JPH0438332B2 - - Google Patents

Info

Publication number
JPH0438332B2
JPH0438332B2 JP11293587A JP11293587A JPH0438332B2 JP H0438332 B2 JPH0438332 B2 JP H0438332B2 JP 11293587 A JP11293587 A JP 11293587A JP 11293587 A JP11293587 A JP 11293587A JP H0438332 B2 JPH0438332 B2 JP H0438332B2
Authority
JP
Japan
Prior art keywords
pulse
liquid crystal
selection signal
pixel
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11293587A
Other languages
Japanese (ja)
Other versions
JPS63278032A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62112935A priority Critical patent/JPS63278032A/en
Priority to DE3815399A priority patent/DE3815399A1/en
Priority to FR888806122A priority patent/FR2615008B1/en
Priority to GB8810838A priority patent/GB2206228B/en
Priority to KR1019880005310A priority patent/KR920007168B1/en
Priority to US07/192,589 priority patent/US4834510A/en
Publication of JPS63278032A publication Critical patent/JPS63278032A/en
Priority to KR1019920006923A priority patent/KR920007128B1/en
Publication of JPH0438332B2 publication Critical patent/JPH0438332B2/ja
Priority to HK828/93A priority patent/HK82893A/en
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はマトリクス型液晶光学装置の駆動方法
に間するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for driving a matrix type liquid crystal optical device.

[従来の技術] 最近、TN型液晶に変わつて強誘電液晶が注目
されてきており、これを利用した光学装置の開発
が進められている。
[Prior Art] Recently, ferroelectric liquid crystals have been attracting attention instead of TN liquid crystals, and optical devices using them are being developed.

強誘電液相の光学モードとしては、複屈折型光
学モードおよびゲストホスト型光学モードがあ
る。これらを駆動する場合、従来のTN型液晶と
異なり、電界の印加方向によつて光学応答状態
(明暗)を制御するため、TN型液晶で用いられ
ていた軌動方法が利用できず、特殊な駆動方法を
必要とするものである。
The optical modes of the ferroelectric liquid phase include a birefringent optical mode and a guest-host optical mode. When driving these, unlike conventional TN-type liquid crystals, the optical response state (brightness and darkness) is controlled by the direction of electric field application, so the orbital method used in TN-type liquid crystals cannot be used, and special This requires a driving method.

さらに、液晶の寿命を考えると、直流成分が画
素に長時間印加されることは好ましくなく、その
点も考慮した駆動方法が必要になつてくる。
Furthermore, considering the lifespan of the liquid crystal, it is not preferable that a DC component be applied to the pixels for a long period of time, and a driving method that takes this point into consideration is required.

この直流成分を長時間画素に印加させない駆動
方法の1つとしては、「SID′85 Digest」(1985年)
(P.131〜P.134)の駆動方法がある。さらに特開
昭60−176097号には、交流スタビライズ効果を有
する強誘電液晶を用いて、光学応答状態の双安定
性を駆動電気信号で実現できる駆動方法も開示さ
れている。
One of the driving methods that does not apply this DC component to pixels for a long time is "SID'85 Digest" (1985).
There are driving methods (P.131-P.134). Further, JP-A-60-176097 discloses a driving method that uses a ferroelectric liquid crystal having an AC stabilizing effect to realize bistability of the optical response state with a driving electric signal.

[発明が解決しようとする問題点] しかしいずれの駆動方法においても、安定した
中間調が得られず、後者の駆動方法のように画素
に直流成分が長時間印加されるような駆動方法に
おいては、駆動用の透明電極が還元されて黒ずん
でしまつたり、液晶の劣化を引き起こすという問
題もあつた。
[Problems to be Solved by the Invention] However, in either driving method, stable halftones cannot be obtained, and in driving methods such as the latter driving method in which a DC component is applied to the pixels for a long time, There were also problems in that the transparent drive electrodes were reduced and turned dark, and the liquid crystals deteriorated.

本発明は、長時間駆動しても透明電極が黒ずん
だり、液相が劣化したりすることがなく、しかも
書換え時間を短縮することのできるマトリクス型
液晶光学装置の駆動方法を提供することを目的と
している。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for driving a matrix-type liquid crystal optical device, which does not darken the transparent electrode or deteriorate the liquid phase even when driven for a long time, and can shorten the rewriting time. It is said that

[問題点を解決するための手段] 本発明は、交流スタビライズ効果を有する液晶
によつて複素の画素を形成し、画素にまず初期化
パルスを印加して光学的に初期化した後、高周波
成分を含む書込みパルスを印加して所望の光学応
答状態とし、それ以降は交流スタビライズ効果を
呈する周波数の第2のパルス群を印加して光学応
答状態を保持するものであつて、階調に応じて書
込みパルスの高周波成分の振幅を調整することに
より、中間調を含む所望の光学応答状態を得るよ
うにして、上記目的を達成している。
[Means for Solving the Problems] The present invention forms complex pixels using a liquid crystal having an AC stabilizing effect, first applies an initialization pulse to the pixels to optically initialize the pixels, and then applies a high-frequency component to the pixels. A writing pulse containing the AC stabilizing effect is applied to obtain a desired optical response state, and thereafter a second pulse group having a frequency exhibiting an AC stabilizing effect is applied to maintain the optical response state, and the optical response state is maintained according to the gradation. The above objective is achieved by adjusting the amplitude of the high frequency component of the write pulse to obtain desired optical response conditions including halftones.

[実施例] 第1図において、走査電極L1〜L2と対向する
制御電極R1〜R5間には交流スタビライズ効果を
有する強誘電液晶を介在させて、各電極の交点に
おいて複数の画素を形成している。選択回路SE
からは走査電極L1〜L7を順次、時分割的に選択
する選択信号S1(第2図)が発生し、この選択信
号の非供給時には非選択信号NS1が発生する。選
択信号S1は電圧±Vからなり、非選択信号NS1
電圧±Hからなる。
[Example] In FIG. 1, a ferroelectric liquid crystal having an AC stabilizing effect is interposed between the control electrodes R 1 to R 5 facing the scanning electrodes L 1 to L 2 , and a plurality of pixels are formed at the intersection of each electrode. is formed. Selection circuit SE
A selection signal S 1 (FIG. 2) for sequentially and time-divisionally selecting scanning electrodes L 1 to L 7 is generated, and when this selection signal is not supplied, a non-selection signal NS 1 is generated. The selection signal S 1 consists of a voltage ±V, and the non-selection signal NS 1 consists of a voltage ±H.

一方、駆動制御回路からは第2図の電圧0と所
望中間調に応じた電圧±hからなる制御信号C1
がデータ信号として制御電極R1〜R5に供給され
る。制御信号C1は液晶が交流スタビライズ効果
を呈する高周波成分を含んでいる。
On the other hand, the drive control circuit outputs a control signal C 1 consisting of the voltage 0 shown in FIG. 2 and the voltage ±h corresponding to the desired halftone.
is supplied to control electrodes R 1 to R 5 as data signals. The control signal C1 includes a high frequency component that causes the liquid crystal to exhibit an AC stabilizing effect.

以上の信号の供給によつて、画素には第3図示
のようにまず第1のパルス群P1が印加される。
パルス群P1ではまず電圧−Vの初期化パルスが
印加されて、一旦飽和逆応答状態に初期化された
後、直流電圧Vに±hの高周波交流パルスを重畳
した書込みパルスが印加されて、高周波交流パル
ス高に応じた中間調が実現される。すなわちパル
ス高hが0の場合は直流電圧Vにより飽和応答状
態となり、hが大きくなるにつれて交流スタビラ
イズ効果により不飽和応答状態(中間調)が得ら
れるのである。
By supplying the above signals, the first pulse group P1 is first applied to the pixel as shown in the third diagram.
In the pulse group P1 , an initialization pulse of voltage -V is first applied to initialize the state to a saturated reverse response state, and then a write pulse in which a high-frequency AC pulse of ±h is superimposed on the DC voltage V is applied. Halftones are realized according to the height of the high-frequency alternating current pulse. That is, when the pulse height h is 0, a saturated response state occurs due to the DC voltage V, and as h increases, an unsaturated response state (half tone) is obtained due to the AC stabilization effect.

上記パルス群P1印加後は非選択信号NS1によつ
て第2のパルス群である高周波交流パルスP2
印加され、中間調が保持されるのである。
After applying the pulse group P1 , a second pulse group, high-frequency alternating current pulse P2 , is applied in response to the non-selection signal NS1 , and the halftone is maintained.

ここで第1のパルス群P1においては、初期化
パルスの平均電圧値は書込みパルスの平均電圧値
と絶対値が等しくて極性が異るものであり、第2
のパルス群P2は、交流スタビライズ効果を呈す
る周波数を有し、かつ正極性のパルスとこれと波
形が対称な負極性のパルスとが交互に生じるもの
であるため、透明電極の黒変、液晶の劣化等を起
すことがなくなるのである。
Here, in the first pulse group P1 , the average voltage value of the initialization pulse is equal in absolute value to the average voltage value of the write pulse, but has a different polarity.
The pulse group P2 has a frequency that exhibits an AC stabilizing effect, and pulses of positive polarity and pulses of negative polarity whose waveforms are symmetrical are generated alternately, so that blackening of the transparent electrode and liquid crystal This eliminates the possibility of deterioration, etc.

また、書込みパルスの印加の前に一旦飽和逆応
答状態に初期化することで安定した中間調が実現
できる。すなわち中間調を出すために不飽和応答
パルスのみを印加した場合、前応答状態の影響を
受けて同じ不飽和応答パルスでも異なつた中間調
となり、安定した中間調は得られないのである。
In addition, stable halftones can be achieved by initializing to a saturated inverse response state before applying a write pulse. In other words, if only an unsaturated response pulse is applied to produce a halftone, the same unsaturated response pulse will produce different halftones due to the influence of the previous response state, making it impossible to obtain a stable halftone.

なお、初期化パルスのパルス幅とパルス高Vは
強誘電液相の自発分極の大きさやセル厚との関係
で飽和逆応答状態、飽和応答状態が得られるよう
に適宜決定される。また高周波交流パルスのパル
ス幅は初期化パルス幅の1/4以下が好ましく、パ
ルス高Hは強誘電液晶の誘電異方性の大きさとの
関係で応答状態が安定に保持されうよう適宜決定
される。
Note that the pulse width and pulse height V of the initialization pulse are appropriately determined in relation to the magnitude of spontaneous polarization of the ferroelectric liquid phase and the cell thickness so as to obtain a saturated reverse response state and a saturated response state. Furthermore, the pulse width of the high-frequency AC pulse is preferably 1/4 or less of the initialization pulse width, and the pulse height H is appropriately determined in relation to the magnitude of dielectric anisotropy of the ferroelectric liquid crystal so that the response state can be maintained stably. Ru.

つぎに選択信号を供給する前のタイミングにお
いて、画素を初期化する信号を供給する例につい
て述べる。第4図において、電圧−V±Hからな
る選択信号S2を第1図の走査電極L1〜L7に順次
供給するものであるが、その前のタイミングにお
いて電圧V±Hからなる初期化信号RSを供給す
るものである。非選択時には電圧±Hからなる非
選択信号NS2を供給しておく。
Next, an example will be described in which a signal for initializing a pixel is supplied at a timing before a selection signal is supplied. In FIG. 4, the selection signal S 2 consisting of voltage -V±H is sequentially supplied to the scanning electrodes L 1 to L 7 of FIG. It supplies the signal RS. At the time of non-selection, a non-selection signal NS 2 consisting of voltage ±H is supplied.

一方制御電極R1〜R5には所望中間調に応じた
電圧±hからなる制御信号C2をデータ信号とし
て供給する。この制御信号C2は、液晶が交流ス
タビライズ効果を呈する高周波成分を含んでい
る。
On the other hand, a control signal C2 consisting of a voltage ±h corresponding to a desired halftone is supplied as a data signal to the control electrodes R1 to R5 . This control signal C2 includes a high frequency component that causes the liquid crystal to exhibit an AC stabilizing effect.

これにより画素には、第5図に示すように、ま
ず初期化パルスP3を印加する。パルスP3は直流
電圧−Vに高周波交流パルス±(h−H)を重畳
したパルスで、このパルスP3の印加により飽和
逆応答状態に初期化した後、書込みパルスP4
印加して中間調を書き込み、その後は第2のパル
ス群である高周波パルスP5を印加して中間調を
保持するのである。
As a result, as shown in FIG. 5, an initialization pulse P3 is first applied to the pixel. Pulse P 3 is a pulse obtained by superimposing a high frequency AC pulse ±(h-H) on a DC voltage -V. After initializing to a saturated reverse response state by applying this pulse P 3 , applying a write pulse P 4 to return to an intermediate state. After writing the tone, the second pulse group, high-frequency pulse P5 , is applied to maintain the intermediate tone.

この例によれば初期化信号を用いるため、一走
査電極における画素の書込み時につぎの走査電極
における画素の初期化を行つておくことができ、
各信号の供給時間が上記の例の1/2となるため、
同一時間内に走査できる桁数を2倍にできる。言
い換えると、同じ走査桁数であれば、1画面の書
換え速度を2倍にできる。
According to this example, since the initialization signal is used, pixels in the next scan electrode can be initialized when writing pixels in one scan electrode,
Since the supply time of each signal is 1/2 of the above example,
The number of digits that can be scanned in the same amount of time can be doubled. In other words, if the number of scanning digits is the same, the rewriting speed for one screen can be doubled.

なお、上記の説明は+側の電圧によつて応答、
−側の電圧によつて逆応答すると呼称したが、応
答および逆応答は表裏一体のものであるので、逆
に+側の電圧で逆応答、−側の電圧で応答すると
呼称してもよい。
Note that the above explanation responds depending on the voltage on the + side.
Although it has been referred to as a reverse response due to a voltage on the − side, since the response and reverse response are two sides of the same coin, it may also be referred to as a reverse response due to a voltage on the + side and a response due to a voltage on the − side.

また中間調を実現するパルスとして、電圧±h
の変調に限らず±hの印加幅(デユーティ)変調
により中間調を出してもよい。
In addition, the voltage ±h is used as a pulse to realize halftones.
The intermediate tone may be produced not only by the modulation of , but also by modulation of the application width (duty) of ±h.

ところで各電極に供給する信号および信号の印
加方法は上記に限るものではなく種々の変更が可
能である。
By the way, the signals supplied to each electrode and the method of applying the signals are not limited to those described above, and various changes can be made.

[発明の効果] 本発明によれば、書込みパルスの高周波成分の
振幅を制御することにより中間調が実現可能で、
その中間調を書き込む書込みパルスの前に画素を
一旦初期化することによつて安定した中間調を実
現できる。また画素に印加される初期化パルスの
平均電圧値が書込みパルスの平均電圧値と絶対値
が等しくて極性が逆であり、第2のパルス群で
は、正極性のパルスと対称波形の負極性のパルス
とが交互に生じるため、長時間駆動しても透明電
極が黒ずんだり液晶が劣化したりすることがな
い。さらに、初期化信号の導入により、一走査電
極における画素の書込み時につぎの走査電極にお
ける画素を初期化しておくことがき、画素の光学
応答状態の書換えに必要な時間を短縮でき、同一
時間内に走査できる桁数を増大することができ
る。
[Effects of the Invention] According to the present invention, halftones can be realized by controlling the amplitude of the high frequency component of the write pulse.
A stable halftone can be achieved by once initializing the pixel before the write pulse for writing the halftone. In addition, the average voltage value of the initialization pulse applied to the pixel is equal in absolute value to the average voltage value of the write pulse, but the polarity is opposite, and in the second pulse group, the positive polarity pulse and the negative polarity pulse of the symmetrical waveform Since the pulses occur alternately, the transparent electrode does not darken or the liquid crystal deteriorates even after long-term driving. Furthermore, by introducing an initialization signal, it is possible to initialize the pixels in the next scan electrode when writing to the pixels in one scan electrode, which shortens the time required to rewrite the optical response state of the pixel. The number of digits that can be scanned can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマトリクス型液晶光学装置の一例を示
した説明図、第2図、第4図は本発明を実現する
ための電圧波形を示した図、第3図、第5図は画
素に印加されるパルス例を示した波形図である。 L1〜L7……走査電極、R1〜R5……制御電極、
S1,S2……選択信号、NS1,NS2……非選択信
号、C1,C2……データ信号、RS……初期化信号、
P1……第1のパルス群、P2……第2のパルス群、
P3……初期化パルス、P4……書込みパルス、P5
……第2のパルス群。
Figure 1 is an explanatory diagram showing an example of a matrix type liquid crystal optical device, Figures 2 and 4 are diagrams showing voltage waveforms for realizing the present invention, and Figures 3 and 5 are diagrams showing voltage waveforms applied to pixels. FIG. L1 to L7 ...scanning electrodes, R1 to R5 ...control electrodes,
S 1 , S 2 ... selection signal, NS 1 , NS 2 ... non-selection signal, C 1 , C 2 ... data signal, RS ... initialization signal,
P 1 ... first pulse group, P 2 ... second pulse group,
P 3 ...Initialization pulse, P 4 ...Write pulse, P 5
...Second pulse group.

Claims (1)

【特許請求の範囲】 1 電界の印加方法によつて分子の配向状態を異
にし交流スタビライズ効果を有する液晶を複数の
走査電極と複数の制御電極間に介在させ、各電極
の交点において画素を形成してなるマトリクス型
液晶光学装置の駆動方法において、 各走査電極には、選択信号を順次供給し、選択
信号の非供給時には非選択信号を供給し、 各制御電極には、液晶が交流スタビライズ効果
を呈する周波数に対応した高周波成分を含むデー
タ信号を、選択信号の供給に同期して供給し、 選択信号とデータ信号との電位差によつて、画
素に第1のパルス群を印加して所望の光学応答状
態とし、 非選択信号とデータ信号との電位差によつて、
画素に第2のパルス群を印加して画素の光学応答
状態を交流スタビライズ効果によつて保持するも
のであつて、 第1のパルス群は、画素を光透過状態または光
遮断状態にする初期化パルスとこれに続いて画素
を所望の光学応答状態に変化させる書込みパルス
とからなり、この書込みパルスは高周波成分を含
み、かつその平均電圧値は初期化パルスの平均電
圧値と絶対値が等しくて極性が異なるものであ
り、 第2のパルス群は、交流スタビライズ効果を呈
する周波数を有し、かつ正極性のパルスとこれと
波形が対称な負極性のパルスとが交互に生じるも
のであり、 階調に応じて、データ信号の高周波成分の振幅
を変更することにより、書込みパルスの高周波成
分の振幅を調整し、中間調を含む所望の光学応答
状態を得る ことを特徴とするマトリクス型液晶光学装置の駆
動方法。 2 上記液晶が、上記交流パルスの周波数域で負
の誘電異方性を示す強誘電液晶である特許請求の
範囲第1項記載のマトリクス型液晶光学装置の駆
動方法。 3 電界の印加方向によつて分子の配向状態を異
にし交流スタビライズ効果を有する液晶を複数の
走査電極と複数の制御電極間に介在させ、各電極
の交点において画素を形成してなるマトリクス型
液晶光学装置の駆動方法において、 各走査電極には、初期化信号とこれに続く選択
信号を順次供給し、初期化信号および選択信号の
非供給時には非選択信号を供給し、 各制御電極には、液晶が交流スタビライズ効果
を呈する周波数に対応した高周波成分を含むデー
タ信号を、選択信号の供給に同期して供給し、 初期化信号とデータ信号との電位差によつて、
初期化パルスを画素に印加して光学的に初期化
し、 選択信号とデータ信号との電位差によつて、初
期化パルスと等しいパルス幅の書込みパルスを画
素に印加して所望の光学応答状態とし、 非選択信号とデータ信号との電位差によつて、
画素に交流パルスを印加して画素の光学応答状態
を交流スタビライズ効果によつて保持するもので
あつて、 初期化パルスは、画素を光透過状態または光遮
断状態にするものであり、 書込みパルスは所望の光学応答状態に変化させ
るパルスであり、高周波成分を含み、かつその平
均電圧値は初期化パルスの平均電圧値と絶対値が
等しくて極性が異なるものであり、 交流パルスは、交流スタビライズ効果を呈する
周波数を有し、かつ正極性のパルスとこれと波形
が対称な負極性のパルスとが交互に生じるもので
あり、 階調に応じて、データ信号の高周波成分の振幅
を変更することにより、書込みパルスの高周波成
分の振幅を調整し、中間調を含む所望の光学応答
状態を得る ことを特徴とするマトリクス型液晶光学装置の駆
動方法。 4 上記液晶が、上記交流パルスの周波数域で負
の誘電異方性を示す強誘電液晶である特許請求の
範囲第3項記載のマトリクス型液晶光学装置の駆
動方法。
[Claims] 1. A liquid crystal that has an alternating current stabilizing effect by varying the orientation of molecules depending on the method of applying an electric field is interposed between a plurality of scanning electrodes and a plurality of control electrodes, and pixels are formed at the intersections of each electrode. In the driving method of a matrix type liquid crystal optical device, a selection signal is sequentially supplied to each scanning electrode, a non-selection signal is supplied when the selection signal is not supplied, and the liquid crystal has an AC stabilizing effect on each control electrode. A data signal containing a high-frequency component corresponding to a frequency exhibiting is supplied in synchronization with the supply of the selection signal, and a first group of pulses is applied to the pixel based on the potential difference between the selection signal and the data signal to obtain the desired signal. In the optical response state, due to the potential difference between the non-selection signal and the data signal,
A second pulse group is applied to the pixel to maintain the optical response state of the pixel by an AC stabilization effect, and the first pulse group initializes the pixel to a light transmitting state or a light blocking state. pulse followed by a write pulse that changes the pixel to a desired optical response state, the write pulse containing a high frequency component and whose average voltage value is equal in absolute value to the average voltage value of the initialization pulse. The second pulse group has a frequency that exhibits an AC stabilizing effect, and pulses of positive polarity and pulses of negative polarity whose waveforms are symmetrical are generated alternately. A matrix type liquid crystal optical device characterized in that the amplitude of the high frequency component of the write pulse is adjusted by changing the amplitude of the high frequency component of the data signal according to the tone, thereby obtaining a desired optical response state including halftones. driving method. 2. The method of driving a matrix type liquid crystal optical device according to claim 1, wherein the liquid crystal is a ferroelectric liquid crystal exhibiting negative dielectric anisotropy in the frequency range of the alternating current pulse. 3. A matrix type liquid crystal in which a liquid crystal that has an alternating current stabilizing effect by varying the orientation of molecules depending on the direction of electric field application is interposed between a plurality of scanning electrodes and a plurality of control electrodes, and pixels are formed at the intersections of each electrode. In a method for driving an optical device, an initialization signal and a subsequent selection signal are sequentially supplied to each scanning electrode, a non-selection signal is supplied when the initialization signal and the selection signal are not supplied, and each control electrode is supplied with a non-selection signal. A data signal containing a high frequency component corresponding to the frequency at which the liquid crystal exhibits an AC stabilizing effect is supplied in synchronization with the supply of the selection signal, and due to the potential difference between the initialization signal and the data signal,
applying an initialization pulse to the pixel to optically initialize it; applying a write pulse with a pulse width equal to the initialization pulse to the pixel to achieve a desired optical response state, depending on the potential difference between the selection signal and the data signal; Due to the potential difference between the non-selection signal and the data signal,
An AC pulse is applied to the pixel to maintain the optical response state of the pixel by an AC stabilization effect, and the initialization pulse puts the pixel into a light transmitting state or a light blocking state, and the writing pulse is It is a pulse that changes to a desired optical response state, contains a high frequency component, and its average voltage value is equal in absolute value to the average voltage value of the initialization pulse, but has a different polarity.The AC pulse has an AC stabilizing effect. It has a frequency exhibiting , and pulses of positive polarity and pulses of negative polarity whose waveforms are symmetrical are generated alternately, and by changing the amplitude of the high frequency component of the data signal according to the gradation. A method for driving a matrix type liquid crystal optical device, which comprises adjusting the amplitude of a high frequency component of a write pulse to obtain a desired optical response state including halftones. 4. The method of driving a matrix type liquid crystal optical device according to claim 3, wherein the liquid crystal is a ferroelectric liquid crystal exhibiting negative dielectric anisotropy in the frequency range of the alternating current pulse.
JP62112935A 1987-05-08 1987-05-08 Halftone driving method for liquid crystal display device Granted JPS63278032A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62112935A JPS63278032A (en) 1987-05-08 1987-05-08 Halftone driving method for liquid crystal display device
DE3815399A DE3815399A1 (en) 1987-05-08 1988-05-05 METHOD FOR CONTROLLING AN OPTICAL LIQUID CRYSTAL DEVICE
FR888806122A FR2615008B1 (en) 1987-05-08 1988-05-06 METHOD OF ATTACKING A FERROELECTRIC LIQUID CRYSTAL DEVICE
GB8810838A GB2206228B (en) 1987-05-08 1988-05-06 Method of driving an electro-optical apparatus.
KR1019880005310A KR920007168B1 (en) 1987-05-08 1988-05-07 Method for driving a liquid crystal optical apparatus
US07/192,589 US4834510A (en) 1987-05-08 1988-05-09 Method for driving a ferroelectric liquid crystal optical apparatus using superposed DC and AC driving pulses to attain intermediate tones
KR1019920006923A KR920007128B1 (en) 1987-05-08 1992-04-24 Method for driving a liquid crystal optical apparatus
HK828/93A HK82893A (en) 1987-05-08 1993-08-12 Method of driving an electro-optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62112935A JPS63278032A (en) 1987-05-08 1987-05-08 Halftone driving method for liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS63278032A JPS63278032A (en) 1988-11-15
JPH0438332B2 true JPH0438332B2 (en) 1992-06-24

Family

ID=14599175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112935A Granted JPS63278032A (en) 1987-05-08 1987-05-08 Halftone driving method for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS63278032A (en)

Also Published As

Publication number Publication date
JPS63278032A (en) 1988-11-15

Similar Documents

Publication Publication Date Title
JP3489169B2 (en) Driving method of liquid crystal display device
US5691740A (en) Liquid crystal apparatus and driving method
KR920007168B1 (en) Method for driving a liquid crystal optical apparatus
JPH10282472A (en) Driving method of ferroelectric liquid crystal element and driving circuit therefor
JP3638288B2 (en) Liquid crystal display
JPS61230197A (en) Driving of electrooptic display unit
JPH0442655B2 (en)
JPH0438331B2 (en)
JPH0438332B2 (en)
JPH0437412B2 (en)
JPH0438333B2 (en)
KR920007169B1 (en) Method for driving a liquid crystal apparatus
JPH0437411B2 (en)
JPH0437410B2 (en)
KR920007128B1 (en) Method for driving a liquid crystal optical apparatus
JP3525895B2 (en) Driving method of liquid crystal display device
JP2628157B2 (en) Ferroelectric liquid crystal electro-optical device
JPH0437409B2 (en)
JP2580427B2 (en) Driving method of matrix type liquid crystal optical device
KR920007127B1 (en) Method for driving a liquid crystal optical apparatus
JPS63281135A (en) Method for driving liquid crystal display device
JPH06103429B2 (en) Driving method of matrix type liquid crystal optical device
JPH0279816A (en) Method for driving matrix type ferromagnetic liquid crystal panel
JPH0648333B2 (en) Driving method of liquid crystal matrix display panel
JPH0437408B2 (en)