JPH0437857B2 - - Google Patents

Info

Publication number
JPH0437857B2
JPH0437857B2 JP2660286A JP2660286A JPH0437857B2 JP H0437857 B2 JPH0437857 B2 JP H0437857B2 JP 2660286 A JP2660286 A JP 2660286A JP 2660286 A JP2660286 A JP 2660286A JP H0437857 B2 JPH0437857 B2 JP H0437857B2
Authority
JP
Japan
Prior art keywords
fibers
composite material
epoxy
amino
cresol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2660286A
Other languages
Japanese (ja)
Other versions
JPS62183341A (en
Inventor
Akira Morii
Hiroshi Nakamura
Yasuhisa Saito
Kunimasa Kamio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2660286A priority Critical patent/JPS62183341A/en
Priority to DE3689783T priority patent/DE3689783T2/en
Priority to EP19860307453 priority patent/EP0217657B1/en
Publication of JPS62183341A publication Critical patent/JPS62183341A/en
Priority to US07/174,703 priority patent/US4900848A/en
Priority to US07/402,663 priority patent/US4957995A/en
Publication of JPH0437857B2 publication Critical patent/JPH0437857B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は特定の2種のポリグリシジル誘導体と
エポキシ硬化剤を必須成分とするエポキシ樹脂組
成物の硬化物をマトリツクスとし、繊維を強化材
とした耐熱性繊維強化複合材料に関するものであ
る。 〔従来の技術〕 エポキシ樹脂組成物の硬化物をマトリツクスと
し、炭素繊維、アルミナ繊維、ポリアミド繊維等
の繊維を強化材とした繊維強化複合材料は優れた
機械的性質を有しているため、種々の産業におい
て構造部品等、さらにはスポーツ、レジヤー用品
等に使用されている。 〔発明が解決しようとする問題点〕 しかしながら、近年複合材料の応用分野が拡大
するにつれていままでの使用環境よりもさらに高
温、高湿といつたように過酷な環境下において化
学的安定性、機械的性質を維持する材料が要望さ
れるようになつてきた。 繊維強化複合材料は強化繊維の特性を最大限に
発揮させるにはマトリツクスとして用いる樹脂が
重要であり、それ故、種々のエポキシ樹脂組成物
についての開発が盛んに行われており、エポキシ
樹脂組成物をマトリツクスとした繊維強化複合材
料として、例えば特公昭55−25217号公報におい
てはN,N,N′,N′−テトラグリシジルジアミ
ノジフエニルメタン等とジフエニルジアミノスル
ホンからなるエポキシ樹脂をマトリツクスとした
炭素繊維強化複合材料が提案されている。この複
合材料は高い層間剪断強度、耐熱性を有している
がその硬化物は伸びが小さいため、硬くて脆く、
かつ熱衝撃に弱いため、航空機などの特殊用途に
使用するには必ずしも満足すべきものではない。
またN,N,N′,N′−テトラグリシジルジアミ
ノジフエニルメタンとジフエニルジアミノスルホ
ンからなる混合物は50℃において500ポイズ以上
の粘度を示し、取り扱い難い欠点がある。またこ
の混合物は反応性が悪いため、硬化反応を充分に
行うためには180℃以上の高温で4時間以上のア
フターキユアーを行う必要がある。これら欠点を
改良するため該組成物に硬化促進剤として三弗化
硼素モノエチルアミン錯塩や三弗化硼素ピペラジ
ン錯塩を用いると反応性の改善は認められるもの
の耐熱性等を損ない、一方、可撓性改善に関して
は反応性エラストマーの添加が考えられるが耐熱
性、曲げ強度の低下が著しいことが判つた。 本発明の目的は高い層間剪断強度、耐熱性、を
有し、かつ可撓性の改善された繊維強化複合材料
を提供することにある。 〔問題点を解決するための手段〕 本発明は、 (A) N,N,N′,N′−テトラグリシジルビス
(アミノフエニル)メタンおよび/またはその
縮合生成物、 (B) 芳香環に少なくとも1個のアルキル基が置換
したアミノフエノール化合物のポリグリシジル
誘導体および/またはその縮合物、および (C) エポキシ硬化剤 を必須成分とするエポキシ樹脂組成物の硬化物を
マトリツクスとし、繊維を強化材としたことを特
徴とする耐熱性繊維強化複合材料を提供する。 本発明は上記の実状に鑑み鋭意検討の結果、(A)
N,N,N′,N′−テトラグリシジルビス(アミ
ノフエニル)メタンおよび/またはその縮合生成
物と(B)芳香環に少なくとも1個のアルキル基が置
換したアミノフエノール化合物のポリグリシジル
誘導体および/またはその縮合物を混合したエポ
キシ樹脂組成物を用いたとき層間剪断強度、耐熱
性が高く、且つ可撓性の改善された繊維強化複合
材料が得られることを見出したものである。 また、上記組成物は反応性が高く、粘度も低い
ため複合材料製造における作業性も良好である。 以下、本発明について詳述する。 本発明において用いられる(A)N,N,N′,
N′−テトラグリシジルビス(アミノフエニル)
メタンおよび/またはその縮合生成物としては一
般に市販されているスミエポキシ ELM−434
(住友化学工業(株)製)、アラルダイト MY−720、
MY9512(チバガイギー社製)等が使用される。 また、一方のポリグリシジル誘導体は芳香環に
1個以上のアルキル基が置環したアミノフエノー
ルのポリグリシジル誘導体または/およびその縮
合物である。特に成形性の面から好ましくは25℃
の粘度が15ポイズ以下のポリグリシジル誘導体で
ある。 このポリグリシジル誘導体を製造する方法につ
いては特に限定されないが、一例を述べればアル
キル基置換アミノフエノールを過剰(例えば5倍
モル、好ましくは10倍モル以上)のエピハロヒド
リン(例えばエピクロルヒドリン)中で100℃以
下の温度でアミノ基へエピハロヒドリンを付加反
応させた後、40〜100℃の温度で減圧下に苛性ア
ルカリの水溶液を滴下し、同時に反応系内の水を
共沸で留去しながらエポキシ化反応させる方法が
挙げられる。上記の反応においては既存のエポキ
シ化反応と違つてエポキシ化反応以外のの副反応
が極めて抑制されているのが特徴である。このた
めエポキシ基含有量の高い低分子量のポリグリシ
ジル誘導体が得られる。特に好ましくはエピハロ
ヒドリンを約15モル倍以上使用することにより25
℃で15ポイズないしそれ以下の粘度のポリグリシ
ジル誘導体が得られる。これは三官能性のポリグ
リシジル誘導体としては極めて低い値である。 本発明で用いられるポリグリシジル誘導体は、
1個の芳香環に3個程度のポリグリシジル基が結
合しており、さらに既存のポリグリシジル誘導体
と比較してエポキシ基含有量が高いので、その硬
化物は架橋密度が高くなり、高度の耐熱性発現す
ると考えられる。 本発明で用いられるポリグリシジル誘導体の原
料であるアルキル基置換のアミノフエノール化合
物のアルキル基の炭素数は1〜5のもので1個の
アルキル基置換のものが好ましく、具体的には4
−アミノ−m−クレゾール、4−アミノ−o−ク
レゾール、6−アミノ−m−クレゾール、5−ア
ミノ−m−クレゾール、3−エチル−4−アミノ
フエノール、2−エチル−4−アミノフエノール
等の1種または2種以上が好ましく例示される。
特に好まくは4−アミノ−m−クレゾール、4−
アミノ−o−クレゾールである。 本発明で用いられる(B)芳香環に少なくとも1個
のアルキル基が置換したアミノフエノール化合物
のポリグリシジル誘導体および/またはその縮合
物の添加量は(A)N,N,N′,N′−テトラグリシ
ジルビス(アミノフエニル)メタンおよび/また
はその縮合生成物に対し通常10〜50重量%、好ま
しくは10〜30重量%である。(B)の成分が50重量%
を超えると樹脂組成物のポツトライフの低下をき
たし、一方10重量%未満では可撓性改良効果が少
ないので好ましくない。 本発明においてはさらに本発明の目的を損なわ
ない範囲で他のエポキシ樹脂との併用も可能であ
る。 本発明で用いられるエポキシ硬化剤としては公
知のものが使用でき、例えばジアミノジフエニル
スルホン化合物、ジアミノジフエニルメタン化合
物、ジシアンジアミド、テトラメチルグアナジ
ン、フエノールノボラツク樹脂、酸無水物、芳香
族アミン、脂肪族アミン、三弗化硼素錯体等を挙
げることができる。これらのなかではジアミノジ
フエニルスルホン化合物(DDS)、ジアミノジフ
エニルメタン化合物(DDM)および酸無水物が
好ましく、DDSおよび/またはDDMが特に好ま
しい。具体的にはDDS、DDMとしては4,4′−
ジアミノジフエニルスルホン、3,3′−ジアミノ
ジフエニルスルホン、4,4′−ジアミノジフエニ
ルメタン、3,3′−ジアミノジフエニルメタン等
が挙げられ、これらは単独または2種以上の混合
物で使用される。また、酸無水物としてはテトラ
ヒドロ無水フタル酸、メチルテトラヒドロ無水フ
タル酸、ヘキサヒドロ無水フタル酸、メチルヘキ
サヒドロ無水フタル酸、ドデセニル無水コハク
酸、無水ナジツク酸、無水メチルナジツク酸、無
水フタル酸、無水ピロメリツト酸、無水ベンゾフ
エノンテトラカルボン酸、メチルシクロヘキセン
テトラカルボン酸無水物、3,4−ジカルボキシ
−1,2,3,4−テトラヒドロ−1−ナフタレ
ンコハク酸二無水物、1−メチル−3,4−ジカ
ルボキシ−1,2,3,4−テトラヒドロ−1−
ナフタレンコハク酸二無水物等の1種または2種
以上が挙げられる。 本発明で用いられるポリグリシジル誘導体は特
にジアミノジフエニルスルホンおよよびジアミノ
ジフエニルメタン化合物との親和性に優れ、得ら
れる樹脂は取り扱い性が良好で、物性の面で均質
性が良好である。 本発明において樹脂組成物をプリプレグ用に用
いる場合、粘度を調節するため、ジアミノジフエ
ニルスルホン化合物、ジアミノジフエニルメタン
化合物を予め予備重合しておいても差支えない。 エポキシ硬化剤の使用割合はとエポキシ樹脂の
混合物中の全エポキシ基量から理論的に計算され
る量を1とした場合、好ましくは0.4〜1.4倍量、
より好ましくは0.5〜1.2倍量の範囲である。 更に必要により硬化促進剤として、従来より公
知である三級アミン、フエノール化合物、イミダ
ゾール類、ルイス酸等を本発明の目的を損なわな
い範囲で添加してもよい。 本発明で強化材として使用される繊維としては
炭素繊維、黒鉛繊維、ガラス繊維、炭化ケイ素繊
維、アルミナ繊維、チタニア繊維、窒化硼素繊
維、芳香族ポリアミド繊維、芳香族ポリエステル
繊維、ポリベンツイミダゾール繊維等、引張強度
0.5GPa以上、ヤング率50GPa以上の無機質また
は有機質繊維を例示することができる。 これら繊維は連続トウ、織布、短繊維、ホイス
カーなどの形で用いることができる。 また、使用目的によつては2種以上の繊維、形
状の異なつた繊維を併用することも可能である。
さらに強化繊維の他にタルク、マイカ、炭酸カル
シウム、アルミナ水和物、炭化ケイ素、カーボン
ブラツク、シリカ等の粒状物を混用することも樹
脂組成物の粘性を改良して複合材料の成形を容易
にしたり、あるいは得られる複合材料の物性、例
えば圧縮強度などを改良するために有効である。 本発明の複合材料の製造法としては従来公知の
エポキシ樹脂をマトリツクスとした繊維強化複合
材料の製造法等いずれの方法も採用できる。 一例としてはシート状プリプレグの複数枚を積
層してオートクレーブ中で加熱、加圧して複合材
料を得る方法が挙げられる。 ここでいうプリプレグとは強化繊維に該樹脂組
成物を含浸させたものであり、シート状、連続ト
ウ、ストランドおよびヤーンの形またはペレツト
状の形をとる。シート状のものでは強化繊維が連
続トウが引き揃えられた形、短繊維がマツト状に
絡まつた形、あるいは織布の形をとつている。ま
たこれら構造の異なるシートを数枚重ね合わせた
積層シート状プリプレグ、また連続トウプリプレ
グを数本束ねたものも有用な材料である。 これらプリプレグの繊維含有率は一般に5〜70
体積%、特に10〜60体積%が好ましい。 これらプリプレグを重ね、または巻きつけるこ
と等により所望の形状に賦形した後、加熱、加圧
することにより繊維強化複合材料を得ることがで
きる。また低粘度のポリグリシジル誘導体を用い
た場合、フイラメントワインデイング法において
成形性の面で特に有効である。 〔発明の効果〕 以上説明したように、本発明の繊維強化複合材
料は優れた耐熱性、耐水性、可撓性を有し、また
良好な曲げ強度、曲げ弾性率、層間剪断強度を示
し、種々の用途に使用することができる。 〔実施例〕 実施例 1 エポキシ当量120の(A)N,N,N′,N′−テトラ
グリシジルビス(アミノフエニル)メタン(スミ
エポキシ ELM−434〔住友化学工業(株)製〕)80
g、エポキシ当量105のトリグリシジル−4−ア
ミノ−m−クレゾール200gと4,4′−ジアミノ
ジフエニルスルホン425gをメチルエチルケトン
1450gに溶解させてマトリツクス樹脂組成物を調
製した。次いで炭素繊維(マグナマイト AS−
4(住化ハーキユレス(株)製)を一方向に引揃えた
後、前記樹脂溶液を含浸させ、120℃に5分間乾
燥させることにより、プリプレグを作製した。 この炭素繊維のプリプレグ中から絞り出したエ
ポキシ樹脂組成物は50℃で10.5ポイズ以下の低活
性を示し、容易に制御できる低温反応挙動のため
に容易に適度の可とう性を有するプリプレグが得
られ、Tgは265℃を示し、ポツトライフ24時間以
上であつた。 なお、プリプレグ中の炭素繊維含有率は60体積
%に調節した。 得られたプリプレグを成形後の炭素繊維含有率
が60体積%になるようにマツチドダイ金型に仕込
み、160℃に加熱された熱プレスで1時間加熱加
圧成形し、得られた成形体を更に熱風循環オーブ
ン中で180℃、4時間ポストキユアーを行い、完
全硬化させて厚み2mmの一方向強化炭素繊維強化
複合材料成形体(CFRP板)を得た。 その成形体の熱変形温度は260℃であつた。次
ぎに得られたCFRP板の曲げ強度ならびにILSS
をASTM D−790ならびにASTM D−2344に
準拠して測定した。結果を第1表に示す。
[Industrial Application Field] The present invention provides a heat-resistant fiber-reinforced composite material in which a matrix is a cured product of an epoxy resin composition containing two specific types of polyglycidyl derivatives and an epoxy curing agent as essential components, and fibers are used as a reinforcing material. It is related to. [Prior Art] Fiber-reinforced composite materials using a cured product of an epoxy resin composition as a matrix and reinforcing materials such as carbon fibers, alumina fibers, and polyamide fibers have excellent mechanical properties, and are therefore used in various ways. It is used in structural parts, sports and leisure products, etc. in many industries. [Problems to be solved by the invention] However, as the field of application of composite materials has expanded in recent years, chemical stability and mechanical There is a growing demand for materials that maintain their physical properties. In fiber-reinforced composite materials, the resin used as a matrix is important in order to maximize the characteristics of the reinforcing fibers.Therefore, various epoxy resin compositions are being actively developed. For example, in Japanese Patent Publication No. 55-25217, an epoxy resin consisting of N,N,N',N'-tetraglycidyldiaminodiphenylmethane and diphenyldiaminosulfone is used as a matrix. Carbon fiber reinforced composite materials have been proposed. Although this composite material has high interlaminar shear strength and heat resistance, the cured product has low elongation, making it hard and brittle.
In addition, it is susceptible to thermal shock, so it is not necessarily satisfactory for use in special applications such as aircraft.
Furthermore, a mixture of N,N,N',N'-tetraglycidyldiaminodiphenylmethane and diphenyldiaminosulfone exhibits a viscosity of 500 poise or more at 50 DEG C., making it difficult to handle. Furthermore, since this mixture has poor reactivity, it is necessary to carry out after-cure at a high temperature of 180° C. or higher for 4 hours or more in order to sufficiently carry out the curing reaction. In order to improve these drawbacks, when a boron trifluoride monoethylamine complex salt or a boron trifluoride piperazine complex salt is used as a curing accelerator in the composition, the reactivity is improved, but heat resistance etc. are impaired, and on the other hand, the flexibility Addition of a reactive elastomer may be considered as an improvement, but it was found that the heat resistance and bending strength were significantly reduced. An object of the present invention is to provide a fiber-reinforced composite material that has high interlaminar shear strength, heat resistance, and improved flexibility. [Means for Solving the Problems] The present invention provides: (A) N,N,N',N'-tetraglycidylbis(aminophenyl)methane and/or its condensation product; (B) at least one aromatic ring; A polyglycidyl derivative of an aminophenol compound substituted with alkyl groups and/or a condensate thereof, and (C) a cured product of an epoxy resin composition containing an epoxy curing agent as an essential component were used as a matrix, and fibers were used as a reinforcing material. A heat-resistant fiber-reinforced composite material is provided. As a result of intensive studies in view of the above-mentioned circumstances, the present invention has been developed based on (A)
N,N,N',N'-tetraglycidylbis(aminophenyl)methane and/or its condensation product and (B) a polyglycidyl derivative of an aminophenol compound having at least one alkyl group substituted on the aromatic ring and/or It has been discovered that when an epoxy resin composition containing the condensate is used, a fiber-reinforced composite material with high interlaminar shear strength, high heat resistance, and improved flexibility can be obtained. Further, since the above composition has high reactivity and low viscosity, it has good workability in producing composite materials. The present invention will be explained in detail below. (A)N, N, N′ used in the present invention,
N'-tetraglycidyl bis(aminophenyl)
Sumiepoxy ELM-434, which is generally commercially available as methane and/or its condensation product
(manufactured by Sumitomo Chemical Co., Ltd.), Araldite MY-720,
MY9512 (manufactured by Ciba Geigy) etc. are used. Further, one of the polyglycidyl derivatives is a polyglycidyl derivative of aminophenol having one or more alkyl groups attached to an aromatic ring and/or a condensate thereof. Preferably at 25°C, especially from the viewpoint of moldability.
It is a polyglycidyl derivative with a viscosity of 15 poise or less. The method for producing this polyglycidyl derivative is not particularly limited, but to give an example, an alkyl group-substituted aminophenol is mixed in an excess (for example, 5 times the mole, preferably 10 times or more by mole) of epihalohydrin (for example, epichlorohydrin) at a temperature below 100°C. After the addition reaction of epihalohydrin to the amino group at a temperature of 40 to 100°C, an aqueous solution of caustic alkali is added dropwise under reduced pressure, and at the same time water in the reaction system is distilled off azeotropically to carry out an epoxidation reaction. There are several methods. The above reaction is characterized in that side reactions other than the epoxidation reaction are extremely suppressed, unlike existing epoxidation reactions. Therefore, a low molecular weight polyglycidyl derivative with a high content of epoxy groups can be obtained. Particularly preferably, epihalohydrin is used in an amount of about 15 moles or more.
A polyglycidyl derivative having a viscosity of 15 poise or less at .degree. C. is obtained. This is an extremely low value for a trifunctional polyglycidyl derivative. The polyglycidyl derivative used in the present invention is
Approximately three polyglycidyl groups are bonded to one aromatic ring, and the epoxy group content is higher than that of existing polyglycidyl derivatives, so the cured product has a high crosslinking density and has a high degree of heat resistance. It is thought that sexual expression occurs. The alkyl group of the alkyl group-substituted aminophenol compound which is a raw material for the polyglycidyl derivative used in the present invention has 1 to 5 carbon atoms, preferably one having one alkyl group substitution, and specifically 4 carbon atoms.
-amino-m-cresol, 4-amino-o-cresol, 6-amino-m-cresol, 5-amino-m-cresol, 3-ethyl-4-aminophenol, 2-ethyl-4-aminophenol, etc. Preferable examples include one or more types.
Particularly preferred are 4-amino-m-cresol, 4-
Amino-o-cresol. The amount of (B) the polyglycidyl derivative of an aminophenol compound substituted with at least one alkyl group on the aromatic ring and/or its condensate used in the present invention is (A) N, N, N', N'- The amount is usually 10 to 50% by weight, preferably 10 to 30% by weight, based on tetraglycidyl bis(aminophenyl)methane and/or its condensation product. Component (B) is 50% by weight
If it exceeds 10% by weight, the pot life of the resin composition will decrease, while if it is less than 10% by weight, the effect of improving flexibility will be small, which is not preferable. In the present invention, it is also possible to use other epoxy resins in combination without impairing the purpose of the present invention. Known epoxy curing agents can be used in the present invention, such as diaminodiphenyl sulfone compounds, diaminodiphenylmethane compounds, dicyandiamide, tetramethylguanadine, phenol novolac resins, acid anhydrides, and aromatic amines. , aliphatic amines, boron trifluoride complexes, and the like. Among these, diaminodiphenyl sulfone compounds (DDS), diaminodiphenylmethane compounds (DDM) and acid anhydrides are preferred, with DDS and/or DDM being particularly preferred. Specifically, DDS, DDM is 4,4'-
Examples include diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, and these can be used alone or in a mixture of two or more. be done. In addition, acid anhydrides include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenylsuccinic anhydride, nadic anhydride, methylnadic anhydride, phthalic anhydride, and pyromellitic anhydride. , benzophenonetetracarboxylic anhydride, methylcyclohexenetetracarboxylic anhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalenesuccinic dianhydride, 1-methyl-3,4 -dicarboxy-1,2,3,4-tetrahydro-1-
One or more types of naphthalene succinic dianhydride may be used. The polyglycidyl derivative used in the present invention has particularly excellent affinity with diaminodiphenyl sulfone and diaminodiphenylmethane compounds, and the resulting resin is easy to handle and has good homogeneity in terms of physical properties. In the present invention, when the resin composition is used for a prepreg, a diaminodiphenyl sulfone compound and a diaminodiphenylmethane compound may be prepolymerized in advance in order to adjust the viscosity. The usage ratio of the epoxy curing agent is preferably 0.4 to 1.4 times the amount theoretically calculated from the total amount of epoxy groups in the mixture of epoxy resin and epoxy resin.
More preferably, the amount is in the range of 0.5 to 1.2 times. Furthermore, if necessary, conventionally known tertiary amines, phenol compounds, imidazoles, Lewis acids, etc. may be added as curing accelerators within a range that does not impair the object of the present invention. Examples of fibers used as reinforcing materials in the present invention include carbon fibers, graphite fibers, glass fibers, silicon carbide fibers, alumina fibers, titania fibers, boron nitride fibers, aromatic polyamide fibers, aromatic polyester fibers, and polybenzimidazole fibers. , tensile strength
Examples include inorganic or organic fibers having a Young's modulus of 0.5 GPa or more and a Young's modulus of 50 GPa or more. These fibers can be used in the form of continuous tows, woven fabrics, short fibers, whiskers, and the like. Furthermore, depending on the purpose of use, it is also possible to use two or more types of fibers or fibers with different shapes.
Furthermore, in addition to reinforcing fibers, mixing particulate materials such as talc, mica, calcium carbonate, alumina hydrate, silicon carbide, carbon black, and silica improves the viscosity of the resin composition and makes it easier to mold the composite material. It is also effective for improving the physical properties of the resulting composite material, such as compressive strength. As a method for manufacturing the composite material of the present invention, any method such as a method for manufacturing a fiber-reinforced composite material using an epoxy resin as a matrix, which is conventionally known, can be adopted. One example is a method of laminating a plurality of sheet prepregs and heating and pressurizing them in an autoclave to obtain a composite material. The prepreg herein refers to reinforcing fibers impregnated with the resin composition, and takes the form of sheets, continuous tows, strands, yarns, or pellets. In sheet-like materials, the reinforcing fibers are in the form of continuous tows aligned, short fibers entwined in a mat shape, or woven fabric. Also useful are laminated sheet prepregs made by stacking several of these sheets with different structures, and a bundle of several continuous tow prepregs. The fiber content of these prepregs is generally 5 to 70
Volume % is preferred, especially 10 to 60 volume %. A fiber-reinforced composite material can be obtained by forming these prepregs into a desired shape by stacking or winding them, and then heating and pressurizing them. Further, when a low-viscosity polyglycidyl derivative is used, it is particularly effective in terms of moldability in the filament winding method. [Effects of the Invention] As explained above, the fiber-reinforced composite material of the present invention has excellent heat resistance, water resistance, and flexibility, and also exhibits good bending strength, bending elastic modulus, and interlaminar shear strength. It can be used for various purposes. [Examples] Example 1 (A)N,N,N',N'-tetraglycidylbis(aminophenyl)methane (Sumi Epoxy ELM-434 [manufactured by Sumitomo Chemical Co., Ltd.]) with an epoxy equivalent of 120 80
g, 200 g of triglycidyl-4-amino-m-cresol with an epoxy equivalent of 105 and 425 g of 4,4'-diaminodiphenylsulfone were added to methyl ethyl ketone.
A matrix resin composition was prepared by dissolving 1450 g of the resin. Next, carbon fiber (Magnamite AS-
4 (manufactured by Sumika Hercules Co., Ltd.) was aligned in one direction, impregnated with the resin solution, and dried at 120° C. for 5 minutes to produce a prepreg. The epoxy resin composition squeezed out from this carbon fiber prepreg exhibits a low activity of 10.5 poise or less at 50°C, and due to the easily controllable low-temperature reaction behavior, a prepreg with appropriate flexibility can be easily obtained. Tg was 265°C, and the pot life was over 24 hours. Note that the carbon fiber content in the prepreg was adjusted to 60% by volume. The obtained prepreg was placed in a matte die mold so that the carbon fiber content after molding was 60% by volume, and heated and pressure molded for 1 hour in a hot press heated to 160°C. Post-curing was performed at 180° C. for 4 hours in a hot air circulation oven to completely cure the product to obtain a unidirectionally reinforced carbon fiber reinforced composite material molded article (CFRP board) with a thickness of 2 mm. The heat distortion temperature of the molded body was 260°C. Next, the bending strength and ILSS of the obtained CFRP plate
was measured in accordance with ASTM D-790 and ASTM D-2344. The results are shown in Table 1.

【表】 比較例 1 エポキシ当量120の(A)N,N,N′,N′−テトラ
グリシジルビス(アミノフエニル)メタン(スミ
エポキシ ELM−434(住友化学工業(株)製〕)1000
g、4,4′−ジアミノジフエニルスルホン413g
をメチルエチルケトン1450gに溶解させてマトリ
ツクス樹脂組成物を調製した。次いで実施例1と
同様にしてプリプレグを作製した後、170℃で1
時間プレス成形後180℃、4時間ポストキユアー
を行い、完全硬化させて厚み2mmの一方向強化炭
素繊維強化複合材料成形体(CFRP板)を得た。 その成形体の熱変形温度は245℃であつた。次
ぎに得られたCFRP板の曲げ強度ならびにILSS
を実施例1と同一条件で測定した。結果を第2表
に示す。
[Table] Comparative Example 1 (A)N,N,N',N'-tetraglycidylbis(aminophenyl)methane (Sumiepoxy ELM-434 (manufactured by Sumitomo Chemical Co., Ltd.)) with an epoxy equivalent of 120 1000
g, 4,4'-diaminodiphenyl sulfone 413 g
was dissolved in 1450 g of methyl ethyl ketone to prepare a matrix resin composition. Next, a prepreg was prepared in the same manner as in Example 1, and then heated at 170°C for 1
After time press molding, post-curing was performed at 180° C. for 4 hours to completely cure the product to obtain a unidirectionally reinforced carbon fiber reinforced composite material molded article (CFRP board) with a thickness of 2 mm. The heat distortion temperature of the molded body was 245°C. Next, the bending strength and ILSS of the obtained CFRP plate
was measured under the same conditions as in Example 1. The results are shown in Table 2.

【表】 比較例 2 エポキシ当量120の(A)N,N,N′,N′−テトラ
グリシジルビス(アミノフエニル)メタン(スミ
エポキシ ELM−434(住友化学工業(株)製〕)800
gとエポキシ当量120の(スミエポキシ ELM−
120(住友化学工業(株)製))と4,4′−ジアミノジ
フエニルスルホン413gをメチルエチルケトン
1450gに溶解させてマトリツクス樹脂組成物を調
製した。次いで実施例1と同様にしてプリプレグ
を作製した後、170℃で1時間プレス成形後180
℃、4時間ポストキユアーを行い、完全硬化させ
て厚み2mmの一方向強化炭素繊維強化複合材料成
形体(CFRP板)を得た。 その成形体の熱変形温度は230℃であつた。次
ぎに得られたCFRP板の曲げ強度ならびにILSS
を実施例1と同一条件で測定した。結果を第3表
に示す。
[Table] Comparative Example 2 (A)N,N,N',N'-tetraglycidylbis(aminophenyl)methane with epoxy equivalent of 120 (Sumiepoxy ELM-434 (manufactured by Sumitomo Chemical Co., Ltd.)) 800
g and epoxy equivalent of 120 (Sumi epoxy ELM-
120 (manufactured by Sumitomo Chemical Co., Ltd.) and 413 g of 4,4'-diaminodiphenylsulfone were mixed into methyl ethyl ketone.
A matrix resin composition was prepared by dissolving 1450 g of the resin. Next, a prepreg was produced in the same manner as in Example 1, and after press molding at 170°C for 1 hour, it was heated to 180°C.
Post-curing was performed at ℃ for 4 hours to completely cure the product to obtain a unidirectionally reinforced carbon fiber reinforced composite material molded article (CFRP board) with a thickness of 2 mm. The heat distortion temperature of the molded product was 230°C. Next, the bending strength and ILSS of the obtained CFRP plate
was measured under the same conditions as in Example 1. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) N,N,N′,N′−テトラグリシジルビ
ス(アミノフエニル)メタンおよび/またはそ
の縮合生成物、 (B) 芳香環に少なくとも1個のアルキル基が置換
したアミノフエノール化合物のポリグリシジル
誘導体および/またはその縮合物、および (C) エポキシ硬化剤 を必須成分とするエポキシ樹脂組成物の硬化物を
マトリツクスとし、繊維を強化材としたことを特
徴とする耐熱性複合材料。 2 アミノフエノール化合物が4−アミノ−m−
クレゾールおよび/または4−アミノ−o−クレ
ゾールである特許請求の範囲第1項記載の耐熱性
複合材料。 3 エポキシ硬化剤がジアミノジフエニルスルホ
ン化合物および/またはジアミノジフエニルメタ
ン化合物である特許請求の範囲第1項記載の耐熱
性複合材料。
[Scope of Claims] 1 (A) N,N,N',N'-tetraglycidylbis(aminophenyl)methane and/or its condensation product; (B) an aromatic ring substituted with at least one alkyl group; Heat resistant, characterized in that the matrix is a cured product of an epoxy resin composition containing a polyglycidyl derivative of an aminophenol compound and/or a condensate thereof, and (C) an epoxy curing agent, and fibers are used as a reinforcing material. Composite material. 2 The aminophenol compound is 4-amino-m-
The heat-resistant composite material according to claim 1, which is cresol and/or 4-amino-o-cresol. 3. The heat-resistant composite material according to claim 1, wherein the epoxy curing agent is a diaminodiphenyl sulfone compound and/or a diaminodiphenylmethane compound.
JP2660286A 1985-09-27 1986-02-07 Heat-resistant composite material Granted JPS62183341A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2660286A JPS62183341A (en) 1986-02-07 1986-02-07 Heat-resistant composite material
DE3689783T DE3689783T2 (en) 1985-09-27 1986-09-29 Low viscosity epoxy resin, this resin-containing composition and fiber-containing composite based on this hardened composition.
EP19860307453 EP0217657B1 (en) 1985-09-27 1986-09-29 Low-viscosity epoxy resin, resin composition containing it, and fibre-reinforced composite material containing cured product of the composition
US07/174,703 US4900848A (en) 1985-09-27 1988-03-29 Low-viscosity epoxy resin, and fiber-reinforced composite material from triglycidyl m-aminophenols
US07/402,663 US4957995A (en) 1985-09-27 1989-09-05 Low-viscosity epoxy resin, and fiber-reinforced composite material based on m-alkyl triglycidylaminophenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2660286A JPS62183341A (en) 1986-02-07 1986-02-07 Heat-resistant composite material

Publications (2)

Publication Number Publication Date
JPS62183341A JPS62183341A (en) 1987-08-11
JPH0437857B2 true JPH0437857B2 (en) 1992-06-22

Family

ID=12198064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2660286A Granted JPS62183341A (en) 1985-09-27 1986-02-07 Heat-resistant composite material

Country Status (1)

Country Link
JP (1) JPS62183341A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956411A (en) * 1988-02-05 1990-09-11 Mitsubishi Rayon Company, Ltd. Epoxy resin composition for composite material from m- or o-substituted triglycidylaminophenols, diaminodiphenylsulfone and latent curing agents
JP2932422B2 (en) * 1995-06-27 1999-08-09 日本原子力研究所 Fiber reinforced composite material and method for producing the same

Also Published As

Publication number Publication date
JPS62183341A (en) 1987-08-11

Similar Documents

Publication Publication Date Title
EP0127198B1 (en) Preimpregnated reinforcements and high strength composites therefrom
US4957995A (en) Low-viscosity epoxy resin, and fiber-reinforced composite material based on m-alkyl triglycidylaminophenols
US4654407A (en) Aromatic bismaleimide and prepreg resin therefrom
US4567216A (en) Thermoplastic modified epoxy compositions
EP0225174A2 (en) Thermosetting resin composition and a composite material comprising the cured product of the resin composition as its matrix
JPS59210931A (en) Bis-maleimido-epoxy composition and prepreg
JP2019526650A (en) Epoxy resin composition, prepreg, and fiber reinforced plastic material
KR20200125579A (en) Thermosetting resin composition, prepreg and fiber reinforced composite material
EP0133281A2 (en) Curable fibre reinforced epoxy resin composition
JPH0326750A (en) Fiber-reinforced composite material
JPH0437856B2 (en)
JPS63186741A (en) Fiber-reinforced composite material
JPH0437857B2 (en)
KR0154122B1 (en) Epoxy resin composition for use in carbon fiber reinforced plastics
CN111303081B (en) High-strength high-modulus epoxy resin composition and preparation method and application thereof
JPS6333413A (en) Epoxy resin composition
JPH0572407B2 (en)
CN114729104A (en) Epoxy resin composition
JPH01125374A (en) Epoxy resin based on tetraglycidyldiamine
JPH0481421A (en) Epoxy resin composition, prepreg, cured material and composite material thereof
KR20200025746A (en) Method for manufacturing prepreg having high toughness, high strength and heat resistance characteristic, prepreg manufactured by the same
JPS6274918A (en) Low-viscosity polyglycidyl derivative
JPH0437858B2 (en)
JP3935531B2 (en) Intermediate for molding composite materials
JPH01217032A (en) Epoxy resin composition