JPH0439874A - Zinc-bromine battery of stationary electrolyte type - Google Patents

Zinc-bromine battery of stationary electrolyte type

Info

Publication number
JPH0439874A
JPH0439874A JP2146612A JP14661290A JPH0439874A JP H0439874 A JPH0439874 A JP H0439874A JP 2146612 A JP2146612 A JP 2146612A JP 14661290 A JP14661290 A JP 14661290A JP H0439874 A JPH0439874 A JP H0439874A
Authority
JP
Japan
Prior art keywords
electrolyte
positive
positive electrode
silica
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2146612A
Other languages
Japanese (ja)
Other versions
JP2853273B2 (en
Inventor
Kenichiro Jinnai
健一郎 陣内
Yasuharu Namiki
並木 康晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2146612A priority Critical patent/JP2853273B2/en
Publication of JPH0439874A publication Critical patent/JPH0439874A/en
Application granted granted Critical
Publication of JP2853273B2 publication Critical patent/JP2853273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve electric efficiency by after adding silica to electrolyte poring it, as gelled electrolyte, between positive and negative electrodes, or after appling silica on a nonwoven cloth made of polyethylene providing it therebetween. CONSTITUTION:Silica is added to electrolyte to form gelled electrolyte, which is pored between positive and negative electrodes 1, 2, or after silica is applied on a nonwoven cloth made of polyethilene it is arranged between the electrodes 1, 2. By turning electrolyte into the gelled state through the addition of silica to the electrolyte, the poring process to a part between the electrodes 1, 2 can be facilitated, and dispersion speed generated at the time of charging is decreased through the addition of silica so that concentration increase speed in bromine in the vicinity of the negative electrode 2 can be restrained. It is thus possible to have a battery with excellent electric efficiency without using a separator.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、電解液を循環させない電解液静止型の亜鉛−
臭素電池に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention is directed to a static electrolyte type zinc
Regarding bromine batteries.

B0発明の概要 請求項(1)の発明は、カーボンプラスチック電極を正
、負極に使用し、正極表面には正極活性層を設け、正、
負極間にデンドライト抑制剤を加えた電解液を充填し、
密閉して成る電解液静止型亜鉛−臭素電池において、前
記電解液にシリカを添加しゲル状電解液として正、負電
極間に注液するか若しくはポリエチレン製の不織布等に
塗り正。
B0 Summary of the invention The invention of claim (1) uses carbon plastic electrodes as positive and negative electrodes, provides a positive electrode active layer on the surface of the positive electrode, and
An electrolytic solution containing a dendrite inhibitor is filled between the negative electrodes,
In a sealed electrolyte static type zinc-bromine battery, silica is added to the electrolyte and the electrolyte is injected between the positive and negative electrodes as a gel electrolyte, or the electrolyte is coated on a polyethylene nonwoven fabric or the like.

負電極間に設けることにより、臭素の拡散速度を低下さ
せると共に正極近傍の臭素濃度・増加を押さえて電気量
効率のよい電解液静止型亜鉛−臭素電池が得られるよう
にしたものである。
By providing it between the negative electrodes, it is possible to reduce the diffusion rate of bromine and suppress the increase in bromine concentration near the positive electrode, thereby providing a static electrolyte type zinc-bromine battery with high electricity efficiency.

請求項(2)の発明は、カーボンプラスチック電極を正
、負極に使用し、正極表面には正極活性層を設け、正、
負極間にデンドライト抑制剤を加えた電解液静止型亜鉛
−臭素電池において、前記電解液にシリカを添加しゲル
状電解液とすると共に、前記正極活性層として前記電解
液にシリカ及びカーボンブラックを添加しペースト化し
た電解液を正極電極に塗布し、この正極を下側にして負
極を上側に設け、正、負極間にはセパレータを設けない
ことを特徴とし、活性層を低コスト化すると共にその厚
みを電池容量に応じてコントロールできるようにしたも
のである。
The invention of claim (2) uses carbon plastic electrodes as positive and negative electrodes, and provides a positive electrode active layer on the surface of the positive electrode.
In an electrolyte stationary zinc-bromine battery with a dendrite inhibitor added between the negative electrode, silica is added to the electrolyte to form a gel electrolyte, and silica and carbon black are added to the electrolyte as the positive electrode active layer. A paste-formed electrolyte is applied to the positive electrode, and the positive electrode is placed on the lower side and the negative electrode is placed on the upper side, and no separator is provided between the positive and negative electrodes, which reduces the cost of the active layer and The thickness can be controlled according to the battery capacity.

請求項(3)の発明は、カーボンプラスチック電極を正
、負極に使用し、正極表面には正極活性層を設け、正、
負極間にデンドライト抑制剤を加えた電解液を充填し、
密閉して成る電解液静止型亜鉛−負素電極において、前
記電解液にシリカを添加しゲル状電解液とすると共に、
正極を下側にして負極を上側に設け、前記ゲル状電解液
の負極電極近傍に水素吸蔵合金粉末を分散させて設ける
ことにより、充放電サイクル特性が大巾に向上するよう
にしたものである。
The invention of claim (3) uses carbon plastic electrodes for the positive and negative electrodes, provides a positive electrode active layer on the surface of the positive electrode, and
An electrolytic solution containing a dendrite inhibitor is filled between the negative electrodes,
In a sealed static electrolyte type zinc-negative electrode, silica is added to the electrolyte to form a gel electrolyte, and
By providing the positive electrode on the lower side and the negative electrode on the upper side, and dispersing hydrogen storage alloy powder near the negative electrode of the gel electrolyte, the charge/discharge cycle characteristics are greatly improved. .

請求項(4)の発明は、請求項(3)の発明において、
正極活性層は活性炭素繊維を電極に熱圧着させて設ける
か又はゲル化した電解液にカーボンブラックを添加しペ
ースト化した電解液を塗布して設けたものである。
The invention of claim (4) is the invention of claim (3),
The positive electrode active layer is provided by bonding activated carbon fibers to the electrode by thermocompression, or by applying an electrolytic solution prepared by adding carbon black to a gelled electrolytic solution to form a paste.

C1従来の技術 現在は電力貯蔵用として大容量の亜鉛−臭素電池が開発
されている(特公平1−31665号公報)。
C1 Prior Art At present, a large capacity zinc-bromine battery has been developed for power storage (Japanese Patent Publication No. 1-31665).

亜鉛−臭素電池は正極活性物質に臭素、負極活性物質に
亜鉛を用いた2次電池である。この電池反応を以下に示
す。
A zinc-bromine battery is a secondary battery that uses bromine as a positive electrode active material and zinc as a negative electrode active material. This battery reaction is shown below.

起電力は1.8Vである。The electromotive force is 1.8V.

(正極) 2 B、−4’:、B、+ 2 B。(Positive electrode) 2B, -4':, B, +2B.

(負極)Za”+2e二2゜ (→充電、←・放電) この電池は、電極材料としてポリエチレンをバインダー
として導電性を与えるために、カーボンブラック、グラ
ファイトをそれぞれ例えば6:3:1の重量比とするよ
うに混合したカーボンプラスチック電極を用いる。又正
極表面は臭素の反応過電圧を減小させるために、カーボ
ンクロス等の活性炭素繊維から成るシートを熱融着して
用いている。
(Negative electrode) Za"+2e22゜ (→charging, ←・discharging) This battery uses polyethylene as an electrode material as a binder to provide conductivity, and carbon black and graphite are used in a weight ratio of 6:3:1, respectively. A carbon-plastic electrode mixed with the following is used.Furthermore, a sheet made of activated carbon fibers such as carbon cloth is heat-sealed to the surface of the positive electrode in order to reduce the reaction overvoltage of bromine.

電解液は電池本体と別置のタンクに設けて充放電時にポ
ンプで電池本体の下部から上部に抜けるように循環させ
る。この循環により正極で発生した臭素は、電解液に添
加した臭素錯化剤(四級アミン)と反応しオイル状の沈
澱物となり別置のタンクに戻されタンクの底部に保持さ
れ、放電時はポンプでセル内へ送り込み還元される。電
解液の成分は、Z 、B 、2に液の抵抗を下げるため
にNH。
The electrolyte is placed in a tank separate from the battery body, and is circulated from the bottom to the top of the battery body using a pump during charging and discharging. Through this circulation, the bromine generated at the positive electrode reacts with the bromine complexing agent (quaternary amine) added to the electrolyte and becomes an oil-like precipitate, which is returned to a separate tank and retained at the bottom of the tank. It is pumped into the cell and returned. The components of the electrolyte are Z, B, and NH to lower the resistance of the solution.

CI等の塩を添加し、更に負極亜鉛のデンドライトを防
止し、均一な電着を促進させるためのPb。
Salt such as CI is added, and Pb is added to prevent negative electrode zinc dendrites and promote uniform electrodeposition.

Sユ、四級アンモニウム塩類(デンドライト抑止剤)、
および臭素錯化剤である。正極と負極の間にはセパレー
タを用い正極で発生した臭素が負極へ拡散し亜鉛と自己
放電するのを抑制するようになっている。
Syu, quaternary ammonium salts (dendritic inhibitor),
and a bromine complexing agent. A separator is used between the positive electrode and the negative electrode to prevent bromine generated at the positive electrode from diffusing into the negative electrode and self-discharging with zinc.

亜鉛−臭素電池は、上記のように電解液循環型として開
発が行われてきた。ロードレベリング用等の大容量据え
置き型を考えると、この方が有利であり、循環に用いる
ポンプロスも電池全体に比べ小さくなる。電解液タンク
を別置きにし、電界液を循環させると、セル本体の極間
距離を小さくでき、又電気化学反応の濃度分極を小さく
でき、高効率の電池が可能となる。
Zinc-bromine batteries have been developed as electrolyte circulation type batteries as described above. Considering a large-capacity stationary type for load leveling, etc., this is more advantageous, and the pump loss used for circulation is smaller than that of the entire battery. If the electrolyte tank is placed separately and the electrolyte is circulated, the distance between the poles of the cell body can be reduced, concentration polarization of the electrochemical reaction can be reduced, and a highly efficient battery can be achieved.

D0発明が解決しようとする課題 一方、非常用電源としての電池には高い信頼性と安全性
が要求される。従って、従来の亜鉛−臭素電池を非常用
電源として用いる場合には、ポンプ等の回転物は信頼性
の点で劣り、循環に必要な配管も不利である。又、電解
液を共通化するためのマニホールドはシャントカーレン
トの問題がある。これは例えば、浮動充電のように常時
充電を行うような場合不利である。シャントカーレント
が発生すると、デンドライトが発生し短絡を起こす。
Problems to be solved by the D0 invention On the other hand, batteries used as emergency power sources are required to have high reliability and safety. Therefore, when conventional zinc-bromine batteries are used as an emergency power source, rotating parts such as pumps have poor reliability, and the piping required for circulation is also disadvantageous. In addition, the manifold for sharing the electrolyte has the problem of shunt current. This is disadvantageous, for example, when charging is performed constantly, such as in floating charging. When a shunt current occurs, dendrites are generated and a short circuit occurs.

以上の理由から非常用電源を考えると、どうしても電解
液静止型の電池が有効である。
For the above reasons, when considering emergency power sources, static electrolyte batteries are definitely effective.

亜鉛−臭素電池を電界液静止型とした場合、電解液のセ
ル内への注液及びセル内濃度不均−の問題がある。この
問題解決の1つとして出願人は先に電解液をしみ込ませ
た不織布を用いたものを提案した。
When a zinc-bromine battery is of a stationary electrolyte type, there are problems with injection of electrolyte into the cell and uneven concentration within the cell. As one solution to this problem, the applicant has proposed a method using a nonwoven fabric impregnated with an electrolyte.

しかし、この場合、電解液をしみ込ませた不織布を電極
に載せる工程が必要であり、作業性に問題があり、量産
的ではない。又、通常の液とほぼ同等の確率でデンドラ
イトが成長するので、デンドライト発生の課題が残って
いる。
However, in this case, a step of placing a nonwoven fabric impregnated with electrolyte on the electrode is required, which poses problems in workability and is not suitable for mass production. Furthermore, since dendrites grow with almost the same probability as with normal liquids, the problem of dendrite generation remains.

また、亜鉛−臭素電池の正極には、表面積が大きく流れ
に対して安定で脱落等が生じないように、シート状の活
性炭素繊維を熱圧着したものが用いられているため、こ
の電池を商品化する場合正極活性層のコスト高となる。
In addition, the positive electrode of a zinc-bromine battery uses a sheet-shaped activated carbon fiber bonded by thermocompression, which has a large surface area and is stable against currents and does not fall off. In this case, the cost of the positive electrode active layer increases.

また、静止型電池の場合は信頼性、保守性等からどうし
ても密閉構造となる。この場合充電時負極から水素ガス
(H2)が発生する場合がある。
Furthermore, in the case of a stationary battery, a sealed structure is required for reasons such as reliability and maintainability. In this case, hydrogen gas (H2) may be generated from the negative electrode during charging.

セル内にガスが留まると電極有効面積の減少、電流集中
等によるデンドライトの発生、内圧上昇による液もれ等
の問題を生じる。
If gas remains in the cell, problems such as a reduction in the effective area of the electrode, generation of dendrites due to current concentration, etc., and liquid leakage due to increased internal pressure occur.

本発明は、このような問題点に鑑みてなされたものであ
り、その目的とするところは、電池の注液工程が容易で
、しかも正極で発生を臭素を電極近傍にとどめることが
できると共に、安価な正極活性層並びに発生する水素を
吸蔵しうる電解液静止型亜鉛−臭素電池を提供すること
にある。
The present invention has been made in view of these problems, and its purpose is to facilitate the filling process of batteries, to keep the bromine generated at the positive electrode near the electrode, and to The object of the present invention is to provide an inexpensive positive electrode active layer and an electrolyte stationary zinc-bromine battery that can store generated hydrogen.

81課題を解決するための手段 上記目的を達成するために、カーボンプラスチック電極
を正、負極に使用し、正極には正極活性層を設け、正、
負極間にデンドライト抑制剤等を加えた電解液を充填し
て成る電界液静止型亜鉛−臭素電池において、前記電解
液にシリカを添加し、ゲル状電解液として正、負電極間
に注液するか若しくはポリエチレン製の不織布等に塗り
正、負電極間に設けてなるものである。
81 Means for solving the problem In order to achieve the above object, carbon plastic electrodes are used for the positive and negative electrodes, a positive electrode active layer is provided on the positive electrode, and the positive and negative electrodes are provided with a positive active layer.
In an electrolyte stationary zinc-bromine battery in which an electrolytic solution containing a dendrite inhibitor or the like is filled between the negative electrodes, silica is added to the electrolytic solution and the gel is injected between the positive and negative electrodes. Alternatively, the electrode may be coated on a polyethylene nonwoven fabric or the like and provided between the positive and negative electrodes.

また、正極活性層は、電解液にシリカ及びカーボンブラ
ックを添加しペースト化した電解液を正極電極に塗布し
、この正極を下側にして負極を上側に設けることもでき
る。
Alternatively, the positive electrode active layer can be formed by applying an electrolytic solution prepared by adding silica and carbon black to the electrolytic solution to form a paste onto the positive electrode, and providing the positive electrode on the lower side and the negative electrode on the upper side.

また、正極を下側にして負極を上側にしてゲル状電解液
の負極電極近傍に水素吸蔵合金粉末を分散させて設ける
こともできる。
Alternatively, the hydrogen storage alloy powder can be dispersed and provided near the negative electrode of the gel electrolyte with the positive electrode on the lower side and the negative electrode on the upper side.

F6作用 電解液にシリカを添加し電解液をゲル状化すると正、負
極間への注液工程が容易となる。またシリカの添加によ
り充電時生じる臭素の拡散速度が低下し、負極近傍の臭
素濃度増加が押えられるため、セパレータを使用しなく
とも電気効率の良い電池が得られる。またシリカにより
、発生した臭素は沈降速度が押えられるためセルは縦型
とすることも可能となる。
When silica is added to the F6 working electrolyte to turn the electrolyte into a gel, the process of pouring the liquid between the positive and negative electrodes becomes easier. Additionally, the addition of silica reduces the diffusion rate of bromine generated during charging and suppresses an increase in bromine concentration near the negative electrode, so a battery with good electrical efficiency can be obtained without using a separator. Furthermore, since the silica suppresses the sedimentation rate of the generated bromine, it is possible to make the cell vertical.

シリカを添加したゲル状電解液に、カーボンブラックを
添加しペースト化したものを電極表面に塗布すると正極
活性層として活性炭素繊維と同等に作用する。この正極
活性層はペースト状となりているので、厚みのコントロ
ールが自由にできる。
When a paste made by adding carbon black to a gel electrolyte containing silica is applied to the electrode surface, it acts as a positive electrode active layer in the same way as activated carbon fibers. Since this positive electrode active layer is in the form of a paste, its thickness can be freely controlled.

水素吸蔵合金の粉末はセル内で発生した水素を吸蔵する
ことが可能であり、セル内発生水素を吸蔵すると充、放
電サイクル特性が長期に亙り安定する。
The hydrogen storage alloy powder can store the hydrogen generated within the cell, and by storing the hydrogen generated within the cell, the charging and discharging cycle characteristics become stable over a long period of time.

G、実施例 本発明の実施例について図面を参照して説明する。G. Example Embodiments of the present invention will be described with reference to the drawings.

第1実施例 第1図に第1実施例の横置セルの断面図を示す。First example FIG. 1 shows a sectional view of a horizontal cell according to the first embodiment.

第1図において、1は正極、2は負極、3は正。In FIG. 1, 1 is a positive pole, 2 is a negative pole, and 3 is a positive pole.

負極1.2間に設けられた額縁状のポリエチレン製パツ
キン、4はパツキン3の枠内に設けられたゲル状電解液
、5,6は正、負極の外側に設けられたFRP製押え板
、7は押え板5,6の周縁部に穿設されている孔8に挿
通した押え板5,6の締付用ねじである。
A frame-shaped polyethylene packing provided between the negative electrodes 1 and 2, 4 a gel electrolytic solution provided within the frame of the packing 3, 5 and 6 a positive FRP holding plate provided outside the negative electrode, Reference numeral 7 denotes a screw for tightening the presser plates 5, 6, which is inserted into a hole 8 formed in the peripheral edge of the presser plates 5, 6.

ゲル状電解液4としては、3 m o l Z a B
 t 2 + 2molNH4cl+1mat臭素錯化
剤+デンドライト抑制剤よりにる電解液にゲル化剤とし
てシリカを10wt%添加したものを使用した。ゲル化
剤としてシリカを選んだのは耐臭素性を考えたためであ
る。用いたシリカは日本シリカニ業製ニブシール(商品
名)E22OA又はG300である。
As the gel electrolyte 4, 3 mol Z a B
An electrolytic solution consisting of t 2 + 2 mol NH4Cl + 1 mat bromine complexing agent + dendrite inhibitor was used, to which 10 wt % of silica was added as a gelling agent. Silica was chosen as the gelling agent because of its bromine resistance. The silica used was Nibseal (trade name) E22OA or G300 manufactured by Nippon Silikani.

シリカが5wt%添加ではゲル状とならない。10wt
%添加でも流動性はあるが静止状態で放置しておくと固
形状態となる。従って電解液をゲル状とするには19w
t%以上の添加が必要である。
Addition of 5 wt% silica does not result in a gel-like state. 10wt
Although it has fluidity even when % is added, it becomes solid if left in a stationary state. Therefore, it takes 19w to make the electrolyte into a gel state.
It is necessary to add t% or more.

特性試験に用いた電池は正、負極1,2の電極にはカー
ボンプラスチックを用い5 cmX 5 cmとした。
The battery used in the characteristic test had a size of 5 cm x 5 cm, and carbon plastic was used for the positive and negative electrodes 1 and 2.

極間距は2mmとした。従ってこの間に入る電解液は5
0ccである。また正極1にはプラスチック電極に正極
活性層10とに、カーボンクロス(日本カイノール製A
CC−507又は509、比表面積1500〜2000
m”/g、 日付は量100〜150 g/m2)をラ
ミネートしたものを用いた。なお、電解液中にはセパレ
ータは使用しなかった。
The distance between poles was 2 mm. Therefore, the electrolyte that enters during this period is 5
It is 0cc. In addition, the positive electrode 1 includes a plastic electrode, a positive electrode active layer 10, and a carbon cloth (A
CC-507 or 509, specific surface area 1500-2000
m''/g, date is 100 to 150 g/m2) was used.A separator was not used in the electrolyte.

作る順序は、押え板5に正極1とパツキン3を載せパツ
キン3の枠中にゲル状の電解液を流し込んだ後、負極2
を覆せて押え板6を載せねじ7で周囲を締めつけた。
The order of making is to place the positive electrode 1 and the packing 3 on the holding plate 5, pour the gel electrolyte into the frame of the packing 3, and then place the negative electrode 2 on the holding plate 5.
The holding plate 6 was placed on top of the holding plate 6, and the screws 7 were tightened around the periphery.

この電池の試験結果を第2図及び第3図に示す。The test results of this battery are shown in FIGS. 2 and 3.

第3図は、充電電流20mA/cm2(500mA)で
1時間充電し、放電電流20mA/cm2でIV/セル
まで放電させた充放電電圧特性を示すもので、電気量効
率は約65%である。
Figure 3 shows the charging/discharging voltage characteristics when charging at a charging current of 20 mA/cm2 (500 mA) for 1 hour and discharging to IV/cell at a discharging current of 20 mA/cm2, and the electrical efficiency is approximately 65%. .

セパレータを使用せず、これだけの電気量効率が得られ
たのは、シリカの存在が臭素の拡散速度を低下させるた
め、亜鉛近傍での臭素濃度が高くならないためと、シリ
カには臭素を吸着させる作用を持っているため、正極で
発生した臭素が臭素極近傍に留まっていたためと推定さ
れる。一方シリカの存在は電気抵抗を増加させるため、
電圧損失は大きくなっている。放電初期電圧は1.7v
で、シリカを使用しない場合と比べると約100mV程
度大きい。しかし非常用電池の用途からこの電圧の損失
は電池の積層数で対応可能で、又已の程度の損失は積層
数増加時の寸法増加に影響を与えない。
The reason why we were able to obtain this much electricity efficiency without using a separator is because the presence of silica reduces the diffusion rate of bromine, which prevents the concentration of bromine from becoming high near zinc, and because silica adsorbs bromine. It is presumed that this is because the bromine generated at the positive electrode remained near the bromine pole. On the other hand, the presence of silica increases electrical resistance, so
Voltage loss is increasing. The initial discharge voltage is 1.7v
This is about 100 mV higher than when silica is not used. However, in view of the use of emergency batteries, this voltage loss can be compensated for by changing the number of battery layers, and this level of loss does not affect the increase in size when the number of layers is increased.

第3図は充電電流20mA/cm2で1時間充電し充電
電流20mA/cm”で放電終了電圧が1、OV/セル
となるまでの充、放電サイクルを繰返したサイクル数に
対する電気量効率の変化を示すもので、100サイクル
にわたり効率の変化は殆どみられない。100サイクル
充電後電池を解体したがデンドライトの発生はみられな
かった。
Figure 3 shows the change in electrical efficiency with respect to the number of cycles of repeated charging and discharging cycles until the discharge end voltage becomes 1, OV/cell at a charging current of 20 mA/cm2 after charging for 1 hour at a charging current of 20 mA/cm. The battery shows almost no change in efficiency over 100 cycles.After 100 cycles of charging, the battery was disassembled, but no dendrites were observed.

これによりシリカにはデンドライト抑制効果があること
が認められた。
This confirmed that silica has a dendrite suppressing effect.

第2実施例 第4図に第2実施例の縦置セルの断面を示す。Second example FIG. 4 shows a cross section of a vertical cell of the second embodiment.

この実施例は、第1図の電池構成で、第4図に示すよう
に縦型に構成したものである。この縦型の電池は、始め
に額縁パツキン3の一側縁を外した状態でセルを組み立
てて、その後でゲル状態の液を流し込み外した一側縁を
嵌めて作った。
In this embodiment, the battery configuration shown in FIG. 1 is arranged vertically as shown in FIG. 4. This vertical battery was made by first assembling the cell with one side edge of the picture frame gasket 3 removed, and then pouring a gel-like liquid into it and fitting the removed side edge.

この電池の特性を第1実施例の電池の試験と金く同一の
条件で調べたところ、電気量効率は50%であった。こ
れは発生した臭素が下部へ沈澱したため、電極上部が有
効に使われないため横型の65%より低下したものと推
定される。し力為し、これは活性層改良で十分対応でき
る数字であり、シリカの存在で臭素の沈降が遅くなって
いるものと推定される。
When the characteristics of this battery were examined under the same conditions as the battery of the first example, the electrical efficiency was 50%. It is estimated that this is because the generated bromine precipitated to the bottom, and the upper part of the electrode was not used effectively, resulting in a decrease from 65% in the horizontal type. However, this is a number that can be adequately addressed by improving the active layer, and it is presumed that the presence of silica slows down the precipitation of bromine.

第3実施例 第5図に第3実施の横置セルの断面図を示す。Third embodiment FIG. 5 shows a cross-sectional view of a horizontal cell according to the third embodiment.

第5図に置いて、この実施例は第1図の電池の正極1と
負極2の間に鉛電池等に用いられてt′する低コストの
市販品で厚さ0.6mmのポリエチレン製のセパレータ
11を設けたものである。
In FIG. 5, this embodiment is a low-cost commercial product made of polyethylene with a thickness of 0.6 mm that is used in lead batteries etc. and is used in lead batteries etc. between the positive electrode 1 and the negative electrode 2 of the battery shown in FIG. A separator 11 is provided.

この電池の特性を第1実施例の電池の試験と全く同一の
条件で調べたところ、電気量効率は75%が得られ、第
1実施例の65%から10%向上した。
When the characteristics of this battery were examined under exactly the same conditions as the battery of the first example, an electrical efficiency of 75% was obtained, an improvement of 10% from 65% in the first example.

第4実施例 第6図について、第4実施例の横置セルの断面図を示す
。第6図において、12はシリカ十カーボンブラック十
電解液よりなるゲル状の正極活性層である。
Fourth Embodiment Referring to FIG. 6, a sectional view of a horizontal cell of the fourth embodiment is shown. In FIG. 6, 12 is a gel-like positive electrode active layer made of a silica-carbon black electrolyte.

この正極活性層12は、3 m o I Z * B 
t ! + 2molNH4cI+1mol臭素錯化剤
+デンドライト抑制剤の電解液の中にシリカを20wt
%添加。
This positive electrode active layer 12 has 3 m o I Z * B
T! + 20wt silica in the electrolyte of 2mol NH4cI + 1mol bromine complexing agent + dendrite inhibitor
% addition.

更にカーボンブラックを5wt%添加し、よく振とう機
を用いて分散させたものを正極に薬さしで約200μm
n程度の厚さに均一に塗り正極活性層としたものである
。シリカは実施例1と同じものを用いた。カーボンブラ
ックはライオン株式会社製ケッチエンブラック(商品名
)ECを使用した。
Furthermore, 5 wt% of carbon black was added and dispersed using a shaker.
It was coated uniformly to a thickness of about n to form a positive electrode active layer. The same silica as in Example 1 was used. As the carbon black, Ketchen Black (trade name) EC manufactured by Lion Corporation was used.

電解液4は上記電解液にシリカを10wt%添加したも
のを使用し、セパレータは用いていない。
The electrolytic solution 4 used was the above electrolytic solution to which 10 wt% of silica was added, and no separator was used.

電極面積、極間距離等は第1実施例と同じくし、FRP
製押え板5の上に電解液正極層を設けた電極1を置き、
厚さ2mmの額縁状のパツキン3を載せ、電解液4.負
極2.押え板6の順に載せ、ねじ7で軽く締め付けて作
った。
The electrode area, distance between electrodes, etc. are the same as in the first embodiment, and FRP
Place the electrode 1 provided with the electrolyte positive electrode layer on the presser plate 5,
A frame-shaped packing 3 with a thickness of 2 mm is placed on it, and an electrolyte solution 4. Negative electrode 2. It was made by placing the presser plate 6 in this order and lightly tightening it with the screws 7.

この電池の試験結果を第7図及び第8図に示す。The test results of this battery are shown in FIGS. 7 and 8.

第7図は充電電流20mA/cm2で1時′間充電し、
放電電流20mA/cm2でIV/セルまで放電させた
充放電電圧特性を示すもので、点線で示した第1実施例
のものと特性は殆ど変化がみられなかった。
Figure 7 shows charging for 1 hour at a charging current of 20 mA/cm2.
This shows the charging/discharging voltage characteristics when discharged to IV/cell at a discharge current of 20 mA/cm2, and there was almost no change in the characteristics from those of the first example shown by the dotted line.

第8図は充電電流20mA/cm”で1時間充電し充電
電流20mA/cm”で放電終了電圧が1、OV/セル
の充、放電サイクルを繰返したサイクル数に対する電気
量効率の変化を示すもので、第1実施例と同様100サ
イクル程度まで効率が安定している。
Figure 8 shows the change in electrical quantity efficiency with respect to the number of cycles in which the charging and discharging cycles of OV/cell are repeated after charging for 1 hour at a charging current of 20 mA/cm' and a discharge end voltage of 1 at a charging current of 20 mA/cm'. As in the first embodiment, the efficiency is stable up to about 100 cycles.

これら特性により正極活性層11は十分な性能が得られ
ることがわかった。
It was found that these characteristics provided the positive electrode active layer 11 with sufficient performance.

第5実施例 第9図に第5実施例の横置セルの断面図を示す。Fifth example FIG. 9 shows a cross-sectional view of a horizontal cell according to the fifth embodiment.

第9図において、13はゲル状電解液4の上にまぶされ
た水素吸蔵合金粉末である。
In FIG. 9, 13 is a hydrogen storage alloy powder sprinkled on the gel electrolyte 4. In FIG.

用いた水素吸蔵合金(以上HAAと略す)は、M i 
s c hメタルを使用したM、95%N t s 、
 hCo。yAlo、aの合金サンプルである。M i
 s c hメモルはランタン20%を主成分とするも
のである。電解液4は3moA’Z、B、2+2moA
’NH4Cl+1moA’臭素錯化剤+デンドライト抑
制剤よりなる電解液にシリカを10wt%添加したゲル
状のも°の、正極活性層12はこの電解液4にカーボン
ブラックを5wt%添加しペースト化し正極に塗布した
。セルは正極を下、負極を上にし、セパレータは使用し
ていない。HAAは500μm〜1000μm程度の粉
末状のものを用いた。
The hydrogen storage alloy (hereinafter abbreviated as HAA) used was M i
M using s ch metal, 95% N t s,
hCo. This is an alloy sample of yAlo, a. M i
S ch Memole has 20% lanthanum as its main component. Electrolyte 4 is 3moA'Z, B, 2+2moA
The positive electrode active layer 12 is made of a gel-like electrolytic solution consisting of 'NH4Cl+1moA' bromine complexing agent + dendrite inhibitor with 10 wt% of silica added.The positive electrode active layer 12 is made by adding 5 wt% of carbon black to this electrolytic solution 4 and making it into a paste. Coated. The cell has the positive electrode on the bottom and the negative electrode on the top, and no separator is used. Powdered HAA with a size of about 500 μm to 1000 μm was used.

作り方は、押え板5の上に正極活性層11を塗布した電
極1.額縁状パツキン3を載せ、ゲル状電解液4を入れ
た後、電解液4の上にHAA粉末13をまぶし、その上
に負極2.押え板5を載せねじ7で固定して作った。
The method of making the electrode is as follows: Electrode 1. After placing the frame-shaped packing 3 and adding the gel electrolyte 4, HAA powder 13 is sprinkled on the electrolyte 4, and the negative electrode 2. It was made by mounting a presser plate 5 and fixing it with screws 7.

この電池の試験結果を第10図に示す。The test results for this battery are shown in FIG.

第10図は、充電電流20mA/Cm”で1時間充電し
、放電電流20mA/cm2で放電終了電圧が1.OV
/セルとなるまでの充、放電サイクルを繰返したサイク
ル数に対する電気量効率の変化を示すもので、HAAを
添加しない場合約100〜150サイクルで効率が低下
し最後は内部短絡を起こすが、HAAを添加した場合3
00サイクル程度まで安定な特性を示した。これにより
内部で発生した水素はHAAにより吸蔵されているもの
と思われる。
Figure 10 shows that after charging for 1 hour at a charging current of 20 mA/cm2, the discharge end voltage was 1.OV at a discharging current of 20 mA/cm2.
This shows the change in electrical efficiency with respect to the number of repeated charge and discharge cycles until a cell is formed.If HAA is not added, the efficiency decreases after about 100 to 150 cycles and eventually an internal short circuit occurs, but HAA When adding 3
It showed stable characteristics up to about 00 cycles. It is thought that the hydrogen generated internally is stored by HAA.

第11図は電池の水素発生量検出装置を示すもので、2
0は電解液をガスがよく抜けるようにゲル化しない液状
を用い、セパレータ21により正。
Figure 11 shows the hydrogen generation amount detection device for the battery.
0 uses a liquid electrolyte that does not gel so that gas can escape well, and the separator 21 is used to make the electrolyte positive.

負極を分離し、負極液にHAA粉末を添加した電池又は
添加しない電池を示す。22は電池を収容した密閉ガラ
ス容器、23はガスを取り出すガラス管、24は水の入
った容器、25はガラス管より出るガス量を測定するメ
スシリンダー、Eは電池20を充電する直流電源である
This shows a battery in which the negative electrode is separated and HAA powder is added to the negative electrode liquid, or a battery in which HAA powder is not added. 22 is a sealed glass container containing the battery, 23 is a glass tube for extracting gas, 24 is a container containing water, 25 is a measuring cylinder for measuring the amount of gas coming out of the glass tube, and E is a DC power source for charging the battery 20. be.

第12図にこの測定装置によって測定した補修ガス量の
変化を示す。第12図によれば、負極液にHAAを添加
した場合ガス体積増加が殆どみられない。これによりH
AAはセル内に発生したH2を吸蔵しているものと想定
される。
FIG. 12 shows changes in the amount of repair gas measured by this measuring device. According to FIG. 12, when HAA is added to the negative electrode liquid, there is almost no increase in gas volume. This results in H
It is assumed that AA stores H2 generated within the cell.

H1発明の効果 本発明の亜鉛−臭素電池は、上述のとおり構成されてい
るので、次に記載する効果を奏する。
H1 Effects of the invention Since the zinc-bromine battery of the invention is configured as described above, it exhibits the following effects.

■電解液にシリカを添加することで電解液をペースト化
したので、セル電極間への注液工程が容易になる。
■By adding silica to the electrolyte, the electrolyte is made into a paste, which facilitates the injection process between the cell electrodes.

■またシリカの添加により、臭素の拡散速度が低下し、
負極近傍の臭素濃度増加が押えられるため、セパレータ
を使用しなくとも電気量効率65%以上が可能である。
■The addition of silica also reduces the diffusion rate of bromine,
Since the increase in bromine concentration near the negative electrode is suppressed, electrical efficiency of 65% or more is possible without using a separator.

またシリカは単に臭素の拡散速度を押えるだけでなく、
臭素を吸着する作用を有するため、正極で発生した臭素
を正極近傍にとどめることができる。
In addition, silica not only suppresses the diffusion rate of bromine, but also
Since it has the effect of adsorbing bromine, bromine generated at the positive electrode can be retained near the positive electrode.

■またシリカを添加することでデンドライト抑制に効果
がある。
■ Adding silica is also effective in suppressing dendrites.

■請求項(1)の発明では、シリカにより発生した臭素
の沈降速度が押えられるためセルを縦型とすることも可
能である。
(2) In the invention of claim (1), since the sedimentation rate of bromine generated by silica is suppressed, it is also possible to make the cell vertical.

■請求項(2)の発明では、正極活性層としてシリカを
添加したゲル状電解液に、カーボンブラックを添加しペ
ースト化したものを正極電極に塗布することにより従来
の活性炭素繊維と同等な特性が得られた。これにより正
極活性層の低コスト化が可能である。
■In the invention of claim (2), by applying a paste made by adding carbon black to a gel electrolyte containing silica as a positive electrode active layer, it has properties equivalent to conventional activated carbon fibers. was gotten. This makes it possible to reduce the cost of the positive electrode active layer.

■また、正極活性層の厚みも電池容量に応じてコントロ
ールできる。
■Also, the thickness of the positive electrode active layer can be controlled according to the battery capacity.

■また、正極活性層が移動することがなく、又正極を下
側に上向きにしているため脱落することもないので、サ
イクル特性の十分な性能が得られる。
(2) In addition, the positive electrode active layer does not move, and since the positive electrode is oriented downwardly and upwardly, it does not fall off, so that sufficient cycle characteristics can be obtained.

■請求項(3)、(4)の発明では、セル内で発生した
水素を電解液に添加した水素吸蔵合金に吸蔵させること
が可能である。これによって充放電サイクル特性が大幅
に向上する。また発生ガスによる内圧上昇による外部へ
の液漏れが防止できる。
(2) In the inventions of claims (3) and (4), hydrogen generated within the cell can be stored in the hydrogen storage alloy added to the electrolyte. This greatly improves charge-discharge cycle characteristics. In addition, leakage of liquid to the outside due to an increase in internal pressure due to generated gas can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例を示す横置きセルの断面図、第2図
は同セルの充放電電圧特性曲線図、第3図は同セルの充
放電サイクル特性曲線図である。第4図は第2実施例を
示す縦置きセルの断面図、第5図及び第6図は第3及び
第4実施例を示す横置きセルの断面図、第7図は第4実
施例セルの充放電電圧特性曲線図、第8図は同セルの充
放電サイクル特性曲線図、第9図は第5実施例を示す横
置きセルの断面図、第10図は同セルの充放電サイクル
特性曲線図、第11図は電池の水素発生量検出装置、第
12図は同装置による電池の補修ガス量を示す曲線図で
ある。 1・・・正極、2・・・負極、3・・・パツキン、4・
・・電解液保持体、5,6・・・押え板、10.12・
・・正極活性層、11.21・・・セパレータ、13・
・・水素吸蔵合金(HAA)。 第1図 第1実施例 第4図 第2実施例 時間(分) 第5図 第3実施例 第6図 第4実施例 第9図 第5実施例 充放電サイクル数 第8図 充放電サイクル数 第12図 (B)
FIG. 1 is a sectional view of a horizontal cell showing the first embodiment, FIG. 2 is a charging/discharging voltage characteristic curve diagram of the same cell, and FIG. 3 is a charging/discharging cycle characteristic curve diagram of the same cell. FIG. 4 is a sectional view of a vertical cell showing the second embodiment, FIGS. 5 and 6 are sectional views of a horizontal cell showing the third and fourth embodiments, and FIG. 7 is a sectional view of a cell of the fourth embodiment. Fig. 8 is a charge/discharge cycle characteristic curve of the same cell, Fig. 9 is a cross-sectional view of a horizontal cell showing the fifth embodiment, and Fig. 10 is a charge/discharge cycle characteristic of the same cell. FIG. 11 is a curve diagram showing an apparatus for detecting the amount of hydrogen generated in a battery, and FIG. 12 is a curve diagram showing the amount of gas repaired in a battery by the same apparatus. 1... Positive electrode, 2... Negative electrode, 3... Packing, 4...
... Electrolyte holder, 5, 6... Pressing plate, 10.12.
... Positive electrode active layer, 11.21 ... Separator, 13.
...Hydrogen storage alloy (HAA). Fig. 1 Fig. 1 Example Fig. 4 Fig. 2 Example Time (minutes) Fig. 5 Fig. 3 Example Fig. 6 Fig. 4 Example Fig. 9 Fig. 5 Example Number of charge/discharge cycles Fig. 8 Number of charge/discharge cycles Figure 12 (B)

Claims (4)

【特許請求の範囲】[Claims] (1)カーボンプラスチック電極を正、負極に使用し、
正極表面には正極活性層を設け、正、負極間にデンドラ
イト抑制剤を加えた電解液を充填し、密閉して成る電解
液静止型亜鉛−臭素電池において、 前記電解液にシリカを添加しゲル状電解液として正、負
電極間に注液するか若しくはポリエチレン製の不織布等
に塗り正、負電極間に設けたことを特徴とした電解液静
止型亜鉛−臭素電池。
(1) Use carbon plastic electrodes for positive and negative electrodes,
In electrolyte stationary zinc-bromine batteries, a positive electrode active layer is provided on the surface of the positive electrode, and an electrolytic solution containing a dendrite inhibitor is filled between the positive and negative electrodes and sealed. 1. A static electrolyte type zinc-bromine battery, characterized in that the electrolyte is injected between the positive and negative electrodes or coated on a polyethylene nonwoven fabric and provided between the positive and negative electrodes.
(2)カーボンプラスチック電極を正、負極に使用し、
正極表面には正極活性層を設け、正、負極間にデンドラ
イト抑制剤を加えた電解液静止型亜鉛−臭素電池におい
て、 前記電解液にシリカを添加しゲル状電解液とすると共に
、前記正極活性層として前記電解液にシリカ及びカーボ
ンブラックを添加しペースト化した電解液を正極電極に
塗布し、この正極を下側にして負極を上側に設け、正、
負極間にはセパレータを設けないことを特徴とした電解
液静止型亜鉛−臭素電池。
(2) Using carbon plastic electrodes for positive and negative electrodes,
In a static zinc-bromine battery, a positive electrode active layer is provided on the surface of the positive electrode, and a dendrite inhibitor is added between the positive and negative electrodes. An electrolytic solution made by adding silica and carbon black to the electrolytic solution to form a paste is applied to the positive electrode as a layer, and the positive electrode is placed on the lower side and the negative electrode is placed on the upper side.
An electrolyte stationary zinc-bromine battery characterized by not having a separator between the negative electrodes.
(3)カーボンプラスチック電極を正、負極に使用し、
正極表面には正極活性層を設け、正、負極間にデンドラ
イト抑制剤を加えた電解液を充填し、密閉して成る電解
液静止型亜鉛−負素電極において、 前記電解液にシリカを添加しゲル状電解液とすると共に
、正極を下側にして負極を上側に設け、前記ゲル状電解
液の負極電極近傍に水素吸蔵合金粉末を分散させて設け
たことを特徴とする電解液静止型亜鉛−臭素電池。
(3) Using carbon plastic electrodes for positive and negative electrodes,
In an electrolyte stationary zinc-negative electrode, a positive electrode active layer is provided on the surface of the positive electrode, and an electrolytic solution containing a dendrite inhibitor is filled between the positive and negative electrodes and sealed, silica is added to the electrolytic solution. A stationary electrolyte type zinc electrolyte, characterized in that the electrolyte is a gel electrolyte, a positive electrode is provided on the lower side, a negative electrode is provided on the upper side, and hydrogen storage alloy powder is dispersed in the vicinity of the negative electrode of the gel electrolyte. - Bromine batteries.
(4)正極活性層は活性炭素繊維を電極に熱圧着させて
設けるか又はゲル化した電解液にカーボンブラックを添
加しペースト化した電解液を塗布して設けたことを特徴
とした請求項(3)記載の電解液静止型亜鉛−臭素電池
(4) Claim characterized in that the positive electrode active layer is provided by bonding activated carbon fibers to the electrode by thermocompression, or by applying an electrolytic solution made by adding carbon black to a gelled electrolytic solution to form a paste ( 3) The static electrolyte zinc-bromine battery.
JP2146612A 1990-06-05 1990-06-05 Electrolyte static zinc-bromine battery Expired - Fee Related JP2853273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2146612A JP2853273B2 (en) 1990-06-05 1990-06-05 Electrolyte static zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2146612A JP2853273B2 (en) 1990-06-05 1990-06-05 Electrolyte static zinc-bromine battery

Publications (2)

Publication Number Publication Date
JPH0439874A true JPH0439874A (en) 1992-02-10
JP2853273B2 JP2853273B2 (en) 1999-02-03

Family

ID=15411675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2146612A Expired - Fee Related JP2853273B2 (en) 1990-06-05 1990-06-05 Electrolyte static zinc-bromine battery

Country Status (1)

Country Link
JP (1) JP2853273B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071821A1 (en) * 2000-03-24 2001-09-27 Shin-Etsu Chemical Co., Ltd. Thermoelectric power generator
CN108134141A (en) * 2016-12-01 2018-06-08 中国科学院大连化学物理研究所 A kind of no diaphragm static state zinc-bromine bettery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071821A1 (en) * 2000-03-24 2001-09-27 Shin-Etsu Chemical Co., Ltd. Thermoelectric power generator
US6717043B2 (en) * 2000-03-24 2004-04-06 Shin-Etsu Chemical Co., Ltd. Thermoelectric power generator
CN108134141A (en) * 2016-12-01 2018-06-08 中国科学院大连化学物理研究所 A kind of no diaphragm static state zinc-bromine bettery
CN108134141B (en) * 2016-12-01 2020-05-05 中国科学院大连化学物理研究所 Static zinc-bromine battery without diaphragm

Also Published As

Publication number Publication date
JP2853273B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
CN1237647C (en) Sealed lead-acid cells and batteries
US20210028459A1 (en) Positive pole material, positive pole, battery and battery pack
CN111106373A (en) Zinc-bromine storage battery
CN201845836U (en) Lead-acid battery
JPH0439874A (en) Zinc-bromine battery of stationary electrolyte type
Rana et al. Scientific issues of zinc‐bromine flow batteries and mitigation strategies
JP2853271B2 (en) Electrolyte static zinc-bromine battery
CN209298228U (en) A kind of non-maintaining valve-regulated sealed lead-acid batteries and its corrosion-resistant cathode confluence component
JP2007250308A (en) Control valve type lead acid battery
JPH0628169B2 (en) Sealed lead acid battery
JPWO2019159633A1 (en) Electrochemical device using dye
JP4379966B2 (en) Lithium battery
JP2008103180A (en) Control valve type lead-acid battery
CN107492632A (en) Delay the method for process for positive slab lattice of lead-acid accumulator corrosion rate
JPS62190664A (en) Dendrite preventing method for zinc-iodine secondary battery
CN218306505U (en) Solid-liquid separation device for battery anode slurry
KR100287120B1 (en) Alkali-zinc secondary battery using separators having different moisture rates and pore sizes
CN206461015U (en) A kind of lithium battery power supply
Tang et al. Application of a novel gelled-electrolyte in valve-regulated lead-acid batteries with tubular positive plates
JP2768197B2 (en) Sealed storage battery
JP2967632B2 (en) Bipolar electrode for zinc-bromine battery
Wertz et al. Development of advanced lead acid batteries for electric vehicles. The use of additives to increase performance and extend life. I. AGM cells
JPH0624144B2 (en) Sealed lead acid battery
JPS6243081A (en) Zinc-iodine secondary battery
CN117317237A (en) Negative electrode current collector, non-negative electrode lithium metal secondary battery and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees