresponds to about 0.90 mmol of 3-aminopropyl group grafted to 1 g of silica gel. Separately, dissolve 10 g of D-phenylglycine in 33 ml of 2N sodium hydroxide solution, add 20 ml of ethyl ether, and while stirring vigorously under ice-cooling, dissolve 15 g of (+)-trans-chrysanthemum acid chloride and 40 ml of 2N sodium hydroxide solution. Add in 7 portions, approximately every 15 minutes. After stirring vigorously for another 2 hours at room temperature, the reaction solution was washed twice with 50 ml of ethyl ether, acidified with 6N hydrochloric acid, and the resulting oil was washed with 100 ml of ethyl acetate.
Extract 3 times. Wash the extract twice with 100ml of water,
After dehydration over anhydrous sodium sulfate and concentration under reduced pressure, recrystallization from a mixture of ethyl acetate and n-hexane yielded N-(+)-trans-chrysanthemoyl-D.
-15 g of phenylglycine was obtained as white crystals. Melting point: 76-80℃ Optical rotation: [α] 20 D = -38.8゜ (c = 2%, chloroform) Elemental analysis values Carbon (%) Hydrogen (%) Nitrogen (%) Calculated value 71.74 7.70 4.65 Actual value 71.58 7.65 4.58 Next, 12 g of this compound and 4.6 g of N-hydroxysuccinimide are dissolved in 100 ml of dehydrated tetrahydrofuran, and while cooling on ice and stirring vigorously, 8.3 g of dicyclohexylcarbodiimide is dissolved in 20 ml of dehydrated tetrahydrofuran and added dropwise over 30 minutes. After stirring for 2 hours under ice-cooling and further stirring for 3 hours at room temperature, the precipitate was removed by filtration, and the solvent was distilled off under reduced pressure. The residue was dissolved in 150 ml of ethyl acetate, washed twice with 50 ml of water, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and then recrystallized from a mixture of ethyl acetate and n-hexane to obtain the formula 12 g of the compound represented by was obtained as white crystals. Melting point: 80-85℃ Optical rotation: [α] 20 D = 122.9゜ (c = 2%, chloroform) Elemental analysis values Carbon (%) Hydrogen (%) Nitrogen (%) Calculated value 66.32 6.58 7.03 Actual value 66.53 6.31 6.99 Next, take 6 g of this compound, suspend 3 g of the aminopropyl silylated silica gel (APS) in 30 ml of dehydrated tetrahydrofuran, add to the sufficiently degassed liquid under reduced pressure, and heat at room temperature for 5 hours, then at 50°C.
Stir gently for 5 hours. After cooling to room temperature, the desired filler was washed three times with 30 ml of tetrahydrofuran, then twice with 30 ml of methanol, and then twice with 30 ml of ethiether, dried, and grafted with N-(+)-trans-chrysanthemoyl-phenylglycine. I got it. The elemental analysis value of this item is N: 1.74
%, C: 13.3%, which is N-(+)-trans-chrysanthemoyl-D per 1 g of silica gel.
- indicates that approximately 0.53 mmol of phenylglycine was grafted. The thus obtained packing material was slurried packed into a stainless steel column with an inner diameter of 4 mm and a length of 30 cm, and (±)-1-(4-chlorophenyl)-4,4-dimethyl-2-( 1, 2, 4
-triazol-1-yl)-1-penten-3
-ol was analyzed and the chromatogram shown in Figure 1 was obtained. Temperature: room temperature Mobile phase: hexane/1,2-dichloroethane/
Ethanol (350:40:4) Flow rate: 1.0ml/min Detector: Ultraviolet absorption meter (wavelength 254nm) In Figure 1, peak number (1)(-)-1-(4-chlorophenyl)-4,4- Dimethyl-2-(1,2,
4-triazol-1-yl)-1-pentene-
3-ol, (2) is (+)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol. each peak. The time required for peak (1) to elute is approximately 14 minutes, the separation factor is 1.22, and the time required for peak (1) and (2) to elute is approximately 14 minutes.
The area ratio of the peaks was 50:50. Example 2 (+)-α-(4-chlorophenyl)isovaleric acid
17.0g in n-hexane/toluene mixture (6:1)
Dissolve in 70ml, add 9mg of dimethylforma and add 40ml
Warm to ℃. To this, 11.5 g of thionyl chloride was added dropwise over 1 hour, and after stirring at 40°C for 5 hours, the solvent was distilled off under reduced pressure at room temperature, resulting in approximately 17.5 g of (+)-α-(4-clofeny)isovaleric acid chloride. get. Dissolve 9.5 g of D-phenylglycine in 32 ml of 2N sodium hydroxide solution, add 20 ml of ethyl ether, and stir vigorously under ice cooling to dissolve the above (+)
-Approximately 17.5 g of α-(4-chlorophenyl)isovaleric acid chloride and 35 ml of 2N sodium hydroxide solution in 10
After addition in 7 portions at ~15 minute intervals and stirring vigorously at room temperature for another 2 hours, the reaction mixture was washed twice with 50 ml of ethyl ether, acidified with 6N hydrochloric acid, and the resulting oil was diluted with 100 ml of ethyl acetate for 30 minutes. Extract times. The extract was washed twice with 100 ml of water, dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure. After adding 200 ml of n-hexane to the residue, stirring and washing, the lower layer was taken and the solvent was distilled off under reduced pressure. 21 g of the compound represented by was obtained. Melting point: 68-70℃ Optical rotation: [α] 20 D = -105.2゜ (c = 2.2%, tetrahydrofuran) Elemental analysis values Carbon (%) Hydrogen (%) Nitrogen (%) Chlorine (%) Calculated value 65.99 5.83 4.05 10.25 Actual value 65.49 5.99 3.79 10.41 Next, take 4 g of this compound, dissolve it in 40 ml of dehydrated tetrahydrofuran, and add 1.5 g of this compound while stirring under ice cooling.
-ethoxycarbonyl-2-ethoxy-1,2-
After adding 3.2 g of dihydroquinoline and stirring for 1 hour under ice cooling, 2.5 g of 3-aminopropylsilylated silica gel (APS) obtained in Example 1 was added.
After thoroughly deaerating under reduced pressure, the mixture was gently stirred at room temperature for one day and night. The reaction mixture was washed 4 times with 30 ml of tetrahydrofuran, then twice with 30 ml of methanol, and then twice with 30 ml of ethyl ether, dried, and N-{(+)-
α-(4-chlorophenyl)isovaleroyl}-D
- A desired filler grafted with phenylglycine was obtained. The elemental analysis value of this item is N: 1.26%,
C: 8.72%, which is N- per 1g of silica gel.
This shows that about 0.34 mmol of {(+)-α-(4-chlorophenyl)isovaleroyl}-D-phenylglycine was grafted. The thus obtained packing material was slurried packed into a stainless steel column with an inner diameter of 4 mm and a length of 25 cm.
N-3,5-dinitrobenzoyl-
(R,S)-1-cyclohexylethylamine was analyzed and the chromatogram shown in Figure 2 was obtained. Temperature: Room temperature Mobile phase: n-hexane/1,2-dichloroethane/ethanol (100:20:1) Flow rate: 1.0ml/min Detector: Ultraviolet absorption meter (wavelength: 254nm) Peak number (1) in Figure 2 ) is N-3,5-dinitrobenzoyl-(S)-1-cyclohexylethylamine, (2) is N-3,5-dinitrobenzoyl-(R)
-1-Cyclohexylethylamine peaks. The time required for peak (1) to elute was approximately 10 minutes, the fraction coefficient was 1.20, and the area ratio of peaks (1) and (2) was 50:50. Comparative Example N-(+)-trans-chrysanthemoyl-D of the present invention obtained in Examples 1 and 2, respectively
-Silica gel grafted with phenylglycine (hereinafter abbreviated as CHR-PHG-Si), N-{(+)-α
-(4-chlorophenyl)isovaleroyl}-D-
Silica gel grafted with phenylglycine (hereinafter abbreviated as CPI-PHG-Si) and JP-A-56-1350
N-formyl- produced according to Example 1 of the publication
Silica gel grafted with L-valine (hereinafter referred to as
FVA) was packed into a stainless steel column with an inner diameter of 4 mm and a length of 25 cm as a slurry, and the enantiomers of the following compounds were analyzed under the following conditions and the separation performance of each was compared. The inventive filler is
N-3,5-dinitrobenzoylated amino acid ester, N-acylated amine compared to FVA,
Excellent performance was demonstrated in the separation of enantiomers of carboxylic acid anilides. Temperature: Room temperature Flow rate: 1.0ml/min Detector: Ultraviolet absorption meter (wavelength: 254nm) [Table]

【図面の簡単な説明】[Brief explanation of drawings]

図−及び図−はそれぞれ実斜䟋および
においお埗られたクロマトグラムであり、瞊軞は
匷床を暪軞は保持時間を衚す。
Figure-1 and Figure-2 are Examples 1 and 2, respectively.
This is a chromatogram obtained in , where the vertical axis represents intensity and the horizontal axis represents retention time.

Claims (1)

【特蚱請求の範囲】  䞀般匏〔〕 〔匏䞭、R1、R2およびR3はアルキル基、アル
コキシル基、ヒドロキシル基たたはハロゲン原子
より遞ばれ、少なくずも぀はアルコキシル基た
たはハロゲン原子である。はからたでの敎
数である。は光孊掻性な−−メチル−
−プロペニル−−ゞメチル−−シクロ
プロピル基たたは光孊掻性な−−クロロフ
゚ニル−む゜ブチル基である。は䞍斉炭玠を
衚わす〕で瀺される光孊掻性なオルガノシラン
が、ヒドロキシル基をその衚面に持぀無機担䜓に
グラフトされおいるクロマトグラフ充填剀。  ヒドロキシル基をその衚面に持぀無機担䜓が
シリカゲルである特蚱請求の範囲第項に蚘茉の
クロマトグラフ充填剀。  䞊蚘䞀般匏〔〕においおR1、R2およびR3
が゚トキシ基で、がである特蚱請求の範囲第
項たたは第項に蚘茉のクロマトグラフ充填
剀。  䞊蚘䞀般匏〔〕においおR1、R2およびR3
がClで、がである特蚱請求の範囲第項たた
は第項に蚘茉のクロマトグラフ充填剀。  䞀般匏〔〕 〔匏䞭、R1、R2およびR3はアルキル基、アル
コキシル基、ヒドロキシル基たたはハロゲン原子
より遞ばれ、少なくずも぀はアルコキシル基た
たはハロゲン原子である。はからたでの敎
数である。は光孊掻性な−−メチル−
−プロペニル−−ゞメチル−−シクロ
プロピル基たたは光孊掻性な−−クロロフ
゚ニル−む゜ブチル基である。は䞍斉炭玠を
衚わす〕で瀺される光孊掻性なオルガノシラン
が、ヒドロシキル基をその衚面に持぀無機担䜓に
グラフトされおいるクロマトグラフ充填剀を甚い
お、䞍斉炭玠に結合した−NH−基、−CONH−
基、−OCO−基たたは−OH基を有する化合物の
鏡像䜓混合物を分離し、分析するこずを特城ずす
る液䜓クロマトグラフむヌ分析法。  ヒドロキシル基をその衚面に持぀無機担䜓が
シリカゲルであるクロマトグラフ充填剀を甚いる
特蚱請求の範囲第項蚘茉の分析法。  䞊蚘䞀般匏〔〕においおR1、R2およびR3
が゚トシキ基で、がであるクロマトグラフ充
填剀を甚いる特蚱請求の範囲第項たたは第項
蚘茉の分析法。  䞊蚘䞀般匏〔〕においおR1、R2およびR3
がCl基で、がであるクロマトグラフ充填剀を
甚いる特蚱請求の範囲第項たたは第項蚘茉の
分析法。
[Claims] 1. General formula [] [In the formula, R 1 , R 2 and R 3 are selected from an alkyl group, an alkoxyl group, a hydroxyl group, or a halogen atom, and at least one is an alkoxyl group or a halogen atom. n is an integer from 2 to 4. A is optically active 3-(2-methyl-1
-propenyl)-2,2-dimethyl-1-cyclopropyl group or optically active 1-(4-chlorophenyl)-isobutyl group. A chromatographic packing material in which an optically active organosilane represented by *represents an asymmetric carbon is grafted onto an inorganic carrier having hydroxyl groups on its surface. 2. The chromatographic packing material according to claim 1, wherein the inorganic carrier having hydroxyl groups on its surface is silica gel. 3 In the above general formula [], R 1 , R 2 and R 3
The chromatographic packing material according to claim 1 or 2, wherein is an ethoxy group and n is 3. 4 In the above general formula [], R 1 , R 2 and R 3
The chromatographic packing material according to claim 1 or 2, wherein is Cl and n is 3. 5 General formula [] [In the formula, R 1 , R 2 and R 3 are selected from an alkyl group, an alkoxyl group, a hydroxyl group, or a halogen atom, and at least one is an alkoxyl group or a halogen atom. n is an integer from 2 to 4. A is optically active 3-(2-methyl-1
-propenyl)-2,2-dimethyl-1-cyclopropyl group or optically active 1-(4-chlorophenyl)-isobutyl group. An optically active organosilane represented by *represents an asymmetric carbon is grafted onto an inorganic support having a hydroxyl group on its surface. Using a chromatographic packing material, an -NH- group is bonded to an asymmetric carbon. , −CONH−
A liquid chromatography analysis method characterized by separating and analyzing a mixture of enantiomers of a compound having a -OCO- group or an -OH group. 6. The analytical method according to claim 5, which uses a chromatographic packing material in which the inorganic carrier having hydroxyl groups on its surface is silica gel. 7 In the above general formula [], R 1 , R 2 and R 3
The analytical method according to claim 5 or 6, which uses a chromatographic packing material in which is an ethoxy group and n is 3. 8 In the above general formula [], R 1 , R 2 and R 3
The analytical method according to claim 5 or 6, which uses a chromatographic packing material in which is a Cl group and n is 3.
JP57131378A 1982-07-27 1982-07-27 Chromatographic filler with optically active acylated amino acid being grafted and separation method of enantiomeric mixture using the same Granted JPS5920852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131378A JPS5920852A (en) 1982-07-27 1982-07-27 Chromatographic filler with optically active acylated amino acid being grafted and separation method of enantiomeric mixture using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131378A JPS5920852A (en) 1982-07-27 1982-07-27 Chromatographic filler with optically active acylated amino acid being grafted and separation method of enantiomeric mixture using the same

Publications (2)

Publication Number Publication Date
JPS5920852A JPS5920852A (en) 1984-02-02
JPH0440660B2 true JPH0440660B2 (en) 1992-07-03

Family

ID=15056541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131378A Granted JPS5920852A (en) 1982-07-27 1982-07-27 Chromatographic filler with optically active acylated amino acid being grafted and separation method of enantiomeric mixture using the same

Country Status (1)

Country Link
JP (1) JPS5920852A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627934A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Variable displacement type turbocharger
JP2538618B2 (en) * 1987-10-13 1996-09-25 昭二 原 Separation agent

Also Published As

Publication number Publication date
JPS5920852A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
EP0105745B1 (en) Packing materials for chromatographic use and their employment in analysing enantiomeric mixtures
JPH0356422B2 (en)
EP0300448B1 (en) Separation medium
JPS63218857A (en) Packing agent for liquid chromatography
JPH0476976B2 (en)
US5051176A (en) Packing material for liquid chromatography
US4627919A (en) Resolving agent
JPH0440660B2 (en)
JPS5950358A (en) Chromatograph filler grafted with optical active carboxylic acid and separation of enantiomer mixture using chromatograph filler
JPS60155968A (en) Chromatography filler and analysis of enantiomer mixture using the same
EP0150221B1 (en) Packing for use in separation
JPH0477736B2 (en)
JPH0440661B2 (en)
JPH0356423B2 (en)
JPS59122947A (en) Liquid-chromatographic analysis of mixture comprising mirror-image isomers of alpha-phenyl fatty acid esters
JPH0430378B2 (en)
JP2968319B2 (en) Chirality discriminating agent and packing material for chromatography
Oi et al. Investigation on the chiral discrimination mechanism using an axially asymmetric binaphthalene-based stationary phase for high-performance liquid chromatography
JPS59116544A (en) Liquid-chromatographic analysis method of enantiomeric mixture of chrysanthemumic acid esters
JPH02255625A (en) Separation of optical isomer and chromatographic filler used therefor
JPH0475218B2 (en)
JPH054045A (en) Liquid chromatograph packing material for optical division
JPH0478621B2 (en)
JPH0429648B2 (en)
JPH0386844A (en) Optical resolution of allethrin optical isomer mixture