JPH0439047B2 - - Google Patents

Info

Publication number
JPH0439047B2
JPH0439047B2 JP1017252A JP1725289A JPH0439047B2 JP H0439047 B2 JPH0439047 B2 JP H0439047B2 JP 1017252 A JP1017252 A JP 1017252A JP 1725289 A JP1725289 A JP 1725289A JP H0439047 B2 JPH0439047 B2 JP H0439047B2
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
polarization
fibers
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1017252A
Other languages
Japanese (ja)
Other versions
JPH02196204A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1725289A priority Critical patent/JPH02196204A/en
Publication of JPH02196204A publication Critical patent/JPH02196204A/en
Publication of JPH0439047B2 publication Critical patent/JPH0439047B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、パンダ型定偏波光フアイバの軸合
せ方法に関し、特に融着前に行う偏光軸の調心方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for aligning a panda-type polarization constant optical fiber, and more particularly to a method for aligning a polarization axis before fusing.

[従来の技術] 第9図のように、光パンダ型フアイバ10は、
コア12とクラツド14と応力付与部16とによ
り構成される。コア12は、応力付与部16によ
り与えられる応力により、X,Yの2方向で屈折
率が異なり、2つの偏光軸18X,Yを持つ。
[Prior Art] As shown in FIG. 9, the optical panda type fiber 10 is
It is composed of a core 12, a cladding 14, and a stress applying section 16. The core 12 has different refractive indexes in two directions, X and Y, due to the stress applied by the stress applying section 16, and has two polarization axes 18X and Y.

定偏波フアイバの接続においては、接続しよう
とする2つの光フアイバの偏光軸を一致させるこ
とが重要となる。
When connecting constant polarization fibers, it is important to match the polarization axes of the two optical fibers to be connected.

この方法として、光フアイバの透過光をイメー
ジセンサ(たとえばTVカメラ)でとらえ、前記
イメージセンサでとらえたフアイバ像の輝度分布
が、左右のフアイバで同じになるようにして偏光
軸を合わせる方法が提案されている。(特願昭62
−307193号参照)。
One proposed method for this is to capture the light transmitted through the optical fiber with an image sensor (for example, a TV camera), and align the polarization axes so that the brightness distribution of the fiber image captured by the image sensor is the same for the left and right fibers. has been done. (Special request 1986
-Refer to No. 307193).

[発明が解決しようとする課題] しかし、上記の方法は、2つの光フアイバの偏
光軸の粗調心を目的としているため、より精密な
微調心を他の方法(たとえば遠端モニタ法など)
により行わなければならない。
[Problems to be Solved by the Invention] However, since the above method aims at coarse alignment of the polarization axes of two optical fibers, it is possible to use other methods (for example, far-end monitoring method) for more precise fine alignment.
This must be done according to the following.

[課題を解決するための手段] 本発明は、光フアイバのわずかな回転と輝度分
布の変化との関係に対する新しい認識にもとづく
もので、 フアイバ像の輝度分布における、フアイバ像の
中心線とその両側に現れる最高輝度の線までの距
離A,Bの差―A−B―の値が0(ゼロ)になる
ように、接続する左右のフアイバについて回転さ
せる点に、特徴がある。
[Means for Solving the Problems] The present invention is based on a new recognition of the relationship between slight rotation of an optical fiber and changes in brightness distribution, and is based on a new understanding of the relationship between a slight rotation of an optical fiber and a change in brightness distribution. The feature is that the left and right fibers to be connected are rotated so that the value of the difference between the distances A and B to the line of maximum brightness that appears in the figure -A-B- becomes 0 (zero).

以下、はじめに原理(光フアイバのわずかな回
転と輝度分布の変化との関係)について説明し、
次に実際の軸合せ方法について説明する。
Below, we will first explain the principle (the relationship between the slight rotation of the optical fiber and changes in the brightness distribution),
Next, the actual alignment method will be explained.

[原理] 光フアイバを透過した光によつてTVカメラ上
に得られる光フアイバ像を、コンピユータにより
シユミレーシヨンした。
[Principle] The optical fiber image obtained on the TV camera by the light transmitted through the optical fiber was simulated by a computer.

第1a図に、その結果を示す。 Figure 1a shows the results.

光フアイバ10の外径は125μm、応力付与部1
6の直径は30μmとして、クラツド14の屈折率
を1.45、応力付与部16の屈折率を1.44とした。
The outer diameter of the optical fiber 10 is 125 μm, and the stress applying part 1
6 had a diameter of 30 μm, the refractive index of the cladding 14 was 1.45, and the refractive index of the stress applying portion 16 was 1.44.

左から入射した平行光線19は、光フアイバ1
0との境界で屈折する。その光が応力付与部16
との境界でまた屈折する。屈折角はフレネルの法
則により計算した。
Parallel light ray 19 incident from the left enters optical fiber 1
It is refracted at the boundary with 0. The light is applied to the stress applying section 16
It is refracted again at the boundary. The angle of refraction was calculated using Fresnel's law.

第1a図kTVカメラのピント面20での光強
度分布を第1b図に示す。同図から分るように、
明るい2本の線(光強度の高い点)が特徴とな
る。
Figure 1a k Figure 1b shows the light intensity distribution at the focal plane 20 of the TV camera. As you can see from the figure,
It is characterized by two bright lines (points of high light intensity).

すなわち、フアイバの中心を通る線22の両側
に、顕著な明るい線24,26が見られる。
That is, prominent bright lines 24, 26 can be seen on either side of the line 22 passing through the center of the fiber.

第2a図に、光フアイバ10を少し回転させた
ときのシユミレーシヨン結果を示し、そのTVカ
メラのピント面20での光強度分布を第2b図に
示す。
FIG. 2a shows a simulation result when the optical fiber 10 is slightly rotated, and FIG. 2b shows the light intensity distribution at the focal plane 20 of the TV camera.

この場合も、フアイバの中心を通る線22の両
側に、顕著な明るい線24,26が見られる。し
かし、明るい線24,26の位置が、上記第1b
図の場合と異なる。
Again, prominent bright lines 24, 26 can be seen on either side of the line 22 passing through the center of the fiber. However, the positions of the bright lines 24 and 26 are
It is different from the case shown in the figure.

そこで、第1b図、第2b図に示すように、中
心線22から明るい線24,26までの距離A,
Bに着目して、―A−B―の値と光フアイバ10
の回転角θとの関係を、シユミレーシヨン結果か
らグラフにして、第3図に示した。
Therefore, as shown in FIGS. 1b and 2b, the distance A from the center line 22 to the bright lines 24, 26,
Focusing on B, the value of -A-B- and the optical fiber 10
The relationship between the rotation angle θ and the rotation angle θ is shown in a graph based on the simulation results in FIG.

なお、θ=0度は、第4図のように、応力付与
部16が観察面と平行(光線19と直角)の場合
である。
Note that θ=0 degrees is a case where the stress applying portion 16 is parallel to the observation surface (perpendicular to the light ray 19) as shown in FIG.

―A−B―の変化は、θ=90度付近が大きく、
θ=90度において―A−B―はゼロになる。
The change in -A-B- is large near θ=90 degrees,
At θ=90 degrees, -A-B- becomes zero.

したがつて、偏光軸の調心を行う場合は、90度
付近で―A−B―がゼロになるように、光フアイ
バ10を回転させればよい。―A−B―の回転角
に対する変化が大きいので、高精度に位置合せが
できる。
Therefore, when aligning the polarization axis, it is sufficient to rotate the optical fiber 10 so that -A-B- becomes zero around 90 degrees. Since the change with respect to the rotation angle of -A-B- is large, alignment can be performed with high precision.

接続する2本の光フアイバ10の両方について
同じことを行えば、偏光軸の調心を高精度に行う
ことができる。
By doing the same thing for both of the two optical fibers 10 to be connected, it is possible to align the polarization axes with high precision.

また、90度±20度程度の範囲では、―A−B―
は直線的に変化している。そのため、接続後の接
続点は左右の光フアイバ10の―A−B―の値を
調べることにより、接続点での偏光軸のずれを計
算で求めることが可能である。
Also, in the range of about 90 degrees ± 20 degrees, -A-B-
is changing linearly. Therefore, by checking the values of -A-B- of the left and right optical fibers 10 at the connection point after connection, it is possible to calculate the deviation of the polarization axis at the connection point.

[実際の軸合せ法] [1] 構成 第5図に、概略を示した(特願昭62−307193号
参照)。
[Actual alignment method] [1] Configuration A schematic diagram is shown in FIG. 5 (see Japanese Patent Application No. 307193/1983).

28はz軸台で、矢印30の方向に揺動可能で
ある。
Reference numeral 28 denotes a z-axis table, which is swingable in the direction of arrow 30.

z軸台28上にブラケツト32をとりつける。
ブラケツト32が、円筒部材34を回転自在に支
持し、円筒部材34にダイアル35が直結する。
Mount the bracket 32 on the z-axis stand 28.
A bracket 32 rotatably supports a cylindrical member 34, and a dial 35 is directly connected to the cylindrical member 34.

円筒部材34からアーム36が突出し、その先
端にθクランプ38を設ける。θクランプ38は
光フアイバ10の被覆部11をクランプする。3
5をたとえば手動で回転すると、光フアイバ10
が回転する。
An arm 36 protrudes from the cylindrical member 34, and a θ clamp 38 is provided at its tip. The θ clamp 38 clamps the covering portion 11 of the optical fiber 10. 3
For example, when the optical fiber 10 is rotated manually, the optical fiber 10
rotates.

40はV溝台、42はフアイバクランプであ
る。
40 is a V-groove stand, and 42 is a fiber clamp.

44はTVカメラで、46はその制御装置、4
8はTVモニタ、50は光フアイバ像である。
44 is a TV camera, 46 is its control device, 4
8 is a TV monitor, and 50 is an optical fiber image.

[2] 調心 たとえば、第6a図のように、θ=90度の方向
からTVカメラ44により観察すると、第6b図
のような光フアイバ像50が得られ、その輝度分
布は第6c図のようになる。
[2] Alignment For example, as shown in Fig. 6a, when observed with the TV camera 44 from the direction of θ = 90 degrees, an optical fiber image 50 as shown in Fig. 6b is obtained, and its brightness distribution is as shown in Fig. 6c. It becomes like this.

この第6c図の輝度分布は、上記の第1b図の
光強度分布に相当する。
The brightness distribution in FIG. 6c corresponds to the light intensity distribution in FIG. 1b above.

ただし、中心線52は実在しない。 However, the center line 52 does not exist.

しかし、第6c図で、a,bは光フアイバ10
の両端に当る。そこで、画面上で、a,bの位置
を求めれば、その中心を通る線が中心線52であ
る。また、a,bのかわりにc,dの中心を求め
ても、同様に中心線52になる。
However, in FIG. 6c, a and b are optical fibers 10
It hits both ends of. Therefore, if the positions of a and b are found on the screen, the line passing through the center is the center line 52. Furthermore, even if the centers of c and d are found instead of a and b, the center line 52 will be obtained in the same way.

中心線52とその両側に現れる最高輝度の線5
4,56との距離A,Bから―A−B―を求め
る。
The center line 52 and the highest brightness lines 5 appearing on both sides of the center line 52
-A-B- is determined from the distances A and B from 4 and 56.

それから、上記のように、θ=90度付近におい
て、―A−B―=0になるように光フアイバ10を
回転する。
Then, as described above, the optical fiber 10 is rotated so that -A-B-=0 near θ=90 degrees.

これを接続する左右の光フアイバ10について行
えば、高精度に偏光軸を一致させることができ
る。
If this is done for the left and right optical fibers 10 that connect, the polarization axes can be matched with high precision.

なお、定偏波フアイバの調心は、第7a図のよ
うに偏光軸を一致させる場合のほか、90度(第7
b図)または45度(第7c図)くい違わせる場合
もある。
In addition to aligning the polarization axes at 90 degrees (7th
b) or 45 degrees (Fig. 7c).

そのような場合は、いつたん第7a図のように
偏光軸を一致させた後、一方の光フアイバ10を
90度または45度、正確に回転させればよい。
In such a case, first align the polarization axes as shown in Figure 7a, and then connect one optical fiber 10.
Just rotate it exactly 90 degrees or 45 degrees.

この方法は、上記のように、―A−B―がゼロ
になる点を見つけるようにしているため、接続す
る左右のフアイバに応力付与部16のフアイバ中
心からの距離の異なるもの(第8a図)や、フア
イバ外径の異なるもの(第8b図)を用いた場
合、A,Bの大きさは左右のフアイバで異なる
が、―A−B―がゼロになる点はどのフアイバで
も同じなので、同様に適用できる。
In this method, as described above, the point where -A-B- becomes zero is found, so the stress applying part 16 is connected to the left and right fibers with different distances from the fiber center (see Fig. 8a). ) or fibers with different outer diameters (Fig. 8b), the sizes of A and B are different for the left and right fibers, but the point where -A-B- is zero is the same for all fibers, so The same applies.

[発明の効果] パンダ型光フアイバをθ=90度の方向(応力付
与部およびコアの中心を通る方向)から観察する
と、フアイバ像の輝度分布における、フアイバ像
の中心線からその両側に現われる最高輝度の線ま
での距離A,Bの差―A−B―がゼロになり、か
つθ=90度付近において―A−B―の変化が非常
に大きい、という現象に対する、これまで知られ
ていなかつた認識に基づき、接続する左右のフア
イバを回転させて―A−B―がそれぞれゼロにな
るようにするので、 (1) 定偏波フアイバの偏光軸調心を高精度に高精
度に行うことができる。実際に1度以内のずれ
で調心することができた。
[Effect of the invention] When observing a panda-shaped optical fiber from the direction of θ = 90 degrees (direction passing through the stress-applying part and the center of the core), in the brightness distribution of the fiber image, the maximum that appears on both sides from the center line of the fiber image A hitherto unknown method for the phenomenon that the difference between the distances A and B to the brightness line -A-B- becomes zero, and the change in -A-B- is very large near θ = 90 degrees. Based on this recognition, the left and right fibers to be connected are rotated so that -A-B- respectively become zero. (1) The polarization axis of the constant polarization fiber can be aligned with high precision. I can do it. In fact, I was able to align it with a deviation of less than 1 degree.

(2) 接続後に、接続点での偏光軸のずれを測定す
ることができる。
(2) After connection, the deviation of the polarization axis at the connection point can be measured.

(3) 上記のように、応力付与部16のフアイバ中
心からの距離の異なるものや、フアイバ外径の
異なるものの場合にも、同様に適用できる。
(3) As described above, the present invention can be similarly applied to cases where the stress applying portions 16 have different distances from the fiber center or fibers with different outer diameters.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図〜第8b図は本発明に関するもので、
第1a図はθ=90度における光線追跡のコンピユ
ータによるシユミメーシヨン図で、第1b図は
TVカメラのピント面における光強度分布図、第
2a図はθが別の角度における光線追跡のコンピ
ユータによるシユミメーシヨン図で、第2b図は
TVカメラのピント面における光強度分布図、第
3図はフアイバの回転角θと―A−B―との関係
を示す線図、第4図は回転角θの説明図、第5図
は偏光軸の調心装置の概略説明図、第6a図は制
御装置46による観察方向の説明図、第6b図は
フアイバ像の説明図、第6c図は輝度分布の説明
図、第7a図と第7b図と第7c図は定偏波フア
イバの接続態様の説明図、第8a図と第8b図は
本発明の適用できるフアイバの種類の説明図、第
9図は定偏波光フアイバの一般的説明図。 11……被覆部分、10……光フアイバ、12
……コア、14……クラツド、16……応力付与
部、18X,Y……偏光軸、19……光線、20
……TVカメラのピント面、22……フアイバの
中心を通る線、24,26……明るい線、28…
…z軸台、32……ブラケツト、34……円筒部
材、36……アーム、38……θクランプ、40
……V溝台、42……フアイバクランプ、44…
…TVカメラ、46……制御装置、48……TV
モニタ、50……光フアイバ像、52……中心
線、54,56……最高輝度の線。
Figures 1a to 8b relate to the present invention,
Figure 1a is a computer simulation diagram of ray tracing at θ = 90 degrees, and Figure 1b is
Figure 2a is a computer-generated simulation diagram of ray tracing at different angles of θ, and Figure 2b is a diagram of the light intensity distribution at the focal plane of the TV camera.
A diagram of the light intensity distribution at the focus plane of the TV camera. Figure 3 is a diagram showing the relationship between the rotation angle θ of the fiber and -A-B-. Figure 4 is an explanatory diagram of the rotation angle θ. Figure 5 is the polarization diagram. A schematic illustration of the axis alignment device, FIG. 6a is an illustration of the observation direction by the control device 46, FIG. 6b is an illustration of the fiber image, FIG. 6c is an illustration of the brightness distribution, and FIGS. 7a and 7b. Figures 7c and 7c are explanatory diagrams of connection modes of constant polarization fibers, Figures 8a and 8b are explanatory diagrams of types of fibers to which the present invention can be applied, and Figure 9 is a general explanatory diagram of polarization constant optical fibers. . 11... Covered portion, 10... Optical fiber, 12
... Core, 14 ... Clad, 16 ... Stress applying part, 18 X, Y ... Polarization axis, 19 ... Light ray, 20
...Focus plane of the TV camera, 22...Line passing through the center of the fiber, 24, 26...Bright line, 28...
...Z-axis stand, 32...Bracket, 34...Cylindrical member, 36...Arm, 38...θ clamp, 40
...V groove stand, 42...Fiber clamp, 44...
...TV camera, 46...control device, 48...TV
Monitor, 50... Optical fiber image, 52... Center line, 54, 56... Line of maximum brightness.

Claims (1)

【特許請求の範囲】 1 光フアイバの透過光をイメージセンサでとら
え、前記イメージセンサでとらえたフアイバ像の
輝度分布の特徴にもとづいて偏光軸を合わせる、
定偏波光フアイバの軸合せ方法において、 パンダ型定偏波光フアイバの前記フアイバ像の
輝度分布における、フアイバ像の中心線からその
両側に現われる最高輝度の線までの距離A.Bの差
|A−B|がゼロになるように、接続する左右の
フアイバについて回転する工程を含む、定偏波光
フアイバの軸合せ方法。
[Claims] 1. Capturing the transmitted light of the optical fiber with an image sensor, and adjusting the polarization axis based on the characteristics of the brightness distribution of the fiber image captured by the image sensor.
In the alignment method of a constant polarization optical fiber, the difference in the distance AB from the center line of the fiber image to the highest brightness line appearing on both sides of the fiber image in the brightness distribution of the fiber image of the panda type constant polarization optical fiber |A-B| A method for aligning polarization-constant optical fibers, which includes rotating the left and right fibers to be connected so that the polarization is zero.
JP1725289A 1989-01-26 1989-01-26 Method for aligning axis of constant polarization optical fiber Granted JPH02196204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1725289A JPH02196204A (en) 1989-01-26 1989-01-26 Method for aligning axis of constant polarization optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1725289A JPH02196204A (en) 1989-01-26 1989-01-26 Method for aligning axis of constant polarization optical fiber

Publications (2)

Publication Number Publication Date
JPH02196204A JPH02196204A (en) 1990-08-02
JPH0439047B2 true JPH0439047B2 (en) 1992-06-26

Family

ID=11938762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1725289A Granted JPH02196204A (en) 1989-01-26 1989-01-26 Method for aligning axis of constant polarization optical fiber

Country Status (1)

Country Link
JP (1) JPH02196204A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782085B2 (en) * 1989-05-26 1998-07-30 株式会社フジクラ Alignment method of dual core optical fiber
US6102584A (en) * 1998-07-01 2000-08-15 Seagate Technology, Inc. Fiber orientation mechanism
JP4570227B2 (en) * 2000-10-10 2010-10-27 古河電気工業株式会社 Method for detecting and adjusting the position of stress applying part in panda fiber
JP3744812B2 (en) * 2001-04-26 2006-02-15 住友電気工業株式会社 Fusion splicing method of constant polarization optical fiber
JP2002333384A (en) 2001-05-10 2002-11-22 Fujikura Ltd Method of estimating angle deviation of plane of polarization of constant-polarization optical fiber and method of connecting constant-polarization optical fiber
JP4536965B2 (en) * 2001-07-31 2010-09-01 東芝機械株式会社 Clamp device for thin wire member
JP2015145989A (en) * 2014-02-04 2015-08-13 住友電気工業株式会社 Multi-core fiber aligning method, connector manufacturing method, and ribbon fiber manufacturing method
WO2022254986A1 (en) * 2021-06-04 2022-12-08 住友電気工業株式会社 Optical fiber production method, optical fiber, optical fiber ribbon production method, optical fiber ribbon, optical fiber production device, and optical fiber ribbon production device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174808A (en) * 1983-03-25 1984-10-03 Nippon Telegr & Teleph Corp <Ntt> Optical fiber connecting method
JPS59219707A (en) * 1983-05-27 1984-12-11 Fujikura Ltd Method for aligning core of single mode optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174808A (en) * 1983-03-25 1984-10-03 Nippon Telegr & Teleph Corp <Ntt> Optical fiber connecting method
JPS59219707A (en) * 1983-05-27 1984-12-11 Fujikura Ltd Method for aligning core of single mode optical fiber

Also Published As

Publication number Publication date
JPH02196204A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
JP3744812B2 (en) Fusion splicing method of constant polarization optical fiber
US5668905A (en) Optical fiber ferrule assembly having angular index showing polarization plane
CN100412585C (en) PM fiber alignment
JPH08114720A (en) Fusion splicing method of constant polarization optical fiber
JPH0439047B2 (en)
US6148639A (en) Splicing an optical fiber having twin cores
JPS61221632A (en) Measuring system for eccentricity of single core optical connector ferrule
US5317575A (en) System for determining birefringent axes in polarization-maintaining optical fiber
JPH0815563A (en) Alignment method in coupling part of optical fiber having non-axisymmetrical refractive index distribution and optical waveguide, optical fiber fixing structure and coupling part
JP4570227B2 (en) Method for detecting and adjusting the position of stress applying part in panda fiber
JPH02287504A (en) Method of aligning constant polarization optical fiber
JPH09126732A (en) Method and system for determining distance between optical fiber
JPH0534646B2 (en)
JP4268057B2 (en) Polarization plane optical principal axis determination method for polarization maintaining optical fiber
JP2782085B2 (en) Alignment method of dual core optical fiber
JP2005173210A (en) Method for determining rotational reference position of plane of polarization keeping optical fiber and optical fiber fusion-splicing machine
JPH01147506A (en) Fusion splicing method for constant polarization optical fiber
JPH0439045B2 (en)
JP2002098854A (en) Fusion splicing method for polarization maintaining optical fiber
JP2859680B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPS5938709A (en) Connecting method of optical fiber for retaining plane of polarization
JP2002116339A (en) Fusion splicing method for constant polarization optical fiber
JPS6022322Y2 (en) Visual alignment device for small-core optical fiber
JPS62299738A (en) Method and instrument for measuring end surface angle of optical fiber
JPH0374364B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 17