JPH0437862B2 - - Google Patents

Info

Publication number
JPH0437862B2
JPH0437862B2 JP61143714A JP14371486A JPH0437862B2 JP H0437862 B2 JPH0437862 B2 JP H0437862B2 JP 61143714 A JP61143714 A JP 61143714A JP 14371486 A JP14371486 A JP 14371486A JP H0437862 B2 JPH0437862 B2 JP H0437862B2
Authority
JP
Japan
Prior art keywords
red phosphorus
phosphorus
flame retardant
spherical
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61143714A
Other languages
Japanese (ja)
Other versions
JPS63346A (en
Inventor
Ichiro Sakon
Masao Sekiguchi
Atsushi Kanayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOSPHORUS CHEM IND
Original Assignee
PHOSPHORUS CHEM IND
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOSPHORUS CHEM IND filed Critical PHOSPHORUS CHEM IND
Priority to JP61143714A priority Critical patent/JPS63346A/en
Priority to US07/040,522 priority patent/US4879067A/en
Priority to CA000535782A priority patent/CA1285104C/en
Priority to AT87106246T priority patent/ATE77804T1/en
Priority to EP87106246A priority patent/EP0249723B1/en
Priority to DE198787106246T priority patent/DE249723T1/en
Priority to DE8787106246T priority patent/DE3780088T2/en
Publication of JPS63346A publication Critical patent/JPS63346A/en
Priority to US07/385,912 priority patent/US5026757A/en
Publication of JPH0437862B2 publication Critical patent/JPH0437862B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<発明の技術分野> 本発明は赤リン系難燃剤に関するものであり、
限定された形状を持つ赤リンを用いることを特長
とし、これによつて難燃剤及び樹脂組成物の耐湿
性及び耐食性を改善しようとするものである。 <発明の背景> 赤リン系難燃剤は、熱硬化性樹脂、特にエポキ
シ樹脂の難燃化に有用で、主として高圧電子部品
の含浸注型用絶縁樹脂組成物に用いられている。 赤リンは、それ自身難燃剤として用い得るが、
赤リンが熱や摩擦あるいは衝撃に対して不安定で
あるため、保管取扱いや合成樹脂との混練作業に
危険が伴うこと、又、空気中の水分と反応して有
毒なホスフインガスを発生し、作業環境を汚染す
ること、合成樹脂との相溶性が悪く作業上支障を
来たすこと等、赤リンの直接的な使用にはいくつ
かの問題点があり、従来の赤リン系難燃剤は赤リ
ンを各種の有機物又は無機物で安定化し、これら
問題点の解決をはかろうとするものであつた。 しかし、近年電気機器の小型化、高電圧化と共
に電気絶縁材料の高性能化が求められるようにな
ると赤リン系難燃剤の物性に対する要求も又、厳
しいものとなり、従来の赤リン系難燃剤では対応
が困難な状況となつてきた。即ち、従来の赤リン
系難燃剤配合の樹脂で絶縁した電子部品は、経時
的な樹脂の劣化により、絶縁不良や金属部分に腐
食を生じ、性能が低下するため、耐用性や信頼性
に欠けることが指摘され、これが主として赤リン
系難燃剤の変質に起因するとされてその改善が求
められているものである。赤リン系難燃剤の変質
は、赤リンが微量の湿分と反応して、ホスフイン
や腐食性の酸化生成物を生ずることによるとさ
れ、従来の赤リン系難燃剤は、種々の物質で赤リ
ン粒子を被覆して水分を遮断し、赤リンの安定化
をはかつているが、このような方法による赤リン
の安定化には自ら限界があり、耐湿性、耐食性に
対する要求が極めて厳しい、高性能の電子部品用
樹脂の水準には達し得ないのが現状である。 このため、高圧電子部品の含浸注型用樹脂の難
燃化には、赤リン系に較べて、耐湿性、耐食性が
良いと云われるハロゲン系難燃剤や、ハロゲン系
難燃剤と三酸化アンチモンとの併用等も一部実施
されているが、ハロゲン系難燃剤には燃焼時に有
毒ガスを発生するという致命的な欠点があるだけ
でなく、必要配合量が多いため樹脂の電気特性に
対する影響が大きい、高価で製品がコスト高にな
る等の問題点がある。これに対し赤リン系難燃剤
は燃焼時の問題もなく、少量の添加で極めて高い
難燃効果が得られるので樹脂の物性に対する影響
が殆んどなく、又経済的にも優れているため、赤
リン系難燃剤の耐湿性、耐食性改善への要望は強
いものがある。 発明者等は赤リン系難燃剤のこのような状況に
鑑みて、赤リン系難燃剤の耐湿性及び耐食性の改
善を鋭意研究する中で、従来のような赤リンの表
面改質による安定化には限界があるとの観点に立
ち、別の角度から問題解決の途を探つた。その結
果、従来とは別の製造方法によつて得られ、粒子
の表面状態及び物性値も従来品と全く異なる特定
の形状を持つ赤リンが極めて安定で、それ自体十
分難燃剤として用い得るだけでなく、更にこのよ
うな赤リンに表面改質処理を行なうことにより、
赤リン系難燃剤の耐湿性及び耐食性にかかわる問
題が、完全に解決できることを発見して本発明を
完成するに至つた。 <発明の構成> 本発明は、粉砕工程を必要としない黄リンの転
化処理法により直接的に得られる、破砕面のない
微粒子又はその集合体である球体様赤リン、これ
を熱硬化性樹脂及び(又は)水酸化アルミニウム
や水酸化亜鉛で被覆した赤リン系難燃剤及び、こ
れ等を含む熱硬化性樹脂組成物に関するものであ
る。赤リンは通常、転化釜と称する反応容器中で
黄リンを数日間加熱処理することによつて製造さ
れているが、この様な方法では、赤リンはケーキ
状に固く凝結した密度の高い一体の塊状物として
得られる。赤リンが合成樹脂中において難燃効果
を発現するためには微粉状であることが必要であ
り、従つて転化釜から一体の塊状物として得られ
る通常の赤リンにおいては粉砕工程は欠くことの
できないものである。これに対し、本発明で用い
る赤リンは、異つた転化処理によるもので粉砕工
程を経ず直接的に微粒状として得られ、従来の粉
砕品に比して、軽質で嵩比重が小さく無定形であ
る。このような軽質無定形赤リンはそれ自体高い
安定性を持つが、これをさらに熱硬化性樹脂及び
(又は)水酸化アルミニウムや水酸化亜鉛で被覆
したものは、非常に安定で、水に対する反応性
は、従来の粉砕赤リンを同様に被覆処理したもの
に比して殆んど無視できる程度であり、これを難
燃剤として配合した熱硬化性樹脂の耐湿性及び耐
食性は従来品より飛躍的に向上する。このような
軽質無定形赤リンから得られる赤リン系難燃剤の
特異な安定性は、原料赤リンの粒子の表面状態が
従来品とは全く異なることに由来すると考えられ
る。 即ち、従来の赤リンのように、堅固に凝結した
塊状物を粉砕して得られる粉粒体では粒子表面が
鋭い稜線と破砕面から構成され総じて複難な多稜
体を形成しているのに対し、本発明で言う球体様
赤リンは粉砕工程を経ないため、破砕面や稜線は
殆ど無く自然発性的で連続的な表面を持つ微粒子
及びその集合体で構成されていることが電子顕微
鏡による観察によつて確認されている。 このため、粉砕赤リンの粒子は破砕面に多くの
活性点を持ち、水分や酸素を吸着し易く、又これ
等分子との反応も活発であるのに対し、粉砕工程
を経ない球体様赤リンでは、活性点が殆んどなく
表面が極めて安定で水分の吸着や反応も生起しな
いと考えられる。また、熱硬化性樹脂や水酸化ア
ルミニウム等による被覆処理においても、粉砕赤
リンは表面の状態から被覆形成が不均一で露出破
砕面が残存し易く、一方、球体様粒子では被覆が
均一かつ完全に行なわれるため被覆赤リンの耐湿
安定性に決定的な差が生ずると推定される。 球体様赤リンはこのように極めて安定な表面を
持つため、耐湿・耐食性に対する要求が比較的緩
やかな用途に対しては被覆処理を行なうことな
く、そのまま難燃剤として使用しても、従来の粉
砕赤リンを原料とする被覆赤リンに較べて、何ら
遜色のない性能を示すが(表1参照)、高圧電子
部品のような、耐湿性、耐食性に関する要求の厳
しい用途に対しては熱硬化性樹脂や水酸化アルミ
ニウム等による被覆処理を行なうことが望まし
く、これにより赤リン系難燃剤の添加による影響
は殆んどなくなり、ほぼ完壁な耐湿性及び耐食性
を賦与することができる。又、樹脂との相溶性を
高め、作業性を向上させる点からも被覆処理を行
なう事が好ましい。 本発明で用いる球体様赤リンは、例えば次のよ
うな方法によつて製造することができる。 即ち、不活性ガスで置換した密閉容器中におい
て黄リンを沸点近くの温度に加熱して赤リンの転
化反応を開始させ、生成した赤リンの核が所望の
粒径に成長した時、反応を停止し、未転化の黄リ
ンを溜去すると殆ど粉砕を必要と要しない比較的
軽質の微粒子状の無定形赤リンが得られる。この
際、反応時間及び反応温度により転化率や赤リン
粒子の粒径を調整することができる。本発明の目
的に適した赤リンの製造条件としては反応温度
250℃〜350℃、転化率60%以下とすることが好ま
しい。反応温度が250℃以下では転化速度が遅い
ため実際的でなく、又350℃以上では転化反応の
制御が困難で、生成物の性状も均一でなく、形状
も本発明の目的に合致したものが得られなくな
る。又、転化率を60%以上にすると生成赤リンが
塊化し、粉砕行程を経ずに難燃剤として用いるこ
とが出来なくなりやはり本発明の目的が達せられ
なくなる。通常反応時間が長い程、反応温度が高
い程転化率は高く、粒径が大となる。例えば、
280℃、4時間の反応で転化率40%、平均粒径
50μmの粒子が生成する。又、このようにして得
られる赤リンの粒度は通常の粉砕品に比して分布
巾が非常に狭く、極めて均一性の高いものであ
り、この結果、平均粒径が同じでも空隙率が高
く、相対的に嵩比重の小さい軽質のものが得られ
る。 転化率が高くなると赤リンの粒子は集合体とし
て生成するのが多くなるが、集合体の結合性は弱
く、脆く崩れ易いものであり粉砕と言うほどの処
理は必要としない。しかし用途により粒度の調整
が必要な場合、簡単な機械的処理により崩壊させ
ることは本発明の目的に対して何ら問題にならな
い。この場合、集合体の崩壊にともなつて生ずる
破砕面は赤リンの安定性には殆ど影響しない。こ
れは破砕面と言つても物性的には球体様表面に近
いもので、堅固な塊状物の粉砕によつて形成され
る破砕面とは異なり表面の安定性は球体様表面に
劣らずいわば崩壊面とでもいうべきものである。
従つて本発明ではこの様な崩壊面を持つものをも
球体様赤リンと称するものであり、また以下の説
明ではこれらの集合体も含めて球体様赤リンと記
載する。 本発明の難燃剤用赤リンとしては、平均粒径数
ミクロン以上200ミクロン以下のものが好ましい。
球体様赤リンは又、この他不活性ガス中で黄リン
の蒸気を加熱する気相転化法や、溶融塩法等によ
つても製造することができる。本発明において球
体様赤リンの水酸アルミニウム又は水酸化亜鉛に
よる被覆はアルミニウム又は亜鉛の水溶性塩類、
例えば硫酸アルミニウム、塩化アルミニウム、硫
酸亜鉛、塩化亜鉛等の水溶液を赤リンの水懸濁液
に加えた後、水酸化ナトリウムによる中和又は重
炭酸アンモニウムによる複分解によつて水酸化ア
ルミニウム又は水酸化亜鉛を赤リン粒子上に吸着
させることによつて行なう。 この際、赤リンの水懸濁液は水100重量部に対
して赤リン10〜100重量、アルミニウム又は亜鉛
の水溶性塩類の水溶液濃度は5〜30%、水酸化物
の被覆生成量は赤リン100重量部につき1〜30重
量部が好ましく、優れた赤リン系難燃剤が得られ
るが、本発明はこれによつて特に限定されるもの
ではない。 本発明において、球体様赤リンの被覆に用いら
れる熱硬化性樹脂は樹脂の合成原料物又はその初
期縮合物が赤リンの水懸濁液中で容易に重合反応
を進行するか又はその初期縮合物が水中に乳化分
散し、赤リンの粒子表面に均一に沈着、被覆する
ならばどのような樹脂原料でもよいが、通常はフ
エノール・ホルマリン系、尿素・ホルマリン系・
メラミン・ホルマリン系、フルフリルアルコー
ル・ホルマリン系、アニリン・ホルマリン系及び
多価アルコール・多塩基酸系などから選ばれる。
上記樹脂群のうち、フルフリルアルコール・ホル
マリン系、アニリン・ホルマリン系及び多価アル
コール・多塩基酸系などは大量の水の存在下では
重合反応が進行し難いので樹脂原料物質の初期縮
合物を予め調製しておき、これを赤リンの水懸濁
液に添加することが好ましい。 樹脂による被覆処理条件は用いる熱硬化性樹脂
の種類によつて幾分変動するが、水100重量部に
対して赤リン10〜100重量部を含む赤リンの水懸
濁液に樹脂の合成原料又は初期縮合物を赤リン
100重量部に対して1〜35重量部添加し、樹脂の
合成原料を用いる場合は40〜100℃で1〜3時間、
予め調製した初期縮合物を用いる場合は60〜100
℃で1〜2時間の撹拌処理を行なう。この際、必
要に応じて重合触媒や、水酸化アルミニウム、水
酸化マグネシウム又は水酸化チタンのような充填
剤を共存させておくことができる。充填剤の添加
により樹脂被覆の機械的強度が上昇すると共に赤
リン特有の紫紅色に対する隠蔽効果があり、赤リ
ン系難燃剤の用途の拡大に寄与し得る。充填剤の
添加量は赤リン100重量部につき1〜35重量部が
好ましい。生成物を分離・水洗し、130〜140℃で
乾燥し重合反応を完結させると耐湿・耐食性の極
めて良好な赤リン系難燃剤が得られる。 又、熱硬化性樹脂による被覆に先立ち、赤リン
粒子に予め水酸化アルミニウム又は、水酸化亜鉛
を吸着させておくと、赤リンの耐湿性・耐食性は
更に向上し、これを用いて難燃化した樹脂組成物
においては、長期間に亘つて、赤リン系難燃剤の
添加による影響が殆んど現われない。水酸化アル
ミニウム又は、水酸化亜鉛による前処理は水100
重量部中に赤リン5〜100重量部を含む赤リンの
水懸濁液中でアルミニウム又は亜鉛の硫酸塩又
は、塩化物のような水溶性化合物と苛性アルカリ
との中和反応、又は重炭酸アンモニウムによる複
分解反応により水酸化アルミニウム又は水酸化亜
鉛を生成させ、赤リン粒子に吸着させることによ
つて行なう。添加するアルミニウム塩又は亜鉛塩
は赤リン100重量部に対して0.1〜30重量部の水酸
化物を生成するに必要な量が好ましい。 表2に示す如く、本発明の赤リン系難燃剤は、
極めて耐湿安定性が高く、水分子の吸着に由来す
るとみられるホスフインの発生や腐食性酸性物質
の生成が殆んどなく、従つて、赤リン系難燃剤の
変質に起因する樹脂組成物の劣化を生じないた
め、高度の品質安定性が求められる高圧電子部品
用熱硬化性樹脂の難燃剤として最適であり、極め
て安定性の高い樹脂組成物を得ることができる。
樹脂組成物は例えばエポキシ樹脂100重量部に対
して、赤リン系難燃剤5〜40重量部、充填剤及び
難燃補助剤としての水酸化アルミニウム5〜150
重量部、酸無水物系硬化剤20〜90重量部及び硬化
促進剤を配合して成るものである。エポキシ樹脂
とは分子内に1個以上のエポキシ基を有する芳香
族、脂環族又は、脂肪族系の任意のエポキシドを
意味するが、特に電子部品含浸注型用としては常
温で液状のものが好ましい。例えばビスフエノー
ルAジグリシジルエーテル、ビスフエノールFジ
グリシジルエーテルや、フタル酸、テレフタル酸
の如きポリカルボン酸のポリグリシジルエステル
等が適している。 水酸化アルミニウムは配合量が多いと樹脂液の
粘度が上昇して注型含浸作業に支障を来たし、少
ないと難燃補助効果が不足するのでエポキシ樹脂
100重量部に対し5〜150重量部が好ましい。赤リ
ン系難燃剤の配合量は難燃効果と樹脂の粘性に対
する影響を勘案して樹脂100重量部につき5〜40
重量部とすることが好ましい。 硬化剤としては酸無水物が最も適しており、無
水フタル酸、無水テトラヒドロフタル酸、無水コ
ハク酸等公知のものを広く用いることができる。
又、硬化促進剤としては2−フエニルイミダゾー
ル、2−エチル−4−メチルイミダゾール等のイ
ミダゾール誘導体が作業性等の観点から好まし
い。 本発明の赤リン系難燃剤を配合したエポキシ樹
脂組成物を充分に混練して60℃、4時間さらに
105℃で7時間硬化させ得た樹脂の難燃性、耐色
性及び電気特性を測定し、従来の赤リンを原料と
する赤リン系難燃剤を配合したエポキシ樹脂組成
物の測定値と比較した。表3に樹脂組成物の実施
例及び比較例を、表4に各々の樹脂組成物から得
られる硬化樹脂の測定値を示した。いずれの測定
項目に関しても本発明による球体様赤リンに基づ
く赤リン系難燃剤を配合したものが従来品に比し
て遥かに優れており、難燃剤添加による影響が、
極めて少ないことが明らかであり、高圧電子部品
の耐用性及び信頼性の向上に顕著な効果をもたら
すものである。 球体様赤リンの製造例 反応装置として蓋部に、熱電対、還流冷却器空
冷)及びガス排出管を装備したステンレス製反応
容器(容量1)を用いた。還流冷却器の頂部は
開閉コツクを介して窒素ガスボンベと接続し、ガ
ス排出管と反応容器の間にも開閉コツクを設け
た。ガス排出管には水冷ジヤケツトをとりつけ、
先端部は黄リン補集容器内の水中に導いた。水
100mlを入れた反応容器に黄リン500gを装填し二
つのコツクを開にして窒素ガスを導入し、装置内
をガス置換した後、反応容器の底部に設置した電
気加熱器により加熱した。黄リンを覆つている水
が蒸発し終ると温度上昇が始まるが140℃に達し
た時、コツクを二つ共閉にして装置内を密封し、
引続き加熱して270℃迄昇温した。発生する黄リ
ン蒸気を還流し乍ら同温度で4時間反応させた後
排出管のコツクを開き、次いで還流冷却器のコツ
クも開にして窒素ガスを導入し乍ら黄リンの沸点
(280℃)に加熱し、未転化の黄リンを蒸留し、排
出管を経て黄リン補集容器内で凝集させた。 約2時間の蒸留で、殆んど黄リンが留出した
が、微量の残留黄リンを除去するため、330℃で
更に1時間加熱した。反応容器から平均粒径
50μmの流動性のある球体様赤リン211gを得た。 <実施例> 実施例 1 球体様赤リン500gを水800mlに懸濁させ10%硫
酸アルミニウム水溶液300mlを加え、充分に撹拌
しながら5%水酸化ナトリウム水溶液100mlを滴
下し、50℃に加熱して30分間保持する。これを濾
過、水洗し120℃で乾燥して、被覆赤リン516gを
得た。 実施例 2 球体様赤リン500gを水800mlに懸濁させ20%塩
化アルミニウム水溶液200mlを加え、充分に撹拌
しながら20%重炭酸アンモニウム水溶液400mlを
滴下し、50℃に加温し30分熟成する。 放冷後、濾別、水洗し、120℃で乾燥して被覆
赤リン536gを得た。 実施例 3 球体様赤リン500gを水800gに懸濁させ20%塩
化亜鉛水溶液300mlを加え、十分に撹拌し乍ら、
10%水酸化ナトリウム水溶液400mlを滴下し、50
℃に加熱し30分熟成する。 放冷後、濾過、水洗し、120℃乾燥して被覆赤
リン540gを得た。 実施例 4 球体様赤リン500gを水1000mlに懸濁させ、フ
エノール15g、37%ホルマリン27gを添加、80℃
に加熱して撹拌下に85%リン酸10gを加える。1
時間同温度で加熱撹拌後、放冷、濾過、水洗す
る。濾さいを140℃で3時間乾燥し、被覆赤リン
523gを得た。 実施例 5 球体様赤リン500gを水750mlに懸濁させ、尿素
10g、37%ホルマリン20gを加えて撹拌下90℃に
加熱し、さらに85%リン酸10gを添加する。2時
間加熱・撹拌を続けた後一昼夜枚置して、濾過、
水洗する。140℃で3時間乾燥し、被覆赤リン514
gを得た。 実施例 6 フルフリルアルコール27g、水3ml及び85%リ
ン酸0.5gの混合物を、沸騰水浴上で5時間反応
させて得られる粘稠な初期縮合物と37%ホルマリ
ン10gを、球体様赤リン500g及び水800mlから成
る懸濁液に強力な撹拌下で添加し、90℃に加熱す
る。1時間加熱撹拌後、濾別・水洗し、130℃で
3時間乾燥、被覆赤リン525gを得た。 実施例 7 球体様赤リン500g、水酸化マグネシウム50g
及び水750mlから成る懸濁液にメラミン6g、37
%ホルマリン28g及び炭酸ナトリウム10gを加
え、90℃で2時間撹拌反応させる。一昼夜放冷
後、濾過・水洗して135℃で3時間乾燥し、被覆
赤リン555gを得た。 実施例 8 98%グリセリン4.3g、無水フタル酸2.5g及び
亜麻仁油脂肪酸15gを混合し、炭酸ガスを通じな
がら200〜230℃に加熱した後、3.3gの無水フタ
ル酸を加え245℃に昇温、酸価12〜15になつた時
点で冷却、花王アトラスト製乳化分散剤エマノー
ン#4110を2ml加えて、100mlの水中に分散させ
る。この乳化分散液を水750ml球体様赤リン500g
及び水酸化アルミニウム50gからなる懸濁液に混
合し、90℃で1時間加熱撹拌する。放冷後、濾
過、水洗し140℃で4時間乾燥して被覆赤リン573
gを得た。 実施例 9 球体様赤リン250gを水500mlに懸濁させ、8%
硫酸アルミニウム水溶液40mlを添加、充分に撹拌
する。これに5%水酸化ナトリウム溶液18mlを滴
下し、50℃に加温10分間保持する。次いでフエノ
ール8g及び37%ホルマリン15gを添加し、80℃
で1時間加熱、撹拌した後、放冷、濾過、水洗
し、140℃で3時間乾燥する。被覆赤リン270gを
得た。 実施例 10 球体様赤リン250及び水500mlから成る懸濁液に
8%硫酸アルミニウム水溶液40mlを加え、撹拌し
た後15%重炭酸アンモニウム水溶液45mlを滴下、
50℃で20分間熟成する。アンモニア水でPHを10.0
に調整後、予め調整した12.5%のリゾール型フエ
ノール樹脂プレポリマー(フエノール/ホルマリ
ン=1/2モル)100g及び塩化アンモニウム25gを
添加して50℃で30分間撹拌する。放冷後、濾過・
水洗し120℃で1時間乾燥して、被覆赤リン264g
を得た。 実施例 11 球体様赤リン500g、水900mlからなる懸濁液
に、8%硫酸亜鉛水溶液80mlを加え撹拌後、15%
重炭酸アンモニウム水溶液100mlを滴下し、60℃
20分間加熱する。これにアセトン26gを37%ホル
マリン42gから調製したアセントン−ホルマリン
初期縮合体の反応混合物を添加し、撹拌下65℃で
30分加熱する。放冷後、濾過・水洗し、130℃で
1時間乾燥して被覆赤リン572gを得た。 実施例 12 球体様赤リン500g、水750mlからなる懸濁液に
10%硫酸アルミニウム水溶液65mlを添加して撹拌
後、15%重炭酸アンモニウム水溶液100mlを滴下
し60℃で20分加熱する。次いで、水酸化チタン30
gと水30mlからなる懸濁液及び、メラミン6g、
37%ホルマリン28gを加え、アンモニア水でPHを
7.5に調整して90℃で2時間撹拌を続ける。一昼
夜放冷して濾過・水洗し、135℃で3時間乾燥、
被覆赤リン518gを得た。
<Technical field of the invention> The present invention relates to a red phosphorus flame retardant,
It is characterized by the use of red phosphorus with a limited shape, and is intended to improve the moisture resistance and corrosion resistance of flame retardants and resin compositions. <Background of the Invention> Red phosphorus flame retardants are useful for flame retardant thermosetting resins, especially epoxy resins, and are mainly used in insulating resin compositions for impregnation casting of high-voltage electronic components. Red phosphorus itself can be used as a flame retardant, but
Because red phosphorus is unstable to heat, friction, or shock, it is dangerous to store and handle it or to mix it with synthetic resins, and it also reacts with moisture in the air to generate toxic phosphine gas, making it difficult to handle the work. There are several problems with the direct use of red phosphorus, such as polluting the environment and poor compatibility with synthetic resins, which can cause work problems. It was an attempt to solve these problems by stabilizing it with various organic or inorganic substances. However, in recent years, with the miniaturization and higher voltage of electrical equipment, and the demand for higher performance electrical insulating materials, the requirements for the physical properties of red phosphorus flame retardants have also become stricter. The situation has become difficult to deal with. In other words, electronic components insulated with conventional resins containing red phosphorus flame retardants lack durability and reliability due to deterioration of the resin over time, resulting in poor insulation and corrosion of metal parts, resulting in decreased performance. It has been pointed out that this is mainly caused by the deterioration of the red phosphorus flame retardant, and there is a need for improvement. The deterioration of red phosphorus flame retardants is said to occur when red phosphorus reacts with trace amounts of moisture to produce phosphine and corrosive oxidation products. Red phosphorus is stabilized by coating phosphorus particles to block moisture, but stabilizing red phosphorus using this method has its own limits, and is used in high-quality materials with extremely strict requirements for moisture resistance and corrosion resistance. The current situation is that it cannot reach the level of performance of resins for electronic parts. For this reason, halogen-based flame retardants, which are said to have better moisture resistance and corrosion resistance than red phosphorus-based ones, or halogen-based flame retardants and antimony trioxide are used to make flame retardant impregnated casting resins for high-voltage electronic parts. However, halogen-based flame retardants not only have the fatal drawback of emitting toxic gas when burned, but also have a large effect on the electrical properties of the resin due to the large amount required. However, there are problems such as the high cost of the product and the high cost of the product. On the other hand, red phosphorus flame retardants do not cause any problems during combustion, and can achieve extremely high flame retardant effects with a small amount of addition, so they have almost no effect on the physical properties of the resin, and are also economically superior. There is a strong desire to improve the moisture resistance and corrosion resistance of red phosphorus flame retardants. In view of this situation regarding red phosphorus flame retardants, the inventors conducted intensive research into improving the moisture resistance and corrosion resistance of red phosphorus flame retardants. Recognizing that there are limits to this, we sought ways to solve the problem from a different angle. As a result, red phosphorus, which is obtained by a manufacturing method different from conventional ones and has a specific shape with particle surface conditions and physical properties completely different from conventional products, is extremely stable and can be used as a flame retardant in itself. However, by further surface-modifying the red phosphorus,
We have completed the present invention by discovering that the problems related to the moisture resistance and corrosion resistance of red phosphorus flame retardants can be completely solved. <Structure of the Invention> The present invention provides spherical red phosphorus, which is fine particles without crushed surfaces or aggregates thereof, which are directly obtained by a yellow phosphorus conversion treatment method that does not require a crushing process, and which is made into a thermosetting resin. and/or a red phosphorus flame retardant coated with aluminum hydroxide or zinc hydroxide, and a thermosetting resin composition containing the same. Red phosphorus is usually produced by heat-treating yellow phosphorus for several days in a reaction vessel called a conversion kettle. Obtained as a lump. In order for red phosphorus to exhibit flame-retardant effects in synthetic resins, it must be in a fine powder form, and therefore, for ordinary red phosphorus obtained as a lump from a conversion kettle, a pulverization process is not necessary. It is something that cannot be done. In contrast, the red phosphorus used in the present invention is obtained through a different conversion process and is directly obtained in the form of fine particles without going through a pulverization process, and is lighter, has a smaller bulk specific gravity, and is amorphous than conventional pulverized products. It is. Such light amorphous red phosphorus itself has high stability, but when it is further coated with thermosetting resin and/or aluminum hydroxide or zinc hydroxide, it is extremely stable and does not react well with water. Its properties are almost negligible compared to those coated with conventional crushed red phosphorus, and the moisture resistance and corrosion resistance of thermosetting resins containing this as a flame retardant are dramatically higher than conventional products. improve. The unique stability of the red phosphorus flame retardant obtained from such light amorphous red phosphorus is thought to be due to the fact that the surface condition of the raw material red phosphorus particles is completely different from that of conventional products. In other words, in the case of conventional red phosphorus, which is obtained by crushing solidly agglomerated lumps, the particle surface is composed of sharp ridges and fractured surfaces, forming a complex multi-ridged body. On the other hand, the spherical red phosphorus referred to in the present invention does not go through a crushing process, so it has almost no fractured surfaces or ridge lines, and is composed of fine particles and their aggregates that have spontaneous and continuous surfaces. Confirmed by microscopic observation. For this reason, crushed red phosphorus particles have many active sites on the crushed surface, easily adsorb moisture and oxygen, and actively react with these molecules, whereas spherical red phosphorus particles that do not go through the crushing process Phosphorus has almost no active sites and has an extremely stable surface, so it is thought that no moisture adsorption or reaction occurs. In addition, even when coating with thermosetting resin or aluminum hydroxide, etc., the coating of crushed red phosphorus tends to be uneven due to its surface condition and exposed crushed surfaces tend to remain.On the other hand, with spherical particles, the coating is uniform and complete. It is presumed that this makes a decisive difference in the moisture resistance stability of the coated red phosphorus. Because spherical red phosphorus has such an extremely stable surface, it can be used as a flame retardant without coating for applications with relatively mild requirements for moisture resistance and corrosion resistance. It shows no inferiority in performance to coated red phosphorus made from red phosphorus (see Table 1), but thermosetting is suitable for applications with strict requirements regarding moisture resistance and corrosion resistance, such as high-voltage electronic components. It is desirable to carry out a coating treatment with resin, aluminum hydroxide, etc., thereby almost eliminating the influence of the addition of red phosphorus flame retardants and providing almost perfect moisture resistance and corrosion resistance. Further, it is preferable to perform a coating treatment from the viewpoint of increasing compatibility with the resin and improving workability. The spherical red phosphorus used in the present invention can be produced, for example, by the following method. That is, in a closed container purged with inert gas, yellow phosphorus is heated to a temperature close to its boiling point to start the conversion reaction of red phosphorus, and when the generated red phosphorus nuclei grow to the desired particle size, the reaction is stopped. When the process is stopped and unconverted yellow phosphorus is distilled off, relatively light amorphous red phosphorus in the form of fine particles is obtained, which requires almost no pulverization. At this time, the conversion rate and the particle size of the red phosphorus particles can be adjusted by adjusting the reaction time and reaction temperature. The conditions for producing red phosphorus suitable for the purpose of the present invention include reaction temperature
Preferably, the temperature is 250°C to 350°C and the conversion rate is 60% or less. If the reaction temperature is below 250°C, it is not practical because the conversion rate is slow, and if it is above 350°C, it is difficult to control the conversion reaction, the properties of the product are not uniform, and the shape does not meet the purpose of the present invention. You won't be able to get it. Furthermore, if the conversion rate is increased to 60% or more, the produced red phosphorus will become agglomerated and cannot be used as a flame retardant without going through a pulverization process, making it impossible to achieve the object of the present invention. Generally, the longer the reaction time and the higher the reaction temperature, the higher the conversion rate and the larger the particle size. for example,
40% conversion rate and average particle size after 4 hours reaction at 280℃
50 μm particles are produced. In addition, the particle size of the red phosphorus obtained in this way has a very narrow distribution width and extremely high uniformity compared to ordinary pulverized products, and as a result, even if the average particle size is the same, the porosity is high. , a light product with relatively low bulk specific gravity can be obtained. As the conversion rate increases, more red phosphorus particles are produced as aggregates, but the aggregates have weak cohesiveness, are brittle and easily break down, and do not require treatment to the extent of pulverization. However, if the particle size needs to be adjusted depending on the application, disintegration by simple mechanical treatment poses no problem for the purpose of the present invention. In this case, the fracture surface that occurs as the aggregate collapses has little effect on the stability of red phosphorus. Although this is called a fractured surface, it is physically close to a spherical surface, and unlike a fractured surface formed by crushing a solid lump, the stability of the surface is not inferior to that of a spherical surface, so to speak. It can be called a face.
Therefore, in the present invention, substances having such a collapse surface are also referred to as spherical red phosphorus, and in the following description, these aggregates are also referred to as spherical red phosphorus. The red phosphorus for the flame retardant of the present invention preferably has an average particle diameter of several microns or more and 200 microns or less.
Spherical red phosphorus can also be produced by a gas phase conversion method in which yellow phosphorus vapor is heated in an inert gas, a molten salt method, and the like. In the present invention, the spherical red phosphorus is coated with aluminum hydroxide or zinc hydroxide by water-soluble salts of aluminum or zinc,
For example, an aqueous solution of aluminum sulfate, aluminum chloride, zinc sulfate, zinc chloride, etc. is added to an aqueous suspension of red phosphorus, and then aluminum hydroxide or zinc hydroxide is prepared by neutralization with sodium hydroxide or metathesis with ammonium bicarbonate. This is done by adsorbing it onto red phosphorus particles. At this time, the aqueous suspension of red phosphorus is 10 to 100 parts by weight of red phosphorus per 100 parts by weight of water, the concentration of the aqueous solution of water-soluble salts of aluminum or zinc is 5 to 30%, and the amount of hydroxide coating produced is red. The amount is preferably 1 to 30 parts by weight per 100 parts by weight of phosphorus, and an excellent red phosphorus flame retardant can be obtained, but the present invention is not particularly limited thereto. In the present invention, the thermosetting resin used for coating the spherical red phosphorus is a synthetic raw material of the resin or its initial condensation product that easily undergoes a polymerization reaction in an aqueous suspension of red phosphorus or its initial condensation. Any resin raw material can be used as long as it emulsifies and disperses in water and deposits and coats the red phosphorus particle surface uniformly, but usually phenol/formalin-based, urea/formalin-based, etc.
Selected from melamine/formalin type, furfuryl alcohol/formalin type, aniline/formalin type, polyhydric alcohol/polybasic acid type, etc.
Among the above resin groups, furfuryl alcohol/formalin series, aniline/formalin series, polyhydric alcohol/polybasic acid series, etc. are difficult to polymerize in the presence of a large amount of water, so initial condensation products of resin raw materials are used. It is preferable to prepare it in advance and add it to an aqueous suspension of red phosphorus. The resin coating treatment conditions vary somewhat depending on the type of thermosetting resin used, but the synthetic raw material for the resin is added to an aqueous suspension of red phosphorus containing 10 to 100 parts by weight of red phosphorus per 100 parts by weight of water. Or the initial condensate with red phosphorus
Add 1 to 35 parts by weight per 100 parts by weight, and when using resin synthetic raw materials, heat at 40 to 100°C for 1 to 3 hours.
60 to 100 when using a pre-prepared initial condensate
Stirring treatment is performed at ℃ for 1 to 2 hours. At this time, a polymerization catalyst and a filler such as aluminum hydroxide, magnesium hydroxide, or titanium hydroxide may be allowed to coexist, if necessary. Addition of a filler increases the mechanical strength of the resin coating and has the effect of hiding the purple-red color characteristic of red phosphorus, which can contribute to expanding the uses of red phosphorus flame retardants. The amount of filler added is preferably 1 to 35 parts by weight per 100 parts by weight of red phosphorus. When the product is separated, washed with water, and dried at 130 to 140°C to complete the polymerization reaction, a red phosphorus flame retardant with extremely good moisture and corrosion resistance is obtained. In addition, if aluminum hydroxide or zinc hydroxide is adsorbed on red phosphorus particles before coating with thermosetting resin, the moisture resistance and corrosion resistance of red phosphorus will further improve, and this can be used to make flame retardant. In such a resin composition, the addition of the red phosphorus flame retardant shows almost no effect over a long period of time. Pretreatment with aluminum hydroxide or zinc hydroxide is water 100%
Neutralization reaction of a water-soluble compound such as aluminum or zinc sulfate or chloride with caustic alkali in an aqueous suspension of red phosphorus containing 5 to 100 parts by weight of red phosphorus, or bicarbonate. This is carried out by producing aluminum hydroxide or zinc hydroxide through a metathesis reaction with ammonium, and adsorbing it onto red phosphorus particles. The aluminum salt or zinc salt added is preferably in an amount necessary to produce 0.1 to 30 parts by weight of hydroxide based on 100 parts by weight of red phosphorus. As shown in Table 2, the red phosphorus flame retardant of the present invention is
It has extremely high moisture resistance and stability, and there is almost no generation of phosphine or corrosive acid substances, which are thought to be caused by the adsorption of water molecules. Therefore, it is optimal as a flame retardant for thermosetting resins for high-voltage electronic components, which require a high degree of quality stability, and an extremely stable resin composition can be obtained.
The resin composition contains, for example, 100 parts by weight of epoxy resin, 5 to 40 parts by weight of a red phosphorus flame retardant, and 5 to 150 parts by weight of aluminum hydroxide as a filler and flame retardant auxiliary agent.
parts by weight, 20 to 90 parts by weight of an acid anhydride curing agent, and a curing accelerator. Epoxy resin refers to any aromatic, alicyclic, or aliphatic epoxide having one or more epoxy groups in the molecule, but it is especially suitable for use in impregnation and casting of electronic parts, as it is liquid at room temperature. preferable. For example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and polyglycidyl esters of polycarboxylic acids such as phthalic acid and terephthalic acid are suitable. If aluminum hydroxide is added in a large amount, the viscosity of the resin liquid will increase, which will interfere with the casting impregnation work, and if it is too small, the flame retardant effect will be insufficient, so epoxy resin
It is preferably 5 to 150 parts by weight per 100 parts by weight. The amount of red phosphorus flame retardant added is 5 to 40 per 100 parts by weight of resin, taking into account the flame retardant effect and the effect on resin viscosity.
Preferably, it is expressed in parts by weight. Acid anhydrides are most suitable as the curing agent, and a wide variety of known ones such as phthalic anhydride, tetrahydrophthalic anhydride, and succinic anhydride can be used.
Further, as the curing accelerator, imidazole derivatives such as 2-phenylimidazole and 2-ethyl-4-methylimidazole are preferred from the viewpoint of workability and the like. The epoxy resin composition containing the red phosphorus flame retardant of the present invention was thoroughly kneaded and heated at 60°C for 4 hours.
The flame retardancy, color fastness and electrical properties of the resin cured at 105℃ for 7 hours were measured and compared with the measured values of an epoxy resin composition containing a red phosphorus flame retardant made from conventional red phosphorus. did. Table 3 shows examples and comparative examples of resin compositions, and Table 4 shows measured values of cured resin obtained from each resin composition. Regarding all of the measurement items, the product containing the red phosphorus flame retardant based on spherical red phosphorus according to the present invention is far superior to the conventional product, and the effect of adding the flame retardant is
It is clear that the amount is extremely small, and this has a remarkable effect on improving the durability and reliability of high-voltage electronic components. Example of Production of Spherical Red Phosphorus A stainless steel reaction vessel (capacity 1) equipped with a thermocouple, a reflux condenser (air-cooled), and a gas exhaust pipe was used as a reaction device. The top of the reflux condenser was connected to the nitrogen gas cylinder via a switch, and a switch was also provided between the gas discharge pipe and the reaction vessel. Attach a water cooling jacket to the gas exhaust pipe,
The tip was led into water in a yellow phosphorus collection container. water
500 g of yellow phosphorus was loaded into a 100 ml reaction vessel, the two pots were opened, nitrogen gas was introduced, the inside of the apparatus was replaced with gas, and then heated using an electric heater installed at the bottom of the reaction vessel. When the water covering the yellow phosphorus finishes evaporating, the temperature begins to rise, and when it reaches 140℃, the inside of the device is sealed by closing the two pots together.
Subsequently, heating was performed to raise the temperature to 270°C. After refluxing the generated yellow phosphorus vapor and reacting at the same temperature for 4 hours, the outlet of the discharge pipe was opened, and the reflux condenser was also opened and nitrogen gas was introduced while the boiling point of yellow phosphorus (280℃ ), unconverted yellow phosphorus was distilled, passed through a discharge pipe, and coagulated in a yellow phosphorus collection vessel. After about 2 hours of distillation, most of the yellow phosphorus was distilled out, but in order to remove a trace amount of residual yellow phosphorus, the mixture was heated at 330°C for an additional hour. Average particle size from reaction vessel
211 g of fluid sphere-like red phosphorus with a diameter of 50 μm was obtained. <Example> Example 1 Suspend 500 g of spherical red phosphorus in 800 ml of water, add 300 ml of 10% aluminum sulfate aqueous solution, dropwise add 100 ml of 5% sodium hydroxide aqueous solution with thorough stirring, and heat to 50°C. Hold for 30 minutes. This was filtered, washed with water, and dried at 120°C to obtain 516 g of coated red phosphorus. Example 2 Suspend 500 g of spherical red phosphorus in 800 ml of water, add 200 ml of 20% aluminum chloride aqueous solution, dropwise add 400 ml of 20% ammonium bicarbonate aqueous solution with thorough stirring, heat to 50°C and age for 30 minutes. . After cooling, it was filtered, washed with water, and dried at 120°C to obtain 536 g of coated red phosphorus. Example 3 Suspend 500 g of spherical red phosphorus in 800 g of water, add 300 ml of 20% zinc chloride aqueous solution, and stir thoroughly.
Drop 400ml of 10% sodium hydroxide aqueous solution,
Heat to ℃ and mature for 30 minutes. After cooling, it was filtered, washed with water, and dried at 120°C to obtain 540 g of coated red phosphorus. Example 4 Suspend 500 g of spherical red phosphorus in 1000 ml of water, add 15 g of phenol and 27 g of 37% formalin, and heat at 80°C.
Heat to and add 10 g of 85% phosphoric acid while stirring. 1
After heating and stirring at the same temperature for a period of time, the mixture is allowed to cool, filtered, and washed with water. Dry the strainer at 140℃ for 3 hours and coat with red phosphorus.
Obtained 523g. Example 5 500 g of spherical red phosphorus was suspended in 750 ml of water, and urea
Add 10g of 37% formalin and heat to 90°C with stirring, and then add 10g of 85% phosphoric acid. After continuing to heat and stir for 2 hours, let stand overnight, filter,
Wash with water. Dry at 140℃ for 3 hours, coated red phosphorus 514
I got g. Example 6 A viscous initial condensate obtained by reacting a mixture of 27 g of furfuryl alcohol, 3 ml of water, and 0.5 g of 85% phosphoric acid on a boiling water bath for 5 hours, 10 g of 37% formalin, and 500 g of spherical red phosphorus. and 800 ml of water under vigorous stirring and heated to 90°C. After heating and stirring for 1 hour, the mixture was filtered, washed with water, and dried at 130°C for 3 hours to obtain 525 g of coated red phosphorus. Example 7 500 g of spherical red phosphorus, 50 g of magnesium hydroxide
and 6 g of melamine in a suspension of 750 ml of water, 37
% formalin and 10 g of sodium carbonate, and stirred and reacted at 90°C for 2 hours. After cooling for a day and night, it was filtered, washed with water, and dried at 135°C for 3 hours to obtain 555 g of coated red phosphorus. Example 8 4.3g of 98% glycerin, 2.5g of phthalic anhydride and 15g of linseed oil fatty acid were mixed and heated to 200-230°C while passing carbon dioxide gas, then 3.3g of phthalic anhydride was added and the temperature was raised to 245°C. When the acid value reaches 12 to 15, cool it, add 2 ml of emulsifying dispersant Emanone #4110 manufactured by Kao Atlast, and disperse it in 100 ml of water. Add this emulsified dispersion to 750ml of water and 500g of spherical red phosphorus.
and 50 g of aluminum hydroxide, and heated and stirred at 90° C. for 1 hour. After cooling, filter, wash with water, and dry at 140℃ for 4 hours to obtain coated red phosphorus 573.
I got g. Example 9 250g of spherical red phosphorus was suspended in 500ml of water, 8%
Add 40 ml of aluminum sulfate aqueous solution and stir thoroughly. 18 ml of 5% sodium hydroxide solution was added dropwise to this, and the mixture was heated to 50°C and held for 10 minutes. Next, 8 g of phenol and 15 g of 37% formalin were added, and the mixture was heated at 80°C.
After heating and stirring for 1 hour, the mixture was allowed to cool, filtered, washed with water, and dried at 140°C for 3 hours. 270 g of coated red phosphorus was obtained. Example 10 40 ml of 8% aluminum sulfate aqueous solution was added to a suspension consisting of 250 spherical red phosphorus and 500 ml of water, and after stirring, 45 ml of 15% ammonium bicarbonate aqueous solution was added dropwise.
Matured at 50°C for 20 minutes. PH 10.0 with ammonia water
100 g of 12.5% lysol type phenolic resin prepolymer (phenol/formalin = 1/2 mol) prepared in advance and 25 g of ammonium chloride were added and stirred at 50° C. for 30 minutes. After cooling, filter and
Washed with water and dried at 120℃ for 1 hour, coated red phosphorus 264g
I got it. Example 11 80 ml of an 8% zinc sulfate aqueous solution was added to a suspension consisting of 500 g of spherical red phosphorus and 900 ml of water, and after stirring,
Add 100ml of ammonium bicarbonate aqueous solution dropwise to 60°C.
Heat for 20 minutes. To this was added a reaction mixture of acentone-formalin initial condensate prepared from 26 g of acetone and 42 g of 37% formalin, and the mixture was heated at 65°C with stirring.
Heat for 30 minutes. After cooling, it was filtered, washed with water, and dried at 130°C for 1 hour to obtain 572 g of coated red phosphorus. Example 12 A suspension consisting of 500 g of spherical red phosphorus and 750 ml of water
After adding 65 ml of 10% aluminum sulfate aqueous solution and stirring, 100 ml of 15% ammonium bicarbonate aqueous solution was added dropwise and heated at 60°C for 20 minutes. Then titanium hydroxide 30
a suspension consisting of g and 30 ml of water, and 6 g of melamine,
Add 28g of 37% formalin and adjust the pH with ammonia water.
Adjust the temperature to 7.5 and continue stirring at 90°C for 2 hours. Leave to cool overnight, filter and wash with water, dry at 135℃ for 3 hours,
518 g of coated red phosphorus was obtained.

【表】 安定化粉砕赤リン(1) 粉砕赤リンを実施例4と同
様に処理したもの 安定化粉砕赤リン(2) 粉砕赤リンを実施例9と同
様に処理したもの 測定法 嵩比重 比容積試験器(石山科学器械製作所製、
容量20ml)に試料10gをとり、100回
振湯して測定 ホスフイン発生量 試料20gを500ml容量のフラ
スコ中で40mlの水に懸濁し、十分に振
湯して密栓し、24時間放置後、空間部
分のホスフイン濃度を測定 発火温度 試料1gを容量10mlの磁製ルツボに入
れて電気炉内に静置し、1℃/minの
昇温速度で加熱して発火温度を測定 溶出P2O5 試料5gを水100mlに懸濁し、121℃、
2.2気圧で100時間放置後、濾別して濾
液中のP2O5含量を測定
[Table] Stabilized crushed red phosphorus (1) Pulverized red phosphorus treated in the same manner as in Example 4 Stabilized crushed red phosphorus (2) Pulverized red phosphorus treated in the same manner as in Example 9 Measurement method Bulk specific gravity Ratio Volume tester (manufactured by Ishiyama Scientific Instruments Manufacturing Co., Ltd.)
Take 10 g of sample in a 500 ml flask and shake it 100 times to measure the amount of phosphine generated. Suspend 20 g of the sample in 40 ml of water in a 500 ml flask, shake thoroughly, seal, and leave for 24 hours. Measure the phosphine concentration in the sample.Ignition temperature: Place 1g of the sample in a porcelain crucible with a capacity of 10ml, leave it in an electric furnace, heat it at a temperature increase rate of 1℃/min, and measure the ignition temperature.Elution P 2 O 5 sample Suspend 5g in 100ml of water and heat at 121℃.
After being left at 2.2 atm for 100 hours, it was filtered and the P 2 O 5 content in the filtrate was measured.

【表】【table】

【表】 測定法はいずれも表1に準ずる 比較例1 粉砕赤リンを実施例1と同様に処理し
たもの 〃 2 粉砕赤リンを実施例4と同様に処理し
たもの 〃 3 粉砕赤リンを実施例5と同様に処理し
たもの 〃 4 粉砕赤リンを実施例9と同様に処理し
たもの 〃 5 粉砕赤リンを実施例10と同様に処理し
たもの 〃 6 粉砕赤リンを実施例11と同様に処理し
たもの
[Table] All measurement methods are in accordance with Table 1 Comparative Example 1 Pulverized red phosphorus treated in the same manner as in Example 1 〃 2 Pulverized red phosphorus treated in the same manner as in Example 4 〃 3 Pulverized red phosphorus was carried out Processed in the same manner as in Example 5 〃 4 Pulverized red phosphorus was treated in the same manner as in Example 9 〃 5 Pulverized red phosphorus was treated in the same manner as in Example 10 〃 6 Pulverized red phosphorus was treated in the same manner as in Example 11 processed

【表】 ( )内は実施例No. 数字は重量部を表わす。 比較例の赤リンは次の通り 1 未処理の球体様赤リン 2 粉砕赤リンを実施例1と同様に処理したもの 3 粉砕赤リンを実施例4と同様に処理したもの 4 粉砕赤リンを実施例6と同様に処理したもの 5 粉砕赤リンを実施例10と同様に処理したもの【table】 The numbers in parentheses are the example numbers. Numbers represent parts by weight. The red phosphorus in the comparative example is as follows: 1 Untreated spherical red phosphorus 2. Pulverized red phosphorus treated in the same manner as in Example 1. 3 Pulverized red phosphorus treated in the same manner as in Example 4 4 Pulverized red phosphorus treated in the same manner as in Example 6 5 Pulverized red phosphorus treated in the same manner as in Example 10

【表】 測定方法 難燃性 JISK−6911耐燃性試験B法 耐湿性(吸水率) JISK−6911煮沸吸水率試験
に準ずる。但し、測定条件は121℃、2気
圧、100%RH、100時間とする。 腐食性 表面積が一定の銅板に一定量の樹脂組成
物を塗布して硬化させ140℃、80%RHの
空気浴中に200時間放置後、樹脂層を剥離
する。剥離面に1mm角の透明方眼紙を当て
1cm2(1mm2×100個)内の変色数を数える。 誘電率及び誘電正接 JISK−6911誘電率及び誘
電正接測定法による。
[Table] Measurement method Flame retardancy JISK-6911 Flame resistance test B method Moisture resistance (water absorption rate) Conforms to JISK-6911 boiling water absorption test. However, the measurement conditions are 121℃, 2 atmospheres, 100% RH, and 100 hours. Corrosion A certain amount of resin composition is applied to a copper plate with a certain surface area, cured, and left in an air bath at 140°C and 80% RH for 200 hours, after which the resin layer is peeled off. Place a 1 mm square piece of transparent graph paper on the peeled surface and count the number of discolorations within 1 cm 2 (1 mm 2 × 100 pieces). Dielectric constant and dielectric loss tangent According to JISK-6911 dielectric constant and dielectric loss tangent measurement method.

Claims (1)

【特許請求の範囲】 1 粉砕を必要としない黄リンの転化処理法によ
り直接的に得られる破砕面のない球体様赤リン及
び/又はその集合体であり赤リンから成ることを
特徴とする赤リン系難燃剤。 2 球体様赤リン及び/又はその集合体であり赤
リンが不活性ガスで置換した反応容器内で黄リン
を250〜350℃に加熱し、60%以下の転化率で転化
させて得られる赤リンである特許請求の範囲第1
項記載の赤リン系難燃剤。 3 球体様赤リン及び/又はその集合体である赤
リンが熱硬化性樹脂で被覆されている特許請求の
範囲第1項記載の赤リン系難燃剤。 4 球体様赤リン及び/又はその集合体である赤
リンが水酸化アルミニウム又は水酸化亜鉛で被覆
されている特許請求の範囲第1項記載の赤リン系
難燃剤。 5 球体様赤リン及び/又はその集合体である赤
リンが水酸化アルミニウム及び/又は水酸化亜鉛
で被覆され、更に、熱硬化性樹脂で二重に被覆さ
れている特許請求の範囲第1項記載の赤リン系難
燃剤。 6 熱硬化性樹脂による被覆が水酸化アルミニウ
ム、水酸化マグネシウム及び水酸化チタンから選
ばれた1種又は2種の化合物の存在下に行われる
特許請求の範囲第3項又は第5項記載の赤リン系
難燃剤。
[Scope of Claims] 1. Red phosphorus that is spherical-like red phosphorus without a crushed surface and/or an aggregate thereof obtained directly by a yellow phosphorus conversion treatment method that does not require crushing. Phosphorous flame retardant. 2 Spherical red phosphorus and/or aggregate thereof, which is obtained by heating yellow phosphorus to 250 to 350°C in a reaction vessel in which the red phosphorus is replaced with an inert gas and converting it at a conversion rate of 60% or less. Claim 1 which is phosphorus
Red phosphorus flame retardant as described in section. 3. The red phosphorus flame retardant according to claim 1, wherein the spherical red phosphorus and/or the red phosphorus aggregate thereof is coated with a thermosetting resin. 4. The red phosphorus flame retardant according to claim 1, wherein the spherical red phosphorus and/or the red phosphorus aggregate is coated with aluminum hydroxide or zinc hydroxide. 5. Claim 1, in which spherical red phosphorus and/or red phosphorus that is an aggregate thereof is coated with aluminum hydroxide and/or zinc hydroxide, and is further double coated with a thermosetting resin. Red phosphorus flame retardant listed. 6. The red according to claim 3 or 5, wherein the thermosetting resin coating is carried out in the presence of one or two compounds selected from aluminum hydroxide, magnesium hydroxide, and titanium hydroxide. Phosphorous flame retardant.
JP61143714A 1986-06-19 1986-06-19 Red phosphorus flame retarder and flame-retardant resin composition Granted JPS63346A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61143714A JPS63346A (en) 1986-06-19 1986-06-19 Red phosphorus flame retarder and flame-retardant resin composition
US07/040,522 US4879067A (en) 1986-06-19 1987-04-17 Red phosphorus flame retardant and nonflammable resinous composition containing the same
CA000535782A CA1285104C (en) 1986-06-19 1987-04-28 Red phosphorus flame retardant and nonflammable resinous composition containing the same
AT87106246T ATE77804T1 (en) 1986-06-19 1987-04-29 RED PHOSPHORUS FLAME RETARDERS AND NON-FLAMMABLE RESIN COMPOSITION CONTAINING IT.
EP87106246A EP0249723B1 (en) 1986-06-19 1987-04-29 Red phosphorus flame retardant and nonflammable resinous composition containing the same
DE198787106246T DE249723T1 (en) 1986-06-19 1987-04-29 FLAME RETARDANT MADE OF RED PHOSPHORUS AND NON-FLAMMABLE RESIN COMPOSITION CONTAINING IT.
DE8787106246T DE3780088T2 (en) 1986-06-19 1987-04-29 FLAME RETARDANT MADE OF RED PHOSPHORUS AND NON-FLAMMABLE RESIN COMPOSITION CONTAINING IT.
US07/385,912 US5026757A (en) 1986-06-19 1989-07-25 Red phosphorus flame retardant and nonflammable resinous composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61143714A JPS63346A (en) 1986-06-19 1986-06-19 Red phosphorus flame retarder and flame-retardant resin composition

Publications (2)

Publication Number Publication Date
JPS63346A JPS63346A (en) 1988-01-05
JPH0437862B2 true JPH0437862B2 (en) 1992-06-22

Family

ID=15345273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61143714A Granted JPS63346A (en) 1986-06-19 1986-06-19 Red phosphorus flame retarder and flame-retardant resin composition

Country Status (1)

Country Link
JP (1) JPS63346A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58909626D1 (en) * 1988-07-18 1996-04-25 Gurit Essex Ag Resins curable to flame retardant and high temperature resistant plastics and process for their production
JP2726213B2 (en) * 1993-03-19 1998-03-11 住友ベークライト株式会社 Resin composition for semiconductor encapsulation
JP2679005B2 (en) * 1995-03-10 1997-11-19 東芝ケミカル株式会社 Composite copper clad laminate
JPH08276532A (en) * 1995-04-03 1996-10-22 Toshiba Chem Corp Glass epoxy copper-clad laminate
JPH10152599A (en) * 1996-11-21 1998-06-09 Sumitomo Bakelite Co Ltd Epoxy resin composition
TW552291B (en) * 1998-02-23 2003-09-11 Teijin Ltd Fire-retardant resin compositions
WO1999048979A1 (en) * 1998-03-25 1999-09-30 Teijin Limited Resin composition
JP5209888B2 (en) * 2006-03-09 2013-06-12 昭和電工株式会社 Thermosetting resin composition and use thereof
JP5748323B2 (en) 2010-08-19 2015-07-15 油圧機工業有限会社 Non-ferrous metal casting shearing and breaking equipment

Also Published As

Publication number Publication date
JPS63346A (en) 1988-01-05

Similar Documents

Publication Publication Date Title
Xu et al. Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy
US5026757A (en) Red phosphorus flame retardant and nonflammable resinous composition containing the same
CN106928813B (en) A kind of preparation method of the cross-linking aqueous epoxy coating of antibacterial colloidal sol
CN105237847A (en) Preparation method of silver-plated graphene, and application of the silver-plated graphene in electric-conductive flame-retarding high-density polyethylene explosion-inhibiting material
JPH0437862B2 (en)
CN113512270B (en) Organic metal phosphonate @ boron nitride/epoxy composite material and preparation method thereof
CN106497311A (en) A kind of preparation method of Graphene fire-resisting coating material
NL2025962B1 (en) Flame-retardant epoxy resin based on iron-containing nickel silicate and method for preparing the same
CN115260899A (en) Hydrophobic coating and preparation method and application thereof
CN108203519A (en) Alpha zirconium phosphate modified flame-retardant agent and its preparation method and application
Bi et al. Novel [BMIM] PF6 modified flake-ANP flame retardant: Synthesis and application in epoxy resin
Gao et al. A mussel-inspired intumescent flame-retardant unsaturated polyester resin system
JPH0518356B2 (en)
CN107663278A (en) A kind of epoxy resin highly effective flame-retardant agent dispersing liquid and preparation method thereof
Gao et al. Flame retardancy and mechanical properties of a novel zinc hydroxystannate/epoxy resin nanocomposite
CN107118390B (en) A kind of AHP and its preparation method and application modified based on epoxy silicone performed polymer microencapsulation
CN103408751B (en) A kind of preparation method of MCA fire-retardant polyamide material
Kong et al. Functionalized montmorillonite intercalation iron compounds for improving flame retardancy of epoxy resin nanocomposites
JPH0447076B2 (en)
JPH0456772B2 (en)
JP4999333B2 (en) Rust prevention material
CN107722357A (en) Phthalocyanine microencapsulation Red Phosphorus Flame Retardant product and preparation method
US5137667A (en) Process for producing elastic graphite molded products
JPS61111342A (en) Flame retardant and preparation thereof
CN108410406A (en) A kind of preparation method of modified epoxy casting glue

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees