JPH0438135A - Electric rotating machine - Google Patents

Electric rotating machine

Info

Publication number
JPH0438135A
JPH0438135A JP14190090A JP14190090A JPH0438135A JP H0438135 A JPH0438135 A JP H0438135A JP 14190090 A JP14190090 A JP 14190090A JP 14190090 A JP14190090 A JP 14190090A JP H0438135 A JPH0438135 A JP H0438135A
Authority
JP
Japan
Prior art keywords
winding
phase
slot
windings
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14190090A
Other languages
Japanese (ja)
Inventor
Yutaka Yoshino
裕 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14190090A priority Critical patent/JPH0438135A/en
Publication of JPH0438135A publication Critical patent/JPH0438135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

PURPOSE:To suppress maximum differential voltage to be generated in one winding and to facilitate automatic insertion of winding into a slot by a method wherein the winding is split into a plurality of winding sections which are then connected electrically in series and arranged while being spaced by a predetermined distance. CONSTITUTION:Maximum differential voltage V to be generated in one winding can be expressed by V=V. But since one winding is split, in this case, into upper and lower windings insulated from each other through a separator 12 and an insulating paper 13 and they do not cross each other, maximum differential voltages V0 and V1 in the lower and upper windings may be considered individually. Since the upper and lower windings have number of turns equal to half that of each phase winding, V0= V= V/2 is satisfied and the maximum differential voltage to be generated in one winding can be halved as compared with conventional case. Furthermore, the process for inserting each winding into a slot 2 comprises only six steps and thereby it can be automated easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は9巻線の装着が容易な信頼性の高い回転電機
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly reliable rotating electric machine in which nine windings can be easily installed.

[従来の技術] 第5図〜第7図は従来の回転電機の一例を示すもので、
スロット数=24.相数−3.極数=4結線並列線−4
,ピッチ=5を有する誘導電動機における電機子巻線を
示す図である。
[Prior Art] Figures 5 to 7 show an example of a conventional rotating electrical machine.
Number of slots = 24. Phase number -3. Number of poles = 4 connected parallel wires - 4
, a diagram showing an armature winding in an induction motor having pitch=5.

第5図は、誘導電動機の回転軸に垂直な断面でのスロッ
トおよびU相巻線の部分断面図である。
FIG. 5 is a partial cross-sectional view of the slot and the U-phase winding in a cross section perpendicular to the rotation axis of the induction motor.

図において、(1)は電機子鉄心、 (201)は電機
子鉄心(1)に設けられた24個のスロットのうちの1
つのスロット(3)はU相巻線、 (3a)はU相巻線
(3)のうちスロット(201)から外に出ているスロ
ット外U相巻線、(8)はU相巻線(3)と電機子鉄心
(1)間に配設されたスロットセル、(9)はスロット
(201)の開り部よりU相巻線(3)がはみ出すのを
防止するウェッジ、 (36)はスロット外U相巻線(
3a)を構成する被覆導線の一部が交差した交差点であ
る。なお、第5図はU相巻線(3)について図示してい
るが、他のV相巻線、W相巻線についても同様である。
In the figure, (1) is the armature core, and (201) is one of the 24 slots provided in the armature core (1).
slot (3) is the U-phase winding, (3a) is the outside U-phase winding of the U-phase winding (3) protruding from the slot (201), and (8) is the U-phase winding ( 3) and the armature core (1), (9) is a wedge that prevents the U-phase winding (3) from protruding from the opening of the slot (201), and (36) is a U-phase winding outside the slot (
This is the intersection where some of the covered conductors forming part 3a) intersect. Although FIG. 5 shows the U-phase winding (3), the same applies to the other V-phase windings and W-phase windings.

第6図は電機子鉄心(1)か白″する24@のスロット
にU相巻線(3)、V相巻線(4) 、 W相巻線(5
)のそれぞれか配設された状態を示す電機子巻線の展開
図であり9図において、 (201)〜(224)は1
番目のスロットル24番Vのスロットを示している。
Figure 6 shows the armature core (1), the U-phase winding (3), the V-phase winding (4), and the W-phase winding (5) in the white 24@ slots.
) is a developed view of the armature winding showing the state in which each of the above is arranged.
The slot of the 24th throttle V is shown.

なお、第6図に示されるように、各巻線は、U相巻線(
3)はスロット(201)〜(224)の下層に、■相
巻線(4)はスロット(201,)〜(224)の中層
に、W相巻線(5)はスロット(201)〜(224)
の上層に配されている。
In addition, as shown in FIG. 6, each winding is a U-phase winding (
3) is placed in the lower layer of slots (201) to (224), ■ phase winding (4) is placed in the middle layer of slots (201,) to (224), and W phase winding (5) is placed in the middle layer of slots (201,) to (224). 224)
It is placed on the upper layer of.

第7図は電機子巻線の展開接続図であり9図において(
7)は各相が有する4極分の巻線をすべて並列に接続す
る並列接続部、 (U)、 (V)、 (1)、 (X
)。
Figure 7 is an expanded connection diagram of the armature winding, and in Figure 9 (
7) is a parallel connection part in which all four pole windings of each phase are connected in parallel, (U), (V), (1), (X
).

(Y)、 (Z)は各巻線を三相交流電源に接続するた
めの端子である。
(Y) and (Z) are terminals for connecting each winding to a three-phase AC power source.

第8図は三相交流電源に誘導電動機をΔ結線で接続した
ときの端子間接続を示す接続図であり図において(40
)は三相交流電源を示している。
Figure 8 is a connection diagram showing the connection between terminals when an induction motor is connected to a three-phase AC power supply using a delta connection.
) indicates a three-phase AC power supply.

第9図、第10図は従来の回転電機の電機子巻線の他の
例を示すものとして、特開昭63−161831公報に
示された回転電機の電機子巻線を示す図である。第9図
は第5図に対応する図、第10図は第6図に対応する図
であり、第9図、第10図において(300a)、 (
300b)、 (300c)は7それぞれ分割されたU
相巻線のうちの1つ、 (400a)は分割された■相
巻線の1つであり、 (300) 、 (400) 、
 (500)はそれぞれ1対のU相巻線、■相巻線、W
相巻線であることを示している。
FIGS. 9 and 10 are diagrams showing an armature winding of a rotating electric machine disclosed in Japanese Patent Application Laid-Open No. 63-161831 as another example of a conventional armature winding of a rotating electric machine. 9 is a diagram corresponding to FIG. 5, and FIG. 10 is a diagram corresponding to FIG. 6. In FIGS. 9 and 10, (300a),
300b) and (300c) are each divided into 7 U
One of the phase windings (400a) is one of the divided phase windings, (300), (400),
(500) is a pair of U phase winding, ■ phase winding, W
This shows that it is a phase winding.

次に、従来装置の詳細について説明する。第7図に示さ
れるように電機子巻線が接続されている誘導電動機をΔ
結線で運転する場合、第8図に示すように、端子(U)
と端子(Z)を三相交流電源(40)の端子(R)に、
端子(v)と端子(X)を三相交流電源(40)の端子
(S)に、端子(W)と端子(Z)を三相交流電源(4
0)の端子(T)に接続する。このとき。
Next, details of the conventional device will be explained. An induction motor with an armature winding connected as shown in Fig. 7 is
When operating with wire connection, as shown in Figure 8, connect the terminal (U)
and the terminal (Z) to the terminal (R) of the three-phase AC power supply (40),
Connect the terminals (V) and (X) to the terminal (S) of the three-phase AC power supply (40), and connect the terminals (W) and terminal (Z) to the three-phase AC power supply (40).
0) terminal (T). At this time.

U相巻線(3)、V相巻線(4) 、 W相巻線(5)
の各巻線には120°位相の異る電流が流れ9回転磁界
が発生し、この回転磁界により可動子(図示せず)に回
転力を与えられることになる。
U phase winding (3), V phase winding (4), W phase winding (5)
Currents having a phase difference of 120° flow through each winding, generating a nine-rotation magnetic field, and this rotating magnetic field imparts a rotational force to a movable element (not shown).

さて、一般に1つの巻線内における最大電圧差(ΔV)
は次式で与えられる。
Now, generally the maximum voltage difference (ΔV) within one winding
is given by the following equation.

ここに、■=電源電圧、P−極数、PH=相数M−結線
並列数、N、=電機子スロット数、N=1スロット中の
巻線数である。
Here, ■ = power supply voltage, P - number of poles, PH = number of phases M - number of parallel connections, N = number of armature slots, N = number of windings in one slot.

第5図〜第7図に示される従来例においてはP=4.P
H=3.M=4.N、=24.N=1なので。
In the conventional example shown in FIGS. 5 to 7, P=4. P
H=3. M=4. N,=24. Because N=1.

X24X1 となり、1つの巻線内で電源電圧と同じ値の最大電位差
が発生する。
X24X1, and a maximum potential difference of the same value as the power supply voltage occurs within one winding.

また、他の従来例として第9図、第10図に示される電
機子の場合は。
Further, as another conventional example, in the case of the armature shown in FIGS. 9 and 10.

となり、1つの巻線内で発生しうる最大電位差は第5図
〜第7図に示される従来例に比へ1/2になる。
Therefore, the maximum potential difference that can occur within one winding becomes 1/2 compared to the conventional example shown in FIGS. 5 to 7.

次に、各巻線を電機子のスロット(2)内に挿入する場
合の工程について説明する。
Next, the process of inserting each winding into the slot (2) of the armature will be described.

第5図〜第7図に示される電機子の場合は1201〜2
06.207〜212.213〜218.219〜22
4のスロットにU相巻線(3)を挿入。
1201 to 2 for the armature shown in Figures 5 to 7
06.207~212.213~218.219~22
Insert the U-phase winding (3) into slot 4.

2203〜208.209〜214.215〜220.
221〜202のスロットに■相巻線(4)を挿入。
2203-208.209-214.215-220.
Insert the phase winding (4) into slots 221-202.

3205〜210.211〜216.217〜222.
223〜204のスロットにW相巻線(5)を挿入。
3205-210.211-216.217-222.
Insert the W-phase winding (5) into slots 223-204.

の3工程によりすべての巻線の挿入が行なわれる。All the windings are inserted through the following three steps.

一方、第9図、第10図に示された従来の電機子の場合
は。
On the other hand, in the case of the conventional armature shown in FIGS. 9 and 10.

1.2旧スロツトにU相下口巻線を挿入。1.2 Insert the U-phase lower winding into the old slot.

2202スロツトに■相下口巻線を挿入。Insert the phase lower opening winding into the 2202 slot.

3203スロツトにV相下口巻線を挿入。Insert the V-phase lower winding into the 3203 slot.

4、 204スロツトにW相下口巻線を挿入。4. Insert the W-phase lower winding into the 204 slot.

5205スロントにW相下口巻線を挿入。Insert the W-phase lower winding into the 5205 front.

6206スロツトにU相下口巻線を挿入すると共に2旧
スロツトにU相上口巻線を挿入。
Insert the U-phase lower winding into the 6206 slot, and insert the U-phase upper winding into the 2 old slot.

7、 207スロツトにU相下口巻線を挿入すると共に
202スロツトにU相上口巻線を挿入。
7. Insert the U-phase lower winding into the 207 slot, and insert the U-phase upper winding into the 202 slot.

のように、スロット毎に順次巻線が挿入されるものであ
り9巻線挿入の自動化が困難なものであった。
As shown in the figure, the windings are sequentially inserted into each slot, making it difficult to automate the insertion of nine windings.

回転電機の電機子巻線は、従来第9図、第10図に示さ
れるような2層巻が行われていたものも。
The armature windings of rotating electrical machines have conventionally been wound in two layers as shown in Figures 9 and 10.

近年、生産性の向上の目的から、スロットへの巻線の自
動装着の容易性、コイル相互間の接続個所数等の点で有
利な単層巻が行われるようになって来ている。
In recent years, for the purpose of improving productivity, single-layer winding has been used, which is advantageous in terms of ease of automatic installation of windings into slots, number of connections between coils, and the like.

狭いスロット内に多回巻の巻線を挿入する巻線において
は、一般の変圧器等における場合に比べ同−巻線内での
隣接する導体間で大きな電位差を生じる可能性が高い。
In a winding in which multiple turns of winding are inserted into a narrow slot, there is a high possibility that a large potential difference will occur between adjacent conductors within the same winding, compared to the case in a general transformer.

この対策として、絶縁性のよい被覆膜が設けられた巻線
用導線を用いることが考えられるが、この方法では巻線
が高価なものとなる。
As a countermeasure to this problem, it is conceivable to use a winding wire provided with a coating film having good insulation properties, but this method makes the winding wire expensive.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の回転電機は以上のように構成されているので、第
5図〜第7図に示される構成では、1つの巻線内で発生
しうる最大電圧差が大きくなる問題かあり、一方、第9
図、第10図に示される構成によれば1巻線の挿入の自
動化か困難であるという問題かあった。
Since conventional rotating electric machines are configured as described above, the configuration shown in FIGS. 5 to 7 has the problem of increasing the maximum voltage difference that can occur within one winding. 9
According to the configuration shown in FIGS. 1 and 10, there was a problem in that it was difficult to automate the insertion of one winding.

この発明は上記のような課題を解決するためになされた
もので、1つの巻線内で発生しうる最大電圧差か小さく
、かつ9巻線のスロット内への挿入において自動化が容
易な回転電機を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a rotating electric machine in which the maximum voltage difference that can occur within one winding is small, and the insertion of nine windings into slots is easy to automate. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る回転電機は、鉄心に設けられた複数のス
ロットの所定の1対にまたがり巻線か装着された回転電
機において、上記巻線を複数に分割し1分割した各巻線
を互に電気的に直列に接続するきともに所定間隔離隔し
て配設するようにしたものである。
A rotating electrical machine according to the present invention is a rotating electrical machine in which a winding is installed across a predetermined pair of a plurality of slots provided in an iron core, the winding is divided into a plurality of parts, and each of the divided windings is electrically connected to each other. They are connected in series and are spaced apart from each other by a predetermined distance.

〔作用〕[Effect]

この発明における回転電機は、鉄心に設けられた複数の
スロットの所定の1対にまたがり装着される巻線を複数
に分割し9分割された各巻線を電気的に直列に接続する
とともに互に所定間隔離隔して同一スロットに配設する
ことにより1巻線のスロットへの装着か容易になり1巻
線を構成する接近した導線間にかかる電圧か低くなる。
In the rotating electric machine of the present invention, a winding installed across a predetermined pair of a plurality of slots provided in an iron core is divided into a plurality of parts, and each of the nine divided windings is electrically connected in series and mutually arranged in a predetermined manner. By arranging them in the same slot at intervals, it becomes easier to attach one winding to the slot, and the voltage applied between adjacent conductors constituting one winding becomes lower.

〔発明の実施例] 以下、この発明の一実施例を図について説明する。第1
図〜第3図はこの発明による回転電機の一例として、ス
ロット数−4,相数=3.極数=4、結線並列線=4.
ピッチ=5の誘導電動機における電機子巻線を示す図で
あり、第1図は誘導電動機の回転軸に垂直な断面による
スロット(201)および、このスロット(201)に
分割されて装着されたU相巻線の部分断面図である。図
において分割されて装着されたU相巻線のうち、 (3
0)はU相巻線の総巻線の1/2(端数は切捨て、もし
くは切上げ)の巻数を有するU組下口巻線、 (31)
は(U相巻線の総巻数−U相下に巻線の巻数)の巻数を
有するU相上口巻線であり、U組下口巻線(30)とU
相上口巻線(31)とは互に直列に接続されている。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. 1st
3 to 3 show an example of a rotating electrical machine according to the present invention, in which the number of slots is -4 and the number of phases is 3. Number of poles = 4, parallel wire connection = 4.
FIG. 1 is a diagram showing an armature winding in an induction motor with a pitch of 5, and FIG. FIG. 3 is a partial cross-sectional view of a phase winding. Of the U-phase windings that are divided and installed in the figure, (3
(31)
is the U-phase upper winding having the number of turns (total number of turns of the U-phase winding - number of turns of the U-phase lower winding), and the U-group lower winding (30) and the U-phase lower winding
They are connected in series with the phase inlet winding (31).

(30a)はU組下口巻線(30)のスロット(2)外
へ配されたスロット外U相下口巻線、 (ala)はU
相上口巻線(31)のスロット(2)外に配されたスロ
ット外U相上口巻線、 (30b)はU組下口巻線(3
0)の交差部、 (12)はU組下口巻線(30)とU
相上口巻線(31)をスロット(2)内で互に絶縁する
絶縁物1例えば、セパレータ、 (13)はスロット外
U相下口巻線(30a)とスロット外U相上L1巻線(
31a’)を互に絶縁すると共に、他相の巻線との間を
絶縁する絶縁物1例えば、絶縁紙、である。
(30a) is the U-phase lower winding outside the slot placed outside the slot (2) of the U-group lower winding (30), (ala) is the U-phase lower winding
The out-of-slot U-phase upper winding placed outside the slot (2) of the phase upper winding (31), (30b) is the U-group lower winding (3
0), (12) is the intersection of U group lower winding (30) and U
An insulator 1 for insulating the phase upper winding (31) from each other in the slot (2), for example, a separator, (13) is the U-phase lower winding (30a) outside the slot and the U-phase upper L1 winding outside the slot. (
The insulator 1, for example, insulating paper, insulates the windings 31a') from each other and from the windings of other phases.

なお、第1図はU相巻線(3)について示したが■相巻
線(4) 、 W相巻線(5)についても同様である。
Although FIG. 1 shows the U-phase winding (3), the same applies to the ■-phase winding (4) and the W-phase winding (5).

第2図は電機子鉄心(1)かhする24個のスロッ) 
(201)〜(224)にU相〜W相の上口巻線および
下1巻線かそれぞれ配された状態を示す電機子巻線の展
開図であり1図において(30)はU組下口巻線、 (
31)はU相上口巻線、 (40)は■組下[1巻線(
41)は■相上口巻線、 (50)はW相下し】巻線、
 (51)はW相上口巻線である。第2図に示されるよ
うにU相下11巻線(30)とU相−E目巻線(31)
か初めにスロット(201)〜(224)に挿入され1
次に■相下III巻線(40)と■相上口巻線(41)
かスロット(201)〜(224)に挿入され、最後に
W組下口巻線(50)とW組上E1巻線(51)が挿入
されている。
Figure 2 shows the armature core (1) or 24 slots.
(201) to (224) are developed views of the armature windings showing the U-phase to W-phase upper windings and lower 1 windings, respectively. Mouth winding, (
31) is the U-phase upper opening winding, (40) is the ■assembly bottom [1 winding (
41) is ■phase upper opening winding, (50) is W phase lowering] winding,
(51) is a W-phase upper winding. As shown in Figure 2, the U-phase lower 11 winding (30) and the U-phase E-th winding (31)
or first inserted into slots (201) to (224) 1
Next, ■ phase lower III winding (40) and ■ phase upper opening winding (41)
The lower end winding (50) of the W set and the upper E1 winding (51) of the W set are inserted finally into the slots (201) to (224).

第3図は電機子巻線の展開接続図であり、各相の巻線か
下口巻線と上口巻線に分かれている他は第7図に示され
る従来例と同じである。
FIG. 3 is a developed connection diagram of the armature winding, which is the same as the conventional example shown in FIG. 7 except that the windings for each phase are divided into a lower winding and an upper winding.

次に、第1図〜第3図に示されるこの発明の一実施例と
しての電機子巻線において、1つの巻線内で発生する最
大電圧差ΔVは、第5図〜第7図に示される従来例にお
いて最大電圧差ΔVを求めた式(1)と同じ式で求めら
れ、Δ■=vとなる。
Next, in the armature winding as an embodiment of the present invention shown in FIGS. 1 to 3, the maximum voltage difference ΔV occurring within one winding is shown in FIGS. 5 to 7. The maximum voltage difference ΔV is determined by the same formula (1) as used in the conventional example, and Δ■=v.

しかし、この場合においては、1つの巻線は下口巻線と
上口巻線に2分され、セパレータ(12)および絶縁紙
(13)により互に絶縁され、互に交差することかない
ので、下口巻線内の最大電圧差(ΔVo)と上口巻線内
の最大電圧差(ΔV+)  について別々に考慮すれば
よい。下口巻線の巻数を上口巻線の巻数は、各相の巻線
の巻数の1/2(もしくは概ね1/2)なので。
However, in this case, one winding is divided into two parts, a lower winding and an upper winding, which are insulated from each other by a separator (12) and an insulating paper (13), and do not cross each other. The maximum voltage difference in the lower winding (ΔVo) and the maximum voltage difference in the upper winding (ΔV+) may be considered separately. The number of turns of the lower winding and the number of turns of the upper winding are 1/2 (or approximately 1/2) of the number of turns of each phase winding.

Δ■ Δ■o=Δ■1= となり、1つの巻線内で発生しうる最大電圧差は第5図
〜第7図に示される従来例における場合の1/2にする
ことかできる。1つの巻線内の最大電圧差を小さくすれ
ば1巻線の絶縁寿命が永くなるとともに巻線の信頼性が
向上する。
Δ■ Δ■o=Δ■1= The maximum voltage difference that can occur within one winding can be reduced to 1/2 of that in the conventional examples shown in FIGS. 5 to 7. By reducing the maximum voltage difference within one winding, the insulation life of one winding becomes longer and the reliability of the winding improves.

また、各巻線をスロット(2)内に挿入する工程は 1201〜206. 207〜212. 213〜21
8. 219〜224のスロットにU相下口巻線(3a
)を挿入。
Further, the steps of inserting each winding into the slot (2) are performed in steps 1201 to 206. 207-212. 213-21
8. U-phase lower winding (3a
) is inserted.

2201〜206.207〜212.213〜218 
219〜224のスロットにU相上口巻線(3b)を挿
入。
2201~206.207~212.213~218
Insert the U-phase upper winding (3b) into slots 219-224.

3.203〜208.209〜214.215〜220
.221〜202のスロットにV相下口巻線(4a)を
挿入。
3.203~208.209~214.215~220
.. Insert the V-phase lower winding (4a) into slots 221-202.

4203〜208.209〜214.215〜220.
221〜202のスロットに■相上口巻線(4b)を挿
入。
4203-208.209-214.215-220.
Insert the phase upper winding (4b) into the slots 221-202.

5205〜210.211〜216.217〜222.
223〜204のスロットにW相下口巻線(5a)を挿
入。
5205-210.211-216.217-222.
Insert the W-phase lower winding (5a) into slots 223-204.

6.205〜210.211〜216.217〜222
.223〜204のスロットにW相上口巻線(5b)を
挿入。
6.205~210.211~216.217~222
.. Insert the W-phase upper winding (5b) into slots 223-204.

の6エ程で行なうことかできるので、自動化が容易であ
る。
It can be easily automated as it can be done in just 6 steps.

第4図は、この発明の他の実施例として、誘導電動機に
おいて電機子鉄心(1)の24個のスロット(201)
〜(224)にU相下口巻線(30)、 U相上口巻線
(31)、 V相下口巻線(40)、■相上口巻線(4
1)W相下口巻線(50)、およびW相上口巻線(51
)のそれぞれか配された状態を示す電機子の展開接続図
である。第2図においては、U相下口巻線(30)とU
相上日巻線(31)を下層に、■相下口巻線(40)と
V相上口巻線(41)を中層に、W相下口巻線(50)
とW相上口巻線(51)を上層にそれぞれまとめて配し
たか、第4図に示されるように、最下層から順にU相下
口巻線(30)、 V相下口巻線(40)、 W相下口
巻線(50)、 U相上口巻線(31)、 V相上口巻
線(41)W組上L1巻線(51)の順に配してもよい
FIG. 4 shows 24 slots (201) of an armature core (1) in an induction motor as another embodiment of the present invention.
~ (224) are the U-phase lower winding (30), the U-phase upper winding (31), the V-phase lower winding (40), and the ■ phase upper winding (4).
1) W-phase lower winding (50) and W-phase upper winding (51)
) is an exploded connection diagram of the armature showing the arrangement of the armatures. In Fig. 2, the U-phase lower winding (30) and the U-phase
The phase upper winding (31) is in the lower layer, the ■ phase lower winding (40) and the V phase upper winding (41) are in the middle layer, and the W phase lower winding (50).
and W-phase upper winding (51) are placed together in the upper layer, or as shown in Fig. 4, the U-phase lower winding (30) and V-phase lower winding (30) are arranged in order from the bottom layer. 40), W-phase lower winding (50), U-phase upper winding (31), V-phase upper winding (41), and W-set upper L1 winding (51).

第1図〜第3図に示されるこの発明の一実施例および、
第4図に示されるこの発明の他の実施例においては、ス
ロット数=24.相数=3.極数−4,結線並列線−4
,ピッチ=5の誘導電動機について説明したか、この発
明はこれに限られず電機子巻線を有する誘導電動機に限
らず鉄心のスロットに装着された巻線を有する回転電機
であればいずれであってもよい。
An embodiment of the present invention shown in FIGS. 1 to 3, and
In another embodiment of the invention shown in FIG. 4, the number of slots=24. Number of phases = 3. Number of poles - 4, connection parallel lines - 4
, pitch = 5, but this invention is not limited to this, but is applicable to any rotating electric machine that has a winding installed in the slot of the iron core, not only an induction motor that has an armature winding. Good too.

また、下口巻線の巻数と上口巻線の巻数の比が11(も
しくは概ね1・1)の場合について説明したか、1・2
.1・3等任意の比に設定してもよい。
Also, did you explain the case where the ratio of the number of turns of the lower winding to the number of turns of the upper winding is 11 (or approximately 1.1)?
.. It may be set to any ratio such as 1 or 3.

さらに、1つの巻線を下口巻線と上口巻線の2つに分割
したが12つ以上の複数に分割してもよい。
Furthermore, although one winding is divided into two, the lower winding and the upper winding, it may be divided into 12 or more.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば9回転型機の鉄心に設
けられた複数のスロットの所定の1対にまたがり装着さ
れる巻線を、複数に分割し、所定間隔離隔に配設するよ
うに構成したので1巻線のスロットへの装着および自動
装着が容易にできまた1巻線を構成する接近した導線間
に高電圧かかからないため信頼性の向上を図れる効果か
ある。
As described above, according to the present invention, the winding to be installed across a predetermined pair of a plurality of slots provided in the iron core of a nine-turn machine is divided into a plurality of parts and arranged at predetermined intervals. Because of this structure, the first winding can be easily installed in the slot and automatically installed, and high voltage is not applied between the conductive wires that are close to each other and make up the first winding, which has the effect of improving reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は、この発明の一実施例による回転電機
とじての誘導電動機の電機子巻線を示す図で、第1図は
U相巻線の部分断面図、第2図は電機子巻線の展開図、
第3図は電機子巻線の展開接続図である。 第4図は、この発明の他の実施例による電機子巻線の展
開図である。 第5図〜第7図は従来の回転電機としての誘導電動機の
電機子巻線を示す図で、第5図はU相巻線の部分断面図
、第6図は電機子巻線の展開図。 第7図は電機子巻線の展開接続図である。 第8図は三相交流電源に回転電機としての誘導電動機を
Δ結線で接続した接続図である。 第9図、第1−0図は従来の他の回転電機としての誘導
電動機の電機子巻線を示す図で、第9図はU相巻線の部
分断面図、第10図は電機子巻線の展開図である。 図中、(1)は電機子鉄心、 (201)〜(224)
はスロッi (12)、 (13)は絶縁物、 (3,
0)、 (31)、 (40)。 (41)、 (50)、 (51)は電機子巻線である
。 なお1図中、同一符号は同一、または相当部分を示す。
1 to 3 are diagrams showing armature windings of an induction motor as a rotating electric machine according to an embodiment of the present invention. FIG. 1 is a partial sectional view of a U-phase winding, and FIG. Developed diagram of armature winding,
FIG. 3 is a developed connection diagram of the armature winding. FIG. 4 is a developed view of an armature winding according to another embodiment of the invention. Figures 5 to 7 are diagrams showing the armature winding of an induction motor as a conventional rotating electrical machine, with Figure 5 being a partial sectional view of the U-phase winding, and Figure 6 being a developed view of the armature winding. . FIG. 7 is a developed connection diagram of the armature winding. FIG. 8 is a connection diagram in which an induction motor as a rotating electric machine is connected to a three-phase AC power source through a Δ connection. Figure 9 and Figures 1-0 are diagrams showing the armature winding of an induction motor as another conventional rotating electric machine. Figure 9 is a partial sectional view of the U-phase winding, and Figure 10 is the armature winding. It is a development diagram of lines. In the figure, (1) is the armature core, (201) to (224)
is the slot i (12), (13) is the insulator, (3,
0), (31), (40). (41), (50), and (51) are armature windings. In Figure 1, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  鉄心に設けられた複数のスロットの所定の1対にまた
がり巻線が装着された回転電機において、上記巻線を複
数に分割し、分割した各巻線は互に電気的に直列に接続
されるとともに所定間隔離隔して配設されたことを特徴
とする回転電機。
In a rotating electric machine in which a winding is installed across a predetermined pair of a plurality of slots provided in an iron core, the winding is divided into a plurality of parts, and each divided winding is electrically connected in series with each other. A rotating electrical machine characterized by being arranged at predetermined intervals.
JP14190090A 1990-05-31 1990-05-31 Electric rotating machine Pending JPH0438135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14190090A JPH0438135A (en) 1990-05-31 1990-05-31 Electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14190090A JPH0438135A (en) 1990-05-31 1990-05-31 Electric rotating machine

Publications (1)

Publication Number Publication Date
JPH0438135A true JPH0438135A (en) 1992-02-07

Family

ID=15302774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14190090A Pending JPH0438135A (en) 1990-05-31 1990-05-31 Electric rotating machine

Country Status (1)

Country Link
JP (1) JPH0438135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045179A (en) * 2009-08-20 2011-03-03 Honda Motor Co Ltd Stator and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157948A (en) * 1979-05-25 1980-12-09 Bosch Gmbh Robert Threeephase generator
JPH01164293A (en) * 1987-12-21 1989-06-28 Matsushita Electric Ind Co Ltd Motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157948A (en) * 1979-05-25 1980-12-09 Bosch Gmbh Robert Threeephase generator
JPH01164293A (en) * 1987-12-21 1989-06-28 Matsushita Electric Ind Co Ltd Motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045179A (en) * 2009-08-20 2011-03-03 Honda Motor Co Ltd Stator and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5801334A (en) Conductor (turn) insulation system for coils in high voltage machines
US7135799B2 (en) Method for winding a stator of multi-phase motors
US5898251A (en) Method of making armature winding of double-layer concentric-wound or lap-winding type for dynamoelectric machine
CN107431405B (en) Stator
US20110198961A1 (en) Triple Layer Winding Pattern and Methods of Manufacturing Same
JP7560943B2 (en) Contact ring for a stator of an electric motor
EP1708336B1 (en) Multi-winding motor
CN111555506A (en) Motor stator and motor
JP4567133B2 (en) Rotating electric machine and manufacturing method thereof
JPH1127886A (en) Stator of dynamo-electric machine
JPH10112948A (en) Bipolar armature winding of rotating electric machine and its manufacture
JP2001275291A (en) Stator of motor
JPH0438135A (en) Electric rotating machine
JPH0759283A (en) Armature winding connection of three-phase ac motor
US5017822A (en) Three-phase magneto armature
CN208656532U (en) The flat wire stator winding structure of motor
JP2926245B2 (en) Stator for rotating electric machines such as electric motors and generators
CN110768410A (en) Flat wire stator of permanent magnet synchronous motor for vehicle
JPS5986445A (en) 3-phase armature winding
CN112332576B (en) Stator and motor with same
JPS5950739A (en) 3-phase armature coils
JPS6327939B2 (en)
JPS61121731A (en) Three phase armature winding
EP0068214A1 (en) An A.C. dynamoelectric machine
JPH0427783B2 (en)