JPH0438888A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0438888A
JPH0438888A JP14580190A JP14580190A JPH0438888A JP H0438888 A JPH0438888 A JP H0438888A JP 14580190 A JP14580190 A JP 14580190A JP 14580190 A JP14580190 A JP 14580190A JP H0438888 A JPH0438888 A JP H0438888A
Authority
JP
Japan
Prior art keywords
face
semiconductor laser
refractive index
reflectance
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14580190A
Other languages
Japanese (ja)
Inventor
Takashi Takamura
高村 孝士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14580190A priority Critical patent/JPH0438888A/en
Publication of JPH0438888A publication Critical patent/JPH0438888A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0281Coatings made of semiconductor materials

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To get high light output by forming end face protective films different in reflectance at both end faces of a semiconductor laser. CONSTITUTION:An SiO2 film is formed by electron beam deposition method, and then a current confricting region 108 is formed by photoetching process, and next electrodes 109 and 110 are formed, and then cleavage is performed to form a laser resonator end face. Next, by electron beam deposition method, end face protective films 111 and 112 consisting of SiO2 are formed. At this time, thickness control is performed for the films such that the thickness is 286nm at the emitting end face on the monitor side and 190nm at the emitting end face on the output side. At the time of this end face protective film, the light reflectance at the emitting end face on the monitor side is 32%, and the light reflectance is 10% at the emitting end face on the output side. Lastly, an electrode metal is formed by vacuum deposition method, and then it is mounted on a package.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ディスク等に用いられる半導体[従来の技術
] 従来、少なくとも一方の端面近傍では屈折率導波路幅と
電流注入幅を同程度として屈折率導波構造とし、その他
の領域では屈折率導波路幅を電流注入幅より充分広くし
利得導波構造とした■−V族化合物半導体層よりなるリ
ブ状の光導波路をn−VI族化合物半導体層で埋め込ん
だ構造を用いることにより出射光の可干渉性を低減した
、戻り光雑音特性に優れた半導体レーザが知られていた
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to semiconductors used in optical disks, etc. [Prior Art] Conventionally, near at least one end face, the refractive index waveguide width and the current injection width are set to be approximately the same and refraction is performed. The refractive index waveguide width is made sufficiently wider than the current injection width in other regions to form a gain waveguide structure.■-A rib-shaped optical waveguide made of a V group compound semiconductor layer is made of an n-VI group compound semiconductor layer. Semiconductor lasers have been known that use a layered structure to reduce the coherence of emitted light and have excellent return optical noise characteristics.

[発明が解決しようとする課B] しかしながら、従来用いられていたこのような半導体レ
ーザは、最大光出力が端面破壊レベル(CODレベル)
で40mW程度である。
[Problem B to be solved by the invention] However, in conventionally used semiconductor lasers, the maximum optical output is at the edge destruction level (COD level).
It is about 40mW.

また、信頼性が保証できるレベルではせいぜい30mW
が最大定格となる。
Also, at a level where reliability can be guaranteed, it is 30mW at most.
is the maximum rating.

ところが通常用いられる光磁気ディスクでは50mW程
度の最大光出力が要求されるためこの光出力では不十分
である。
However, since a commonly used magneto-optical disk requires a maximum optical output of about 50 mW, this optical output is insufficient.

また、閾値電流値もかなり大きな値となり消費電力が大
きくなってしまう。
Further, the threshold current value also becomes a considerably large value, resulting in increased power consumption.

そこで、本発明は従来のこのような問題点を解決し、高
い光出力が得られる半導体レーザを提供することにある
SUMMARY OF THE INVENTION Therefore, the present invention aims to solve these conventional problems and provide a semiconductor laser that can provide high optical output.

[課題を解決するための手段] 従来のこのような問題点を解決するため本発明の半導体
レーザは、少なくとも一方の端面近傍では屈折率導波路
幅と電流注入幅を同程度として屈折率導波構造とし、そ
の他の領域では屈折率導波路幅を電流注入幅より充分広
くし利得導波構造としたm−v族化合物半導体層よりな
るリブ状の光導波路をn−Vl族化合物半導体層で埋め
込んだ構造を持つ半導体レーザの両端面におのおの光反
射率の異なる端面保護膜を有することを特徴とする。
[Means for Solving the Problems] In order to solve these conventional problems, the semiconductor laser of the present invention uses a refractive index waveguide with the refractive index waveguide width and the current injection width being approximately the same in the vicinity of at least one end face. In other regions, the refractive index waveguide width is made sufficiently wider than the current injection width, and a rib-shaped optical waveguide made of an m-v group compound semiconductor layer is embedded with an n-Vl group compound semiconductor layer to form a gain waveguide structure. The present invention is characterized by having end face protection films having different light reflectances on both end faces of a semiconductor laser having a structure.

[実  施  例コ 以下に本発明の実施例を図面を用いて説明する。[Example of implementation] Embodiments of the present invention will be described below with reference to the drawings.

(実施例−1) 本発明の第1の実施例として出力側出射端面の光反射率
を10%に落とし最大光出力を増大させた半導体レーザ
について説明する。
(Example 1) As a first example of the present invention, a semiconductor laser in which the light reflectance of the output side emission end face is reduced to 10% and the maximum optical output is increased will be described.

第1図は多モード発振レーザの出力側出射端面及びモニ
タ側出射端面にSiO2薄膜を形成した半導体レーザの
斜視図である。
FIG. 1 is a perspective view of a semiconductor laser in which a SiO2 thin film is formed on the output side emission end face and the monitor side emission end face of a multimode oscillation laser.

まず、製造工程から説明する。First, the manufacturing process will be explained.

n−GaAs基板101上にn−GaAsバッファ層1
02、n −A I g、4G a e sA sクラ
ッド層103、A l s、ssG a s、ssA 
s活性層104、p −A l 11.aG a 11
.eA Sクラッド層105、p−GaAs:+ンタク
ト層1−06とを有機金属化学気層成長法(MOCVD
法)により成長する。
n-GaAs buffer layer 1 on n-GaAs substrate 101
02, n-A I g, 4G ae sA s cladding layer 103, A l s, ssG a s, ssA
s active layer 104, p-A l 11. aG a 11
.. The eAS cladding layer 105 and the p-GaAs:+ contact layer 1-06 are formed by metal organic chemical vapor deposition (MOCVD).
growth by law).

成長条件はv−m比75、成長温度670℃、成長時圧
カフ0Torrにて行った。反応管はコールドウオール
の横型炉である。
The growth conditions were a v-m ratio of 75, a growth temperature of 670° C., and a pressure cuff of 0 Torr during growth. The reaction tube is a cold wall horizontal furnace.

なお、材料ガスとしては、■族にはトリメチルガリウム
(TMG)及びトリメチルアルミニウム(TMA)を用
い、V族にはアルシン(AsH3)を用いた。
As material gases, trimethylgallium (TMG) and trimethylaluminum (TMA) were used for group (1), and arsine (AsH3) was used for group V.

次に、電子ビーム蒸着法によりSiO2薄膜を形成した
後通常のフォトエツチング工程により第2図に示すよう
な形状にパターニングする。
Next, a SiO2 thin film is formed by electron beam evaporation, and then patterned into the shape shown in FIG. 2 by an ordinary photoetching process.

次に、硫酸系のエツチング液によりリブ形の領域を形成
する。
Next, rib-shaped regions are formed using a sulfuric acid-based etching solution.

続いて、選択MOCVD法によりZnS e107をリ
ブ側面を埋め込む。
Subsequently, ZnS e107 is embedded into the side surfaces of the rib by selective MOCVD.

成長条件はn−VI比10、成長温度700℃成長時圧
力10Torrにておこなった。
The growth conditions were an n-VI ratio of 10, a growth temperature of 700° C., and a growth pressure of 10 Torr.

反応管はコールドウオールの横型炉である。The reaction tube is a cold wall horizontal furnace.

なお、材料ガスとしては、■族にはジメチルシンク(D
MZn)、Vl族にはジメチルセレン(DMS e)を
用いた。
In addition, as a material gas, dimethyl sink (D
Dimethyl selenium (DMSe) was used for the MZn) and Vl groups.

次に5102薄膜を除去した後、再び電子ビーム蒸着法
により5102薄膜を形成した後通常のフォトエツチン
グ工程により電流狭窄領域108を形成し、次に電極1
09.110を形成した後、へき開を行いレーザ共振器
端面を形成する。
Next, after removing the 5102 thin film, a 5102 thin film is formed again by electron beam evaporation, and then a current confinement region 108 is formed by a normal photoetching process, and then the electrode 1
After forming 09.110, cleavage is performed to form a laser resonator end face.

次に、電子ビーム蒸着法によりSiO2から成る端面保
護膜111,112を形成するがこの際膜厚制御を行い
、モニタ側出射端面には286 n ml  出力側出
射端面には190nmの膜厚に制御する。
Next, end face protection films 111 and 112 made of SiO2 are formed by electron beam evaporation, and at this time, the film thickness is controlled to 286 nm on the monitor side emission end face and 190 nm on the output side emission facet. do.

この端面保護膜の膜厚の時、モニタ側出射端面での光反
射率は32%であり、出力側出射端面での光反射率は1
0%である。
At this film thickness of the end face protection film, the light reflectance at the output end face on the monitor side is 32%, and the light reflectance at the output end face is 1.
It is 0%.

最後に、電極金属を真空蒸着法により形成した後パッケ
ージに実装し製造工程を終了した。
Finally, electrode metal was formed by vacuum evaporation and mounted on a package to complete the manufacturing process.

次に、この半導体レーザの特性評価を行った。Next, the characteristics of this semiconductor laser were evaluated.

端面破壊光出力(COD)レベルは150mWであり、
両端面に単に保護膜をつけただけのサンプルの90mW
と比べると60mW程度と70%近い増加率が得られた
The edge destruction optical output (COD) level is 150mW,
90mW of a sample with just a protective film on both end faces
Compared to the above, an increase rate of about 60 mW, nearly 70%, was obtained.

また、半導体レーザ内部の光強度分布及び光利得分布が
端面保護膜の反射率を変えることにより大きく変化する
ため利得導波部(屈折率導波路幅を電流注入幅より充分
広くした部分)と端面近傍の屈折率導波路部(屈折率導
波路幅と電流注入幅を同程度とした部分)との間の利得
分布が光強度に対し変動するため縦モード特性は高い光
出力においても可干渉性が小さい多モード発振を行う。
In addition, since the optical intensity distribution and optical gain distribution inside the semiconductor laser change greatly by changing the reflectance of the end face protection film, it is important to note that the gain waveguide (the part where the refractive index waveguide width is sufficiently wider than the current injection width) and the end face Since the gain distribution between the nearby refractive index waveguide section (the section where the refractive index waveguide width and the current injection width are similar) changes with the light intensity, the longitudinal mode characteristics are coherent even at high optical output. It performs multimode oscillation with small oscillation.

そのため、多モード発振を行う光出力は110mWまで
得られ端面に単に保護膜をつけただけのサンプルの40
mWと比べると約2゜5倍の光出力まで多モード発振を
した。
Therefore, the optical output for multimode oscillation can be obtained up to 110 mW, which is 40 mW compared to the sample with only a protective film attached to the end face.
Multi-mode oscillation was achieved up to an optical output approximately 2.5 times that of mW.

また、遠視野像(FFP)は端面保護膜の反射率によら
ず端面破壊光出力レベルまで単峰性が保たれていた。
In addition, the far-field pattern (FFP) remained unimodal up to the edge destruction light output level, regardless of the reflectance of the edge protection film.

発振閾値は52mAであり、端面保護膜をつけていない
もの(両端面の反射率はこの場合32%となる)の43
mAに比べ9mA程度の増加で収まっていた。
The oscillation threshold is 52 mA, and the 43 mm without end face protection film (reflectance of both end faces is 32% in this case)
The increase was limited to about 9 mA compared to mA.

これらのデータは初期不良を除いた500サンプルの測
定値の平均値である。
These data are average values of the measured values of 500 samples excluding initial defects.

(実施例−2) 本発明の第2の実施例としてモニタ側出射端面の光反射
率を99%に上げ発振閾値電流値を下げかつ微分量子効
率を向上した半導体レーザについて説明する。
(Example 2) As a second example of the present invention, a semiconductor laser will be described in which the light reflectance of the output facet on the monitor side is increased to 99%, the oscillation threshold current value is decreased, and the differential quantum efficiency is improved.

多モード発振レーザの出射端面にSiO2薄膜を形成し
、モニタ側出射端面に5io2/a−si(アモルファ
スシリコン)の多層反射膜を形成した半導体レーザの斜
視図である。
FIG. 2 is a perspective view of a semiconductor laser in which a SiO2 thin film is formed on the emission end face of a multimode oscillation laser, and a multilayer reflective film of 5io2/a-si (amorphous silicon) is formed on the monitor side emission end face.

半導体レーザの製造工程などは実施例−1で述べた物と
同一である。端面保護膜の形成方法には蒸着源切り替え
式電子ビーム蒸着法を用いた。出射側出射端面の端面保
護膜の材質は5i02で膜厚は286nmである。
The manufacturing process of the semiconductor laser is the same as that described in Example-1. The edge protection film was formed using an electron beam evaporation method with a switching source. The material of the end face protection film on the output end face on the output side is 5i02, and the film thickness is 286 nm.

モニタ側出射端面の端面保護膜301の材[ハS i 
O2/a−3i (アモルファスシリコン)の多層反射
膜である。
The material of the end face protection film 301 on the output end face on the monitor side [c Si
It is a multilayer reflective film of O2/a-3i (amorphous silicon).

膜厚は5i02が143nmでありa−Slが31nm
である。
The film thickness is 143 nm for 5i02 and 31 nm for a-Sl.
It is.

また、積層数は10組である。Further, the number of stacked layers is 10.

この端面保護膜を用いたとき、モニタ側出射端面での光
反射率は99%であり、出力側出射端面での光反射率は
32%である。
When this end face protection film is used, the light reflectance at the output end face on the monitor side is 99%, and the light reflectance at the output end face is 32%.

次に、実施例−1と同様にしてこの半導体レーザの特性
評価を行った。
Next, the characteristics of this semiconductor laser were evaluated in the same manner as in Example-1.

発振閾値は28mAであり、端面保護膜をつけていない
もの(両端面の反射率はこの場合32%となる)の43
mAに比べ15mA程度減少した。
The oscillation threshold is 28 mA, and the 43 mm without end face protection film (reflectance of both end faces is 32% in this case)
It decreased by about 15 mA compared to mA.

また、半導体レーザの駆動電流値は光出力50mWにお
いて120mAであり、両端面に単に保護膜を形成した
物と比べ、40mA程度減少した。
Further, the driving current value of the semiconductor laser was 120 mA at an optical output of 50 mW, which was about 40 mA lower than that of a device in which protective films were simply formed on both end faces.

そのため、半導体レーザチップの温度上昇が避けられる
Therefore, an increase in temperature of the semiconductor laser chip can be avoided.

そのため端面破壊光出力(COD)レベルが上昇し11
0mWというCODレベルが得られ、両端面に単に保護
膜をつけただけのサンプルの90 mWと比べ最大光出
力においても20mW程度の上昇が見られている。
As a result, the edge destruction optical output (COD) level increases and 11
A COD level of 0 mW was obtained, and the maximum optical output was also increased by about 20 mW compared to 90 mW for a sample with just a protective film on both end faces.

また、半導体レーザ内部の光強度分布及び光利得分布が
端面保護膜の反射率を変えることにより大きく変化する
ため利得導波部(屈折率導波路幅を電流注入幅より充分
広くした部分)と端面近傍の屈折率導波路部(屈折率導
波路幅と電流注入幅を同程度とした部分)との間の利得
分布が光強度に対し変動するため縦モード特性は高い光
出力においても可干渉性が小さい多モード発振を行う。
In addition, since the optical intensity distribution and optical gain distribution inside the semiconductor laser change greatly by changing the reflectance of the end face protection film, it is important to note that the gain waveguide (the part where the refractive index waveguide width is sufficiently wider than the current injection width) and the end face Since the gain distribution between the nearby refractive index waveguide section (the section where the refractive index waveguide width and the current injection width are similar) changes with the light intensity, the longitudinal mode characteristics are coherent even at high optical output. It performs multimode oscillation with small oscillation.

そのため、多モード発振の状態はCODレベルである1
10mWまで得られ端面に単に保護膜をつけただけのサ
ンプルの40mWと比べると約2.5倍の光出力まで多
モード発振をした。
Therefore, the state of multimode oscillation is 1, which is the COD level.
Multi-mode oscillation was achieved with an optical output of up to 10 mW, approximately 2.5 times as much as the 40 mW of a sample with a simple protective film attached to the end face.

また、遠視野像(F F P)は端面保護膜の反射率に
よらず端面破壊光出力レベルまで単峰性が保たれていた
In addition, the far-field pattern (F F P) remained unimodal up to the end face destruction optical output level, regardless of the reflectance of the end face protective film.

これらのデータは初期不良を除いた500サンプルの測
定値の平均値である。
These data are average values of the measured values of 500 samples excluding initial defects.

また、特に低雑音特性を必要とする用途には出射端面の
反射率を70%程度にまで上昇させることが効果的であ
る。
Furthermore, especially for applications requiring low noise characteristics, it is effective to increase the reflectance of the output end face to about 70%.

以上AlGaAs系のダブルへテロ接合基板を用い、ス
トライプ側面の埋め込みにZn5eを用いた例を述べた
が、もちろんInP系などの他の系列に属するダブルへ
テロ接合構台基板を用いてももちろん良い。
An example has been described above in which an AlGaAs-based double heterojunction substrate is used and Zn5e is used to fill the stripe side surface, but it is of course possible to use a double-heterojunction gantry substrate belonging to another series such as an InP-based substrate.

また、埋め込み材もZn5eに限ることな(ZnSやZ
nTe等の材料やあるいはその混晶であってもよい。
In addition, the filling material is not limited to Zn5e (ZnS, Z
It may be a material such as nTe or a mixed crystal thereof.

特に、ダブルへテロ接合基板にAlGaAs系のものを
用いるときはZnS eとZnSの混晶を用いると基板
との格子整合が取れるため特に有望である。
In particular, when using an AlGaAs-based double heterojunction substrate, it is particularly promising to use a mixed crystal of ZnSe and ZnS because lattice matching with the substrate can be achieved.

また、半導体レーザの基本構造も例えば埋め込み形など
の方法を用いることにより、低しきい値化を図ることが
出来る。
Further, the basic structure of the semiconductor laser can also be made low in threshold by using a method such as a buried type.

[発明の効果コ 本発明の半導体レーザは、次に示すような効果を有する
[Effects of the Invention The semiconductor laser of the present invention has the following effects.

(1)端面保護膜の反射率を変えることにより半導体レ
ーザ内部の光強度分布及び光利得分布、及びその現象に
伴うキャリア密度分布が大きく変調される。
(1) By changing the reflectance of the end face protection film, the light intensity distribution and optical gain distribution inside the semiconductor laser, as well as the carrier density distribution accompanying this phenomenon, are significantly modulated.

しかも、この現象は半導体レーザ内部の光強度に強く依
存する。
Moreover, this phenomenon strongly depends on the light intensity inside the semiconductor laser.

そのため利得導波部(屈折率導波路幅を電流注入幅より
充分広くした部分)と端面近傍の屈折率導波路部(屈折
率導波路幅と電流注入幅を同程度とした部分)とをもつ
半導体レザ内部での電磁気学的な対称性が崩れるため高
出力動作時においても発振波長の選択性が生ずることが
ない。
Therefore, it has a gain waveguide section (a section where the refractive index waveguide width is sufficiently wider than the current injection width) and a refractive index waveguide section near the end face (a section where the refractive index waveguide width and current injection width are approximately the same). Since the electromagnetic symmetry within the semiconductor laser is disrupted, selectivity of the oscillation wavelength does not occur even during high-power operation.

そのため、被照射媒体からの反射戻り光に起因する戻り
光雑音が発生しなくなる。
Therefore, return light noise due to reflected return light from the irradiated medium is not generated.

この特性は高出力、かつ低戻り光雑音を同時に備えなけ
ればならない高速型光ディスクにとっては必要不可欠な
ものである。
This characteristic is essential for high-speed optical discs that must simultaneously have high output and low return optical noise.

また、出射光に可干渉性がないため、光学系を用いて集
光を行った時不必要な干渉縞が発生しないためレーザビ
ームプリンタ等に用いると高品質化することが出来る。
In addition, since the emitted light has no coherence, unnecessary interference fringes are not generated when the light is focused using an optical system, so high quality can be achieved when used in a laser beam printer or the like.

(2)半導体レーザビームの状態で可干渉性の制御を行
うことが出来るのできわめて自由度の高い設計を行うこ
とが出来る。
(2) Since the coherence can be controlled in the state of the semiconductor laser beam, a design with an extremely high degree of freedom can be performed.

例えばLPE法(LIquld  Phase  Ep
ltaxicy)で作成した半導体レーザチップは、結
晶成長時に生じる不均一性のため特性が安定しにくく、
高8力動作時にも低可干渉性を保つデバイスを安定に作
ることは困難であったが、端面保護膜反射率変調により
デバイスとしての特性を揃えることにより初期特性にお
いての不良発生率を半分以下にすることが出来た。
For example, the LPE method (LIquld Phase Ep
Semiconductor laser chips made using LTAXICY have difficult to stabilize characteristics due to non-uniformity that occurs during crystal growth.
It has been difficult to stably create a device that maintains low coherence even during high-8 force operation, but by aligning the device characteristics by modulating the reflectance of the end face protection film, the failure rate in the initial characteristics can be reduced by half or less. I was able to do it.

また、通常の保護膜では電流狭窄機能の不十分な利得導
波部を持つため駆動電流がかなり太き(なってしまい充
分な信頼性の得られないデバイスでも充分な信頼性を確
保することができ、寿命試験においても3倍以上の推定
寿命を確認することが出来た。
In addition, since a normal protective film has a gain waveguide with insufficient current confinement function, the drive current is quite large (which makes it difficult to ensure sufficient reliability even in devices that cannot achieve sufficient reliability. In the life test, we were able to confirm that the estimated lifespan was more than three times longer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例−1を説明するための半導体レ
ーザの斜視図。 第2図は本発明の実施例−1を説明するための半導体レ
ーザ製造工程中途における斜視図。 n−GaAs基板 n−GaAsバッファ層 n −A 1 s、aG a a、eA sクラッド層 105 ・ ド層 107 ・ 112 ・ −A 1 a、1lsG a s、ssA s活性層p
 −A l 11.JG a 11.6A Sクラプル
−GaAsコンタクト層 nSe 電極 電極 端面保護膜 端面保護膜 以 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴木喜三部 他1名
FIG. 1 is a perspective view of a semiconductor laser for explaining Example 1 of the present invention. FIG. 2 is a perspective view in the middle of a semiconductor laser manufacturing process for explaining Example 1 of the present invention. n-GaAs substrate n-GaAs buffer layer n -A 1 s, aGa a, eAs cladding layer 105 / do layer 107 / 112 / -A 1 a, 1lsGa s, ssAs active layer p
-A l 11. JG a 11.6A S Crapple - GaAs contact layer nSe Electrode end face protective film End face protective film Applicant Seiko Epson Corporation Agent Patent attorney Kizobe Suzuki and 1 other person

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一方の端面近傍では屈折率導波路幅と電流注
入幅を同程度として屈折率導波構造とし、その他の領域
では屈折率導波路幅を電流注入幅より充分広くし利得導
波構造としたIII−V族化合物半導体層よりなるリブ状
の光導波路をII−VI族化合物半導体層で埋め込んだ構造
を持つ半導体レーザにおいて、両端面におのおの光反射
率の異なる端面保護膜を有することを特徴とする半導体
レーザ。
In the vicinity of at least one end face, the refractive index waveguide width and the current injection width are approximately the same, creating a refractive index waveguide structure, and in the other regions, the refractive index waveguide width is sufficiently wider than the current injection width to create a gain waveguide structure.III - A semiconductor laser having a structure in which a rib-shaped optical waveguide made of a group V compound semiconductor layer is embedded with a group II-VI compound semiconductor layer, characterized by having end face protection films having different light reflectances on both end faces. semiconductor laser.
JP14580190A 1990-06-04 1990-06-04 Semiconductor laser Pending JPH0438888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14580190A JPH0438888A (en) 1990-06-04 1990-06-04 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14580190A JPH0438888A (en) 1990-06-04 1990-06-04 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0438888A true JPH0438888A (en) 1992-02-10

Family

ID=15393469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14580190A Pending JPH0438888A (en) 1990-06-04 1990-06-04 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0438888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7093876B2 (en) 2004-06-29 2006-08-22 Honda Motor Co., Ltd. Tailgate lift-assist assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7093876B2 (en) 2004-06-29 2006-08-22 Honda Motor Co., Ltd. Tailgate lift-assist assembly

Similar Documents

Publication Publication Date Title
US7026182B2 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
US6252894B1 (en) Semiconductor laser using gallium nitride series compound semiconductor
US8548019B2 (en) GaN laser element
US5974068A (en) Semiconductor laser and a method for producing the same
JPH0491484A (en) Manufacture of semiconductor laser device
US5776792A (en) Method for forming semiconductor laser device
JPH0945993A (en) Semiconductor light-emitting element
EP0302732B1 (en) A semiconductor laser device
JPH0438888A (en) Semiconductor laser
JP2702871B2 (en) Semiconductor laser and method of manufacturing the same
US4879725A (en) Semiconductor laser device having extended facet life
JPH07240560A (en) Semiconductor laser
JP2842465B2 (en) Semiconductor laser device and method of manufacturing the same
JPH10209553A (en) Semiconductor laser element
JP3063684B2 (en) Semiconductor laser and manufacturing method thereof
JPH03120887A (en) Semiconductor laser
JP3119301B2 (en) High power semiconductor laser
JPH10154843A (en) Semiconductor laser element and optical disc unit employing the same
JP2002237661A (en) Nitride semiconductor laser device
JPH08316566A (en) Semiconductor laser device
JP3075512B2 (en) Semiconductor laser device
JP2863340B2 (en) Semiconductor laser device
JP3761130B2 (en) Surface emitting laser device
JPH01100988A (en) Semiconductor laser device
JPH05343791A (en) Laser diode element