JPH0438586A - Device and method for recognizing character - Google Patents

Device and method for recognizing character

Info

Publication number
JPH0438586A
JPH0438586A JP2145902A JP14590290A JPH0438586A JP H0438586 A JPH0438586 A JP H0438586A JP 2145902 A JP2145902 A JP 2145902A JP 14590290 A JP14590290 A JP 14590290A JP H0438586 A JPH0438586 A JP H0438586A
Authority
JP
Japan
Prior art keywords
feature
character pattern
probability
pattern
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2145902A
Other languages
Japanese (ja)
Inventor
Akihiko Mori
森 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2145902A priority Critical patent/JPH0438586A/en
Publication of JPH0438586A publication Critical patent/JPH0438586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Character Discrimination (AREA)

Abstract

PURPOSE:To prevent errorneous reading owing to the ambiguity of a discriminating feature by weighting the feature element of an input character pattern and comprehensively judging with the whole feature element. CONSTITUTION:A feature element extracting means 4 extracts a feature element from the image data of an input character pattern read by a character pattern reading device and next, a probability value converting means 5 converts feature existing into a maximum probability value and feature not existing into a minimum probability value based on the discriminating feature found by the feature element extracting means 4. A means 8 to calculate difference of every feature element calculates the absolute value of the difference of the probability value of every feature element of the input character pattern and the probability value of the corresponding feature element in a pattern dictionary (dictionary B). Then, a valid distance calculating means 10 calculates valid distance by taking a sum and so on at every respective registered character pattern for the absolute value of the difference of the feature element found on the feature element of the respective registered character patterns.

Description

【発明の詳細な説明】 〔概要〕 手書き文字等の入力文字パターンを辞書の登録文字パタ
ーンと比較することにより文字認識を行う文字認識装置
および文字認識方法に関し、判定特徴の曖昧さによる誤
読の少ない文字認識装置および文字認識方法を得ること
を目的とし、入力文字パターンの読み取り装置と、読み
取った入力文字パターンより特徴要素を抽出する特徴要
素抽出手段と、登録文字パターン毎に、全特徴要素につ
いて出現頻度に基づく確率値を登録したパターン辞書と
、抽出された特徴要素を上記出現確率の最大値に、抽出
しなかった特徴要素を同じ出現確率の最小値に変換する
確率値変換手段と入力文字パターンと登録文字パターン
の全特徴要素について、対応する特徴要素毎に確率値の
差の絶対値をとる特徴要素の差蒐出手段と、差算出手段
の算出値の和を登録文字パターン毎に賞出する有効距離
算出手段と、求めた有効距離の小さい方を高い順位とし
て認識候補を出力する認識候補出力手段を備えた構成を
持つ。
[Detailed Description of the Invention] [Summary] A character recognition device and a character recognition method that perform character recognition by comparing input character patterns such as handwritten characters with character patterns registered in a dictionary, which reduce misreading due to ambiguity of determination features. The purpose of the invention is to obtain a character recognition device and a character recognition method, including a device for reading an input character pattern, a feature extraction means for extracting feature elements from the read input character pattern, and a feature element extracting means for extracting feature elements from the read input character pattern, and a method for detecting the appearance of all feature elements for each registered character pattern. A pattern dictionary in which probability values based on frequencies are registered, a probability value conversion means for converting extracted feature elements into the maximum value of the above-mentioned appearance probability and non-extracted feature elements into the minimum value of the same appearance probability, and an input character pattern. and a feature element difference finding means that takes the absolute value of the difference in probability values for each corresponding feature element for all the feature elements of the registered character pattern, and a prize for each registered character pattern. and a recognition candidate output means that outputs recognition candidates by assigning a higher rank to the one with the smaller calculated effective distance.

〔産業上の利用分野〕[Industrial application field]

本発明は、手書き文字等の入力文字パターンを辞書の登
録文字パターンと比較することにより文字認識を行う文
字認識装置および文字認識方法に関する。
The present invention relates to a character recognition device and a character recognition method that perform character recognition by comparing input character patterns such as handwritten characters with registered character patterns in a dictionary.

従来、文字認識装置における人力文字パターンの認識は
、その特徴要素を抽出し、抽出した特徴要素を辞書の登
録文字パターンの特徴要素と比較し、特徴要素同士が全
て一致する登録文字パターンを持つ登録文字を答えとし
て、認識結果を出力していた。
Conventionally, human character pattern recognition in a character recognition device involves extracting its characteristic elements, comparing the extracted characteristic elements with the characteristic elements of registered character patterns in a dictionary, and selecting registered character patterns with registered character patterns whose characteristic elements all match. It outputs the recognition results using characters as answers.

そのため、従来の文字認識装置においては、入力文字パ
ターンの特徴要素を特徴ありと特徴なしのいずれにも判
定できるような曖昧なデータがあると、誤読の原因にな
ることがあった。
Therefore, in conventional character recognition devices, if there is ambiguous data that allows the characterizing elements of an input character pattern to be determined to be either characteristic or non-featured, this may cause misreading.

本発明は、特徴要素全体で総合的に判断することにより
特徴判定に曖昧さを持つ特徴要素番こよる影響をなくし
、信鎖性の高い文字認識装置を提供するものである。
The present invention provides a character recognition device with high reliability by eliminating the influence of ambiguous feature element numbers on feature determination by making comprehensive judgments on all feature elements.

〔従来の技術〕[Conventional technology]

第5図により、従来の文字認識方法を説明する。 A conventional character recognition method will be explained with reference to FIG.

図(a)は、従来の判定方法を示す。Figure (a) shows a conventional determination method.

図(alにおいて、5Iは入力文字パターンより特徴要
素(図においては特徴と記す)を10個抽出した場合の
判定特徴の例を示し、特徴有りを1、特徴無をOとした
もの、52は抽出した特徴要素におけるパターン辞書(
辞書A)の例を示す。
In the figure (al), 5I shows an example of the determination feature when 10 feature elements (denoted as features in the figure) are extracted from the input character pattern, with 1 indicating the presence of a feature and O indicating no feature. Pattern dictionary (
An example of dictionary A) is shown.

パターン辞書Aにおいて、特徴あり、特徴なしの判定は
、例えば、「アJという字のデータを多数集め、各特徴
の出現頻度が50%以上なら1.50%未満なら0とし
て作成したものである。
In pattern dictionary A, the determination of whether a feature exists or not is determined by, for example, collecting a large amount of data for the letter AJ, and if the appearance frequency of each feature is 50% or more, it is set to 0 if it is less than 1.50%. .

従来は、入力文字パターンの判定特徴、即ち、特徴l、
2.5.7.8を1とし、他は0とした判定特徴と同し
判定特徴を持つ登録文字パターンをパターン辞書(辞書
A)52を参照し、完全に一致するもの、図示の例にお
いては、登録文字パターン(イ)を答えとして、認識結
果を出力していた。
Conventionally, the determination features of the input character pattern, that is, the features l,
2.5.7.8 is set to 1, and the others are set to 0.Reference is made to the pattern dictionary (dictionary A) 52 for registered character patterns that have the same judgment features as the judgment features, and those that completely match are selected in the illustrated example. outputs the recognition result using the registered character pattern (a) as the answer.

図(b)は、従来の文字認識における判定方法のフロー
を示す。
Figure (b) shows the flow of a determination method in conventional character recognition.

図示の番号に従って、フローを説明する。The flow will be explained according to the illustrated numbers.

■ 入力文字パターンをイメージデータとして入力する
■ Input the input character pattern as image data.

■ 特徴要素(N)を抽出し、判定特徴を求める。■ Extract the feature elements (N) and find the determination features.

図(a)においてはN=10である。In figure (a), N=10.

■ N個の判定特徴について、辞書Aの各登録文字パタ
ーンの判定特徴と照合する。
(2) Compare the N determination features with the determination features of each registered character pattern in dictionary A.

■ 対応する特徴要素同士が全て一致する完全一致であ
れば、■において辞書Aと一致した登録文字パターンの
文字を答えとして、認識結果を出力する。
(2) If there is a complete match in which all the corresponding feature elements match, then in (2), the recognition result is output using the characters of the registered character pattern that matched with the dictionary A as the answer.

完全一致でなければ、辞書Aの次の登録文字パターンに
ついて判定特徴を抽出する。
If there is not a complete match, the determination feature for the next registered character pattern in dictionary A is extracted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の文字認識方法は、上記のように、入力文字パター
ンの判定特徴と登録文字パターンの判定特徴が特徴要素
毎に全て一致する完全一致の場合に、その一致した文字
を認識結果として出力していた。
As mentioned above, in conventional character recognition methods, when the judgment features of the input character pattern and the judgment features of the registered character pattern match completely for each feature element, the matched character is output as a recognition result. Ta.

そのため、従来の文字認識装置の認識精度は、入力文字
パターンより特徴抽出する際に求める判定特徴の信親性
に依存し、判定特徴に曖昧さがあると誤読することがあ
った。
Therefore, the recognition accuracy of conventional character recognition devices depends on the authenticity of the determination feature obtained when extracting features from the input character pattern, and if there is ambiguity in the determination feature, it may be misread.

本発明は、判定特徴の曖昧さによる誤読を生しることの
ない文字認識装置を得ることを目的とする。
An object of the present invention is to obtain a character recognition device that does not cause misreading due to ambiguity of determination features.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、入力文字パターンの特徴要素に重み付けをし
、特徴要素全体で総合判断することにより特徴の曖昧な
要素により生じる誤読を防ぐようにした。
The present invention prevents misreading caused by ambiguous features by weighting the feature elements of an input character pattern and making a comprehensive judgment using all the feature elements.

また、特徴要素全体の総合判断の結果、認識結果として
判定するためのデータ間の相違が小さい場合には、最初
に得られた複数の認識候補について、複数要素のうち判
定特徴として有効度の高いもののみを選択し、その複数
要素に基づいて総合判断することにより、認識の信転性
を向上するようにした。
In addition, as a result of comprehensive judgment of all feature elements, if the difference between the data for judgment as a recognition result is small, among the plurality of recognition candidates obtained first, among the plurality of elements, the one with the highest degree of effectiveness as a judgment feature The reliability of recognition is improved by selecting only things and making comprehensive judgments based on multiple factors.

本発明の、基本構成を第1図により説明する。The basic configuration of the present invention will be explained with reference to FIG.

図において、1は入力文字パターン、2はイメージスキ
ャナ等の文字パターン読み取り装置、3は入力文字パタ
ーンのイメージデータ、4は特徴要素を抽出し、抽出し
た特徴要素について、特徴ありはl、特徴なしは0とす
る特徴要素抽出手段、5は特徴要素抽出手段4で求めた
特徴ありの要素については最大確率値に、特徴なしの要
素については最小確率値に変換する確率値変換手段であ
って、例えば最大確率値を100、最小確率値をOとす
るもの、6は確率値変換手段5で求めた特徴要素毎の確
率値、7は各登録文字パターンにおける特徴要素につい
て、それぞれの特徴の出現頻度に基づいて確率値として
求めたパターン辞書で、例えば、「アjを答えとするパ
ターンのデータを集めた結果、特徴1の出現頻度は90
%、特徴2は5%等であったので、その出現頻度を確率
値として登録したもの、8は入力文字パターンの特徴要
素の確率値とパターン辞書における登録文字パターンの
対応する特徴要素の確率値の差の絶対値を、各特徴要素
毎に各登録文字パターンと比較して求める特徴要素毎の
差算出手段、9は各登録文字パターン毎に各特徴要素に
ついて求めた特徴要素毎の差のデータ、10は、特徴要
素毎の差のデータから、各登録文字パターン毎に入力文
字パターンの有効距離を求める有効距離算出手段であっ
て、例えば、特徴要素についての差のデータから、各登
録文字パターン毎に各特徴要素の和を求めるもの、11
は有効路8に山手段の冨出値から、値の小さいものから
順に高い順位で認識候補として出力する認識候補出力手
段である。
In the figure, 1 is an input character pattern, 2 is a character pattern reading device such as an image scanner, 3 is image data of the input character pattern, and 4 is a characteristic element extracted. is set to 0, and 5 is a probability value converter that converts the elements with features obtained by the feature extractor 4 into maximum probability values, and the elements without features into minimum probability values, For example, the maximum probability value is 100 and the minimum probability value is O, 6 is the probability value for each feature element obtained by the probability value conversion means 5, and 7 is the appearance frequency of each feature for the feature element in each registered character pattern. For example, in a pattern dictionary obtained as a probability value based on
%, Feature 2 was 5%, etc., so its appearance frequency was registered as a probability value. 8 is the probability value of the feature element of the input character pattern and the probability value of the corresponding feature element of the registered character pattern in the pattern dictionary. Difference calculation means for each feature element that calculates the absolute value of the difference for each feature element by comparing it with each registered character pattern, 9 is data of the difference for each feature element calculated for each feature element for each registered character pattern , 10 is an effective distance calculation means for calculating an effective distance of an input character pattern for each registered character pattern from difference data for each feature element, for example, from difference data for each feature element, for each registered character pattern. 11, which calculates the sum of each characteristic element for each
is a recognition candidate output means that outputs recognition candidates to the effective path 8 in ascending order of the peak value, starting from the highest value.

〔作用〕[Effect]

第2図により本発明の基本構成の作用を説明する。必要
により、第1図を参照する。
The operation of the basic configuration of the present invention will be explained with reference to FIG. Refer to FIG. 1 if necessary.

図(a)は、特徴要素の確率値変換の例を示す。Figure (a) shows an example of probability value conversion of feature elements.

図は、入力文字パターンより、10種類の特徴要素を抽
出し、特徴要素1.2.5.7.8については特徴あり
とし、特徴要素3.4.6.9、10については特徴な
しと判定した場合を示す。
The figure shows that 10 types of feature elements are extracted from the input character pattern, and feature elements 1.2.5.7.8 are considered to have features, and feature elements 3.4.6.9 and 10 are considered to have no features. Indicates the case of determination.

そして、確率値変換手段(5)は、各特徴要素を特徴あ
りは最大確率値100、特徴なしは最小確率値0に変換
し、重み付けをしたことを示す。
Then, the probability value conversion means (5) converts each feature element into a maximum probability value of 100 for a characteristic element and a minimum probability value of 0 for a characteristic element, indicating that weighting has been performed.

図(ロ)において、20は本発明のパターン辞書(辞書
B)の例を示す。
In the figure (b), 20 indicates an example of the pattern dictionary (dictionary B) of the present invention.

パターン辞書(辞書B)20は、各登録文字パターンに
おける特徴要素について、それぞれの特徴の出現頻度に
基づいて確率値として求めたパターン辞書で、例えば、
図においては、「ア」を答えとするパターンのデータを
集めた結果、特徴1の出現頻度は90%、特f12は5
%等であったので、その出現頻度を確率値として登録し
たものである。
The pattern dictionary (dictionary B) 20 is a pattern dictionary in which probability values are obtained for feature elements in each registered character pattern based on the frequency of appearance of each feature, for example,
In the figure, as a result of collecting data on patterns in which the answer is "a", the frequency of appearance of feature 1 is 90%, and the frequency of feature f12 is 5.
%, etc., so the frequency of appearance is registered as a probability value.

文字パターン読み取り装置により読み取られた入力文字
パターンのイメージデータより、特徴要素抽出手段(4
)は、特徴要素を抽出し、例えば、図(a)に示すよう
に、10の特徴要素について特徴有りは1、特徴なしは
0として、判定特徴を作成する。
From the image data of the input character pattern read by the character pattern reading device, the feature element extraction means (4
) extracts feature elements, and creates determination features for the 10 feature elements, setting 1 if the feature exists and 0 if the feature does not exist for the 10 feature elements, for example, as shown in Figure (a).

次に、確率値変換手段(5)は、特徴要素抽出手段(4
)の求めた判定特徴に基づいて、特徴ありは最大確率値
、特徴なしは最小確率値に変換する。
Next, the probability value conversion means (5) converts the characteristic element extraction means (4) into a probability value conversion means (5).
), the presence of features is converted to the maximum probability value, and the absence of features is converted to the minimum probability value.

図(樽における変換された値は、特徴要素の出現頻度を
%によりあられした場合で、最大確率値は100、最小
確率値は0として重み付けした。
Figure (The converted value in the barrel is the case where the appearance frequency of the feature element is expressed in %, and the maximum probability value is 100 and the minimum probability value is weighted as 0.

特徴要素毎の差算出手段(8)は、入力文字パターンの
特徴要素毎の確率値とパターン辞書(辞書B)における
対応する特徴要素の確率値の差の絶対値を算出する。そ
して、有効距離算出手段(10)は、それぞれの登録文
字パターンの特徴要素について求めた特徴要素の差の絶
対値を各登録文字パターン毎に、和を取る等により有効
距離を算出する。
The difference calculating means (8) for each feature element calculates the absolute value of the difference between the probability value for each feature element of the input character pattern and the probability value of the corresponding feature element in the pattern dictionary (dictionary B). Then, the effective distance calculating means (10) calculates the effective distance by, for example, summing the absolute values of the differences between the characteristic elements determined for the characteristic elements of each registered character pattern, for each registered character pattern.

例えば、登録文字パターン「ア」と比較する場合には、
有効距離はl 100−90 l+l 100−51+
l0−801+l0−101+l 100−75   
+   0−60   +  100−100   +
100−0  +  0−20  +  0−85  
=485を求める。
For example, when comparing with the registered character pattern "a",
Effective distance is l 100-90 l+l 100-51+
l0-801+l0-101+l 100-75
+ 0-60 + 100-100 +
100-0 + 0-20 + 0-85
Find =485.

この有効距離を全ての登録文字「イ」、「つ」・・・に
ついて算出し、各登録文字パターンについて算出する。
This effective distance is calculated for all registered characters "i", "tsu", etc., and is calculated for each registered character pattern.

そして、認識候補出力手段(11)は、その有効距離の
値の小さい方から順に高い順位として、認識候補を出力
する。
Then, the recognition candidate output means (11) outputs recognition candidates in ascending order of the effective distance value.

本発明によれば、入力文字パターンの特徴要素に重み付
けをし、特徴要素全体で総合判断するようにしたので特
徴の曖昧な要素による誤読を生じることがない。
According to the present invention, since the characteristic elements of the input character pattern are weighted and comprehensive judgment is made using all the characteristic elements, misreading due to ambiguous characteristic elements does not occur.

〔実施例〕〔Example〕

第3図、第4図により本発明の詳細な説明する。 The present invention will be explained in detail with reference to FIGS. 3 and 4.

第3図は本発明の装置!構成の実施例を示す。Figure 3 shows the device of the present invention! An example of the configuration is shown.

図において、31はマイクロプロセッサ、32は特徴要
素を抽出し、重み付けをする特徴抽出部、33は入カバ
ターンを特徴要素によりパターン辞書と照合し、有効距
離を計算して文字認識を行う辞書照合認識処理部、34
は有効距離の計算結果により求めた各認識候補間におい
て、有効距離の違いが少ないため認識結果として確定で
きない場合に有効な特ffi!素のみを抽出し、抽出し
た特徴要素により再度有効距離を計算する特徴要素を抽
出するための特徴選択部、35は有効距離を計算するた
めの有効距離計軍部、36は入力文字パターンを読み取
るイメージスキャナ、37はイメージスキャナの読み取
ったイメージデータを格納するイメージデータ格納用メ
モリ、38は登録文字パターンを格納する辞書用メモリ
、39はプログラム処理等に用いる共用メモリである。
In the figure, 31 is a microprocessor, 32 is a feature extraction unit that extracts feature elements and weights them, and 33 is a dictionary matching recognition unit that matches an input cover pattern with a pattern dictionary using feature elements, calculates an effective distance, and performs character recognition. Processing section, 34
ffi! is an effective feature when the recognition result cannot be determined because there is little difference in the effective distance between the recognition candidates obtained from the effective distance calculation results. A feature selection section for extracting feature elements that extracts only the elements and calculates the effective distance again using the extracted feature elements; 35 is an effective distance meter unit for calculating the effective distance; 36 is an image of reading the input character pattern 37 is an image data storage memory for storing image data read by the image scanner; 38 is a dictionary memory for storing registered character patterns; and 39 is a shared memory used for program processing and the like.

第4図は第3図の装置構成実施例のフローを示す。FIG. 4 shows a flowchart of an embodiment of the apparatus configuration shown in FIG.

図示の番号の順にフローを説明する。The flow will be explained in the order of the numbers shown.

■ イメージスキャナにより入カバターンを読み取って
、イメージデータを入力する。
■ Read the input cover pattern with an image scanner and input the image data.

■ 特徴要素を抽出する(抽出する特徴数をNとする)
■ Extract feature elements (number of features to be extracted is N)
.

■ N個の特徴要素について登録文字パターン悟に特徴
要素の確率値を登録した辞書Bを参照し、各登録文字パ
ターンとの有効距離を計算する。
(2) Calculate the effective distance from each registered character pattern by referring to Dictionary B in which probability values of the registered character patterns are registered for the N characteristic elements.

■ 有効距離により求めた認識候補に曖昧さはないか判
定する。
■ Determine whether there is any ambiguity in the recognition candidates obtained based on the effective distance.

■ 認識候補間での有効距離が小さく、曖昧さがある場
合の処理で、■で求めたN個の特徴から、認識候補間で
の特徴要素の確率値の差の小さい特徴要素および確率値
が50近傍の特徴の曖昧な特徴要素を除いた、判定に有
効な特徴要素M個を選択する。
■ In processing when the effective distance between recognition candidates is small and there is ambiguity, from the N features obtained in ■, feature elements and probability values with small differences in probability values of feature elements between recognition candidates are M feature elements effective for determination are selected, excluding ambiguous feature elements around 50 features.

■ 選択したM個の有効な特徴要素を用いて辞書Bの各
登録文字パターンとの有効距離を計算する。
(2) Calculate the effective distance to each registered character pattern in dictionary B using the M selected valid feature elements.

■ 有効距離の最も近い登録文字パターンを答えとして
認識結果を出力する。
■ Outputs the recognition result using the registered character pattern with the closest effective distance as the answer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、抽出した特徴要素全体について登録文
字パターンと比較し、総合判断により文字認識を行うよ
うにしているので、特徴が曖昧なために生じる誤読を軽
減でき、認識精度が著しく向上する。
According to the present invention, the entire extracted feature elements are compared with registered character patterns and character recognition is performed based on a comprehensive judgment, which reduces misreading caused by ambiguous features and significantly improves recognition accuracy. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の基本構成を示す図である。 第2図は、本発明の作用説明図である。 第3図は、本発明の装置構成の実施例を示す図である。 第4図は、本発明の装置構成の実施例のフローを示す図
である。 第5図は、従来の文字認識方法を示す図である。 第1図において。 1 :入力文字パターン、 2 :文字パターン読み取り装置、 3 ;イメージデータ、 4 :特徴要素抽出手段、 5  :fi率値変換手段、 6 :特徴要素毎の確率値、 7 :パターン辞書、 8 :特徴要素毎の差算出手段、 9 :特徴要素毎の差のデータ、 10:有効路II賞出手段、 11:認識候補出力手段。
FIG. 1 is a diagram showing the basic configuration of the present invention. FIG. 2 is an explanatory diagram of the operation of the present invention. FIG. 3 is a diagram showing an embodiment of the device configuration of the present invention. FIG. 4 is a diagram showing the flow of an embodiment of the device configuration of the present invention. FIG. 5 is a diagram showing a conventional character recognition method. In FIG. 1: input character pattern, 2: character pattern reading device, 3: image data, 4: feature element extraction means, 5: fi rate value conversion means, 6: probability value for each feature element, 7: pattern dictionary, 8: feature Difference calculation means for each element; 9: Difference data for each feature element; 10: Effective path II award output means; 11: Recognition candidate output means.

Claims (3)

【特許請求の範囲】[Claims] (1)入力文字パターン(1)の読み取り装置(2)と
、 読み取った入力文字パターンより特徴要素を抽出する特
徴要素抽出手段(4)と、 登録文字パターン毎に、全特徴要素について出現頻度に
基づく確率値を登録したパターン辞書(7)と、 抽出された特徴要素を上記出現確率の最大値に、抽出し
なかった特徴要素を同じ出現確率の最小値に変換する確
率値変換手段(5)と、 入力文字パターンと登録文字パターンの全特徴要素につ
いて、対応する特徴要素毎に確率値の差の絶対値をとる
特徴要素の差算出手段(8)と、差算出手段(8)の算
出値の和を登録文字パターン毎に算出する有効距離算出
手段(10)と、 求めた有効距離の小さい方を高い順位として認識候補を
出力する認識候補出力手段(11)を備えたことを特徴
とする文字認識装置。
(1) A reading device (2) for the input character pattern (1), a feature element extraction means (4) for extracting feature elements from the read input character pattern, and a feature element extracting means (4) for extracting feature elements from the read input character pattern; a pattern dictionary (7) in which probability values based on the probability values are registered; and a probability value conversion means (5) that converts the extracted feature elements to the maximum value of the above-mentioned appearance probability and the feature elements that are not extracted to the minimum value of the same appearance probability. and feature element difference calculation means (8) that calculates the absolute value of the difference in probability values for each corresponding feature element for all the feature elements of the input character pattern and the registered character pattern, and the calculated value of the difference calculation means (8). effective distance calculation means (10) for calculating the sum of the sum for each registered character pattern, and recognition candidate output means (11) for outputting recognition candidates with the smaller calculated effective distance as a higher rank. Character recognition device.
(2)入力文字パターンと登録文字パターンを特徴要素
について比較することにより文字認識を行う方法におい
て、 登録文字パターンについて、特徴要素毎に出現頻度に基
づく確率値を登録したパターン辞書を備え、 入力文字パターンより特徴要素を抽出し、抽出した特徴
要素を上記出現頻度確率の最大値に、抽出しなかった特
徴要素を同し出現頻度確率の最小値に変換し、 上記入力文字パターンの特徴要素の確率値と辞書パター
ンにおける登録文字パターンの特徴要素の確率値の差を
特徴要素毎にとり、その差の絶対値の和を文字パターン
毎に求め、求めた和の値の小さい方を高い順位の認識候
補として出力することを特徴とする文字認識方法。
(2) In a method of character recognition by comparing an input character pattern and a registered character pattern with respect to characteristic elements, a pattern dictionary is provided in which probability values are registered based on the frequency of appearance for each characteristic element for the registered character pattern, and the input character Extract feature elements from the pattern, convert the extracted feature elements into the maximum value of the above-mentioned appearance frequency probability, convert the unextracted feature elements into the minimum value of the same appearance frequency probability, and calculate the probability of the feature elements of the input character pattern above. The difference between the value and the probability value of the feature element of the registered character pattern in the dictionary pattern is taken for each feature element, the sum of the absolute values of the differences is found for each character pattern, and the one with the smaller sum value is selected as a recognition candidate with a higher rank. A character recognition method characterized by outputting .
(3)請求項2に記載の文字認識方法において、求めた
複数の認識候補間での和の算出値の差が小さい場合には
、各認識候補間での特徴要素の確率値の差の小さい特徴
要素、および最大確率を100、最小確率を0とした場
合における確率値が50近傍の特徴の曖昧な特徴要素を
除いて、入力文字パターンの特徴要素と対応する登録文
字パターンの特徴要素について確率の差をとり、各登録
文字パターン毎にその差の絶対値の和を求め、求めた和
の小さい方を高い順位として複数、もしくは和の最小の
ものを1つ、認識候補として出力することを特徴とする
文字認識方法。
(3) In the character recognition method according to claim 2, if the difference in the calculated value of the sum among the plurality of recognition candidates is small, the difference in the probability value of the feature element between each recognition candidate is small. Probabilities are calculated for the feature elements of the registered character pattern that correspond to the feature elements of the input character pattern, excluding feature elements and ambiguous feature elements of features whose probability value is around 50 when the maximum probability is 100 and the minimum probability is 0. , calculate the sum of the absolute values of the differences for each registered character pattern, and output multiple recognition candidates with the smaller sum as the higher rank, or the one with the smallest sum as a recognition candidate. Characteristic character recognition method.
JP2145902A 1990-06-04 1990-06-04 Device and method for recognizing character Pending JPH0438586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2145902A JPH0438586A (en) 1990-06-04 1990-06-04 Device and method for recognizing character

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2145902A JPH0438586A (en) 1990-06-04 1990-06-04 Device and method for recognizing character

Publications (1)

Publication Number Publication Date
JPH0438586A true JPH0438586A (en) 1992-02-07

Family

ID=15395701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2145902A Pending JPH0438586A (en) 1990-06-04 1990-06-04 Device and method for recognizing character

Country Status (1)

Country Link
JP (1) JPH0438586A (en)

Similar Documents

Publication Publication Date Title
EP0085545B1 (en) Pattern recognition apparatus and method for making same
JP2815045B2 (en) Image feature extraction device, image feature analysis device, and image matching system
EP0355748A2 (en) A pattern recognition apparatus and method for doing the same
JPH01183793A (en) Character recognizing device
US20020114515A1 (en) Character string recognition apparatus, character string recognizing method, and storage medium therefor
JP2849256B2 (en) Image recognition device
KR20200020107A (en) Method and system for authenticating stroke-based handwritten signature using machine learning
KR100397916B1 (en) Fingerprint registration and authentication method
JPH0438586A (en) Device and method for recognizing character
JP3799057B2 (en) Fingerprint verification device
Saleh et al. Fingerprint recognition
US7697773B1 (en) System, method and computer program product for image compression/decompression
JP2000306045A (en) Word recognizing device
KR101884874B1 (en) Method and apparatus for distinguishing object based on partial image
Kubanek et al. Users verification based on palm-prints and hand geometry with Hidden Markov Models
Poulos et al. Fingerprint verification based on image processing segmentation using an onion algorithm of computational geometry
JPH09330408A (en) Fingerprint collating device
US20090185724A1 (en) Method for automatically recognizing fingerprints
CN109145884B (en) Method, device, terminal and computer-readable storage medium for searching target person
JP3360030B2 (en) Character recognition device, character recognition method, and recording medium recording character recognition method in program form
JP3666909B2 (en) Character recognition apparatus and method
JPH03269780A (en) Fingerprint data binarizing method
KR20020031724A (en) The Method and Apparatus of Iris Pattern Processing for Feature Extraction and Recognition
JP2851865B2 (en) Character recognition device
JP2788529B2 (en) Dictionary registration method for fingerprint matching device