JPH0437847B2 - - Google Patents

Info

Publication number
JPH0437847B2
JPH0437847B2 JP59264921A JP26492184A JPH0437847B2 JP H0437847 B2 JPH0437847 B2 JP H0437847B2 JP 59264921 A JP59264921 A JP 59264921A JP 26492184 A JP26492184 A JP 26492184A JP H0437847 B2 JPH0437847 B2 JP H0437847B2
Authority
JP
Japan
Prior art keywords
polymerization
resin
solvent
temperature
softening point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59264921A
Other languages
Japanese (ja)
Other versions
JPS61143413A (en
Inventor
Takeshi Matsumoto
Suetaka Hayashida
Yasunobu Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP26492184A priority Critical patent/JPS61143413A/en
Publication of JPS61143413A publication Critical patent/JPS61143413A/en
Publication of JPH0437847B2 publication Critical patent/JPH0437847B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高軟化点で、かつ良好な溶解性ならび
に色相を示すジシクロペンタジエン系石油樹脂の
新規な製造方法に関する。 さらに詳しくは、本発明は(1)シクロペンタジエ
ン(CPD)、ジシクロペンタジエン(DCPD)あ
るいはそれらのアルキル置換体またはそれらの混
合物を主成分とする原料(DCPD系原料)を所定
の重合度まで熱重合させ、次いで(2)未反応成分や
溶媒等を蒸留等により除去し、その後さらに(3)開
放系で溶媒の不存在下に第2段目の熱重合を行な
うことからなる製造方法により、高軟化点で、か
つ色相および溶解性の優れたジシクロペンタジエ
ン系石油樹脂の製造を可能ならしめるものであ
る。 (従来の技術) ジシクロペンタジエン系(DCPD系)石油樹脂
の従来公知の典型的な製法例として、溶媒の存在
下260〜278℃で加熱重合し、引続き重合温度以下
の温度で溶媒を除去する米国特許第3084147号の
方法、あるいは溶媒の存在下260〜350℃の温度範
囲で加熱重合する特公昭47−43307号の方法等が
挙げられる。更に特公昭57−57048号には溶媒の
不存在下で連続的にDCPD系石油樹脂を製造する
方法が、また特公昭47−43632号には2段階の加
熱重合により分子量分布の狭いDCPD系石油樹脂
を製造する方法がそれぞれ開示されている。 これらの方法では重合温度以下での溶媒の蒸留
や、2段重合法あるいは連続重合法を用いより均
質な樹脂を得ようとしている。しかし既知の方法
では印刷インキや塗料用等の樹脂として賞用され
る高軟化点でかつ溶解性および色相の良いDCPD
系石油樹脂を得ることは困難である。わずかに相
当高純度のDCPD系原料を用い、比較的温和な方
法で、長時間(260℃で90分、そして240℃で270
分)2段階的に重合した場合に比較的色相がよく
軟化点が130℃程度の樹脂が得られているけれど
も、この方法には原料及び重合条件の制約や軟化
点に限界がある。該2段階重合法は、2段目の重
合を一段目の重合より温和な条件で行ない、第1
段反応生成物中に存在するオリゴマーを重合させ
ることにより重合体収量を増すと同時に、オリゴ
マーの存在量を減らすことにより軟化点を向上さ
せようとするものであると考えられ、この場合軟
化点向上の効果には限界がある。 一方通常の方法でより過酷な条件下(高温度、
長時間))で重合した場合には軟化点のより高い
樹脂は得られるもののその色相はかつ色から暗か
つ色を呈しかつ溶解性が劣るという欠点を有して
いる。これらの欠点を補なう方法として英国特許
第1202802号では重合後更に水素化することによ
り色相の優れた高軟化点樹脂を得るという複雑な
方法を採用している。 (解決しようとする問題点) 本発明者らはこれらの高軟化点でかつ色相およ
び溶解性の優れた樹脂を再現性よく製造する方法
について鋭意研究を重ねた結果本発明を完成する
に至つた。 即ち、本発明の方法に従えば、原料として比較
的純度の低いDCPD系原料を使つてもまた過酷な
条件下で重合を行なつても、100〜220℃、更に詳
しくは120〜220℃の高軟化点を有し、かつ色相及
び溶解性の優れたDCPD系石油樹脂を再現性よく
得ることが出来る。 (問題点を解決するための手段) 本発明は(1)DCPD系原料を所定の重合度まで熱
重合させ、(2)負圧あるいは加圧下で溶媒及び一部
あるいは全てのモノマー類を蒸留等で除去し、次
いで(3)開放系で重合液を更に加熱し重合反応を進
行させることにより、所望の石油樹脂を再現性よ
く得ることのできる方法である。ここで各工程の
組合わせ順序も重要であり、上記した以外の組合
わせ順序では目的とする優れた石油樹脂は満足に
得られない。なお、第3工程の重合石油は第1工
程の重合温度によつて規制されず希望する樹脂性
状に応じて設定され得る。 本発明の特徴を換言すると、本製造法はある程
度重合させた重合液から溶媒および一部のあるい
は全てのモノマー類を除去した反応中間体は更に
過酷な温度で加熱重合してもその色相は全く、少
なくともほとんど変化せずに単時間で高分子化し
より高軟化点でかつ溶解性の優れた樹脂を与える
という発見に基づいている。これらの事実は従来
の公知技術と相反するものであり、全く予期し得
ない新規な製造方法である。以下本発明の方法に
ついて詳細に説明する。 本発明で用いる原料はナフサ等の水蒸気分解に
より得られるCPD,DCPDあるいはそれらのアル
キル置換体またはそれらの混合物を主成分とする
原料(DCPD系原料)であり、そのCPD,DCPD
またはそれらのアルキル置換体の含有率は30wt
%程度以上であれば良く、好ましくは50wt%程
度以上であり、特に厳密に制限されるものではな
いが、一般にはこれらの含有率が高いことが望ま
しい。なぜならば、これらの脂環式ジエンの含有
率が低いと、得られる樹脂の収率が低下し経済的
でないばかりでなく、含まれる不純物によつては
得られる樹脂の色相が悪化する可能性もあるため
である。一方、これら脂環式ジエンの含有率が高
い場合には必要に応じて任意に溶媒で稀釈するこ
とが可能である。精製された純度の高い原料は一
般に色相が良好であり従つて色相の優れた樹脂を
得やすい。 またDCPD系原料中には、これらの脂環式ジエ
ンと共重合可能なオレフイン性共単量体を含み得
る。これらオレフイン性共単量体としてイソプレ
ン、1,3−ペンタジエン、ブタジエン、および
ブテン等の脂肪族オレフイン類、シクロペンテン
等の脂環式オレフイン類あるいはスチレン、ビニ
ルトルエン等のビニル置換芳香族類あるいはこれ
等の混合物が挙げられる。オレフイン類が増加す
ると得られる樹脂の軟化点が低下したり、あるい
は芳香族系の場合色相が悪化したりさらには樹脂
収率が低下する等本発明の趣旨と相反する問題も
生じてくるので、これらのオレフイン類濃度は低
い方が好ましいが、これら脂環式ジエンの10wt
%未満であれば許容される。 本発明の第1工程は通常の重合条件下で開始さ
れる。即ち、ベンゼン、キシレン、n−ヘキサン
あるいはケロシン等の溶媒の存在下あるいは不存
在下回分式あるいは連続式装置を用いて200〜300
℃、好ましくは240〜300℃の温度領域で好ましく
は窒素ガス等の不活性ガスの存在下で行なわれ
る。溶媒を用いるか否かはDCPD系原料中の脂環
式ジエンの含有率によつても左右され、含有率が
低ければ溶媒を使用する必要はなく、含有率が高
ければ一般に溶媒の共存下に重合を行なうのが好
ましい。反応系の圧力は系を液相に保持し得る圧
力であれば良く、溶媒の種類あるいは量により変
動し、特に規定されない。第1工程の重合時間あ
るいは滞留時間は第1段重合反応生成物(中間樹
脂)に希望される重合度により設定され、その重
合度は目的とする樹脂の色相によつて決まる。即
ち第1工程の重合はその重合液の色相が所望する
最終製品の色相より悪くならない程度に制御され
る。従つて第1工程は比較的温和な条件下で運転
され、得られる中間樹脂の軟化点も比較的に低
い。なお第1段重合反応で得られた生成液(モノ
マー、溶媒および中間樹脂の混合物)の色相は、
第1段の重合条件(温度、時間)の外に、用いる
原料の組成および純度あるいは溶媒の種類および
量等により変動するので画一的に規定することは
できない。上述の諸要件を満足する重合条件を数
値的に述べれば、温度200〜300℃で10分〜10時間
の範囲であり、温度が高ければ時間は短くて良
く、また温度が低ければ長時間を必要とする。好
ましい範囲である240〜300℃について考えるなら
ば、時間は10分〜5時間である。 次に第2工程の溶媒および一部のあるいは全て
のモノマー類の除去は薄膜蒸発装置やあるいは第
1反応工程の反応容器等で窒素あるいは水蒸気の
存在下あるいは不存在下に回分式にあるいは連続
式に第1段の重合に用いた圧力よりも減圧にして
行なう。用いる圧力は負圧でも微加圧でも良く、
また必要な溶媒の除去が可能であるならば加圧で
も差し支えない。溶媒の除去は蒸留または蒸発の
いずれの手段によつても良い。溶媒類の除去に際
し未反応モノマー類の一部もしくは大部分を同時
に除去するのが好ましい。なぜならば、これらの
未反応モノマー類は次の第3工程の重合で比較的
軟化点の低い樹脂に転換するためである。本発明
で言う未反応モノマー類とはDCPD系原料中の単
量体あるいはこれらの2,3量体等のオリゴマー
を意味する。 溶媒除去工程の条件を数値的に述べれば溶媒除
去工程を支配する要件は圧力、温度および時間で
あり、これらは相関している。一般に好ましい条
件としては実質的な真空から5Kg/cm2(G)の圧力、
100〜300℃の温度領域である。所要時間は薄膜蒸
発装置の場合数秒から数十秒、蒸留釜の場合数分
から数時間と用いる装置によつて大幅に変動する
が、高圧、低温では長時間を要し、低圧、高温で
は短時間で良いことは勿論である。通常重合槽や
蒸留釜を用いる場合15分〜2時間、150〜300℃と
なるように圧力を選択する。一般に溶媒除去工程
では、第1段の重合が終つた段階で圧力を下げる
ことにより、溶媒やモノマー類の蒸発が起こり気
化潜熱がうばわれる。希望の程度まで溶媒および
モノマー類を除去するために、蒸発潜熱を加熱に
より必要に応じて補給する。溶媒やモノマー類が
実質的に除去されると、加熱により系の温度は上
昇し得るようになる。したがつて、溶媒除去工程
の終期は次の第2段の重合工程と区別し得ない場
合もある。溶媒除去工程の温度として高い温度域
まで含まれているのはそのためである。 さらに第3工程での第2段目の重合条件は目的
とする樹脂の軟化点および樹脂の性状によつて選
定される。特に該重合温度は従来の公知技術のよ
うに第1工程の重合温度等により制約されず、第
1工程の重合温度より高い場合も、また逆に低い
場合もある。この第3工程である第2段目の重合
の温度は200〜300℃であり、そして重合時間は
0.1〜5時間であり、好ましくは0.2〜3時間であ
る。この第2段目の重合の際の圧力は特に規制さ
れないが、負圧ないしは常圧近辺の圧力を用いる
のがプロセス上好ましい。第3工程の重合は窒素
ガス等の不活性ガスの雰囲気下で行なうのが好ま
しく、回分式あるいは連続式に溶媒の不存在下、
開放系で行なわれる。 この第2段目の重合では従来公知の2段重合法
における未反応モノマー類、特にオリゴマーの再
重合にあるのではなく、すでに生じたDCPD系石
油樹脂の分解、再重合による高分子量化が行なわ
れるものと考えられる。このことは、前段の溶媒
除去工程でオリゴマーを含めて未反応モノマー類
が一部あるいは全て除去されていることならびに
本発明方法で得られる樹脂の収量は従来の2段重
合法におけるよりは勿論1段重合法で得られる樹
脂の収量と同じかもしくはそれよりも低いことか
らも認められる。本発明方法で高軟化点でありな
がら色相および溶解性の優れた高品質のDCPD系
石油樹脂が得られる原因は従来用いられていなか
つた分解、再重合による高分子量化という手法を
採用したことがその一因であると思われる。 本発明方法で得られるDCPD系石油樹脂は環球
法で測定した軟化点が120℃以上と高いにもかか
わらず、有機溶媒に対する溶解性が優れ、例えば
本発明の方法で得られる石油樹脂1容は少なくと
も室温で1容のトルエンに完全に可溶である。そ
してこの樹脂1容とトルエン1容の溶液は10以下
のガードナー数を有し、色相も良好である。 (発明の効果) このようにして本発明の方法に従えば淡黄色乃
至黄色の色相の優れた高軟化点樹脂を安定的に得
ることができ、かつ該樹脂はベンゼン、キシレン
あるいはシクロヘキサン等の炭化水素溶剤に良く
溶解し、印刷インキおよび塗料用樹脂、粘着付与
剤あるいはゴム配合剤等に使用される。 (実施例) 以下実施例により本発明を具体的に説明する。
各実施例には比較例として重合(第1工程)終了
後直ちに重合温度以下で溶媒及び未反応モノマー
類を除去し樹脂を得る従来の公知技術(比較例
A)と、重合(第1工程)終了後溶剤の存在下2
段目の重合反応を行なう方法(工程1→工程3→
工程2、比較例B)をそれぞれ併記してある。 実施例1は第1工程を比較的温和な条件下
(250℃×3HR)で、また第3工程を公知技術よ
り高温の270℃でそれぞれ行なつた例を示す。実
施例は通常の条件下(260℃×2HR)で処理
し、第3工程を第1工程の重合温度より低い240
℃の温度で行つた例を示す。従つて比較例−B
は従来の2段重合技術による製造方法である。実
施例は更に高温の条件下(280℃×0.5HR)で
処理した後、公知技術より高温の280℃で第3工
程の重合を行わせた製造例を示している。各実施
例及び比較例の運転条件と得られた樹脂の性状を
表1にまとめて示す。 表1から明らかなように通常の1段重合技術
(比較例A)と比較して本発明の方法に従つて製
造した樹脂は樹脂収率が幾分低いものの、いずれ
も高軟化点(比較例Aに比べて32〜123℃上昇)
で同程度の良好な色相と良好な溶解性を示す。一
方溶媒の存在下で第2段目の重合を行なう比較例
Bは比較例Aと比べいずれも樹脂収率は向上する
ものの、その色相(ガードナー)はガードナー数
で4〜7増大し非常に悪く軟化点の上昇も30〜40
℃と中程度であるか(比較例−B,−B)、
または色相は同程度と良好であるが軟化点の上昇
はごくわずかであり(比較例−B)、本発明の
方法がはるかに優れている。更に比較例Bの方法
に従つて高軟化点樹脂を製造する場合、選定する
条件によつてはトルエンに不溶な樹脂が生じ製造
条件が制約される。 なお、各実施例および比較例ではナフサのスチ
ームクラツキングにより得たコダイマーを含めた
純度が82重量%のDCPD系原料(ガードナー、
1-)をキシレンと混合して重合させた。DCPD系
原料/キシレンの重量比は60/40に設定した。得
られた樹脂の軟化点は環球法で、色相は50vol%
トルエン溶液をガードナー法により、また溶解性
は50vol%トルエン溶液での状態をそれぞれ測定
した。 なお、以下の実施例ならびに比較例中に示した
溶媒除去工程の温度および圧力の値は溶媒除去工
程終期における値である。これらの例における実
験室的操作では、溶媒ならびにモノマー類の除去
は比較的短時間、約10分程度で終りその後は表1
に示した状態に実質的に保つことができた。 実施例 DCPD系原料600gとキシレン400gを撹拌機の
ついた3オートクレーブに充填し、窒素ガスで
系内をパージした後急速に反応系を250℃まで昇
温し同温度で3時間保持し、第1工程の重合反応
を行つた。系内の圧力は15Kg/cm2(G)であつた。第
1工程終了後ロータリーエバポレーターにより窒
素雰囲気下微加圧270℃の条件下で溶媒及び未反
応モノマー類等を除去した。この第2工程に約30
分を要した。引続き同条件下で90分保持し第3工
程の重合を行つた。該樹脂の収率はDCPD系原料
基準で41wt%、また軟化点152℃および色相(ガ
ードナー)8の性状を示した。 比較例 −A 実施例の第1工程と同じ方法で得た重合液を
ロータリーエバポレーターにより窒素雰囲気下
180℃、50TORRの減圧下で1時間保持し溶媒及
び未反応モノマー類等を除去した。軟化点92℃、
色相6の樹脂を320g得た。 比較例 −B 実施例の第1工程と同じ方法で得た重合系を
引続いて270℃まで昇温し、同温度で2時間保持
し溶媒の存在下で第2段目の重合を行なつた(第
3工程)。重合終了後、ロータリーエバポレータ
ーで窒素雰囲気下50TORRに減圧し、180℃1時
間保持し溶媒及び未反応モノマー類等を除去し
た。軟化点122℃、色相10の樹脂430gを得た。 実施例−1〜−2及び比較例−A〜−
Bは上記実施例及び比較例にそれぞれ対応した方
法で行つた。なお実施例−2の第3工程はオー
トケレーブを用い窒素ガスで2Kg/cm2(G)に加圧し
て窒素ガスを流しながら第2段目の重合を行つ
た。製造条件は表1に示す通りである。 また実施例−1,−2および比較例−
A,−Bのゲルパーミエーシヨンクロマトグラ
フイー(GPC)で測定した分子量分布を第1図
に示す。本発明の方法で処理すると、(1)第3工程
で新たに高分子量のDCPD系石油樹脂が生成し軟
化点が上昇する。更に(2)第3工程の重合温度を上
げるとその傾向が大きくなることが、よく理解で
きる。より端的な例として実施例及び比較例
−AのGPCによる分子量分布を第2図に示す。
なお、本発明の方法で処理した場合、分子量分布
は幾分広がる。
(Industrial Application Field) The present invention relates to a novel method for producing a dicyclopentadiene petroleum resin that has a high softening point and exhibits good solubility and color. More specifically, the present invention (1) heats a raw material (DCPD-based raw material) mainly composed of cyclopentadiene (CPD), dicyclopentadiene (DCPD), their alkyl substituted products, or a mixture thereof to a predetermined degree of polymerization. By a manufacturing method consisting of polymerizing, then (2) removing unreacted components, solvent, etc. by distillation etc., and then further (3) performing a second thermal polymerization in an open system in the absence of a solvent, This makes it possible to produce a dicyclopentadiene petroleum resin with a high softening point and excellent hue and solubility. (Prior art) A typical example of a conventionally known manufacturing method for dicyclopentadiene-based (DCPD-based) petroleum resin is to polymerize by heating at 260 to 278°C in the presence of a solvent, and then remove the solvent at a temperature below the polymerization temperature. Examples include the method of US Pat. No. 3,084,147, and the method of Japanese Patent Publication No. 47-43307, which involves heating polymerization in the temperature range of 260 to 350° C. in the presence of a solvent. Furthermore, Japanese Patent Publication No. 57-57048 describes a method for continuously producing DCPD-based petroleum resin in the absence of a solvent, and Japanese Patent Publication No. 47-43632 describes a method for producing DCPD-based petroleum resin with a narrow molecular weight distribution through two-step thermal polymerization. Methods of manufacturing the resins are each disclosed. These methods attempt to obtain a more homogeneous resin by using distillation of the solvent at a temperature below the polymerization temperature, a two-stage polymerization method, or a continuous polymerization method. However, with known methods, DCPD, which has a high softening point and good solubility and hue, is used as a resin for printing inks and paints.
It is difficult to obtain petroleum-based resins. Using DCPD raw materials of slightly high purity, using a relatively mild method for long periods of time (90 minutes at 260℃ and 270 minutes at 240℃)
(min) When polymerized in two steps, a resin with a relatively good color and a softening point of about 130°C has been obtained, but this method has limitations in the raw materials and polymerization conditions, as well as limitations in the softening point. In the two-stage polymerization method, the second stage polymerization is performed under milder conditions than the first stage polymerization, and the first stage polymerization is performed under milder conditions than the first stage polymerization.
It is thought that the aim is to increase the polymer yield by polymerizing the oligomers present in the step reaction product, and at the same time to improve the softening point by reducing the amount of oligomers present. There are limits to its effectiveness. On the other hand, normal methods can be used under harsher conditions (high temperature,
If polymerization is carried out over a long period of time), a resin with a higher softening point can be obtained, but it has the drawbacks of being dark in color and having poor solubility. As a method to compensate for these drawbacks, British Patent No. 1202802 employs a complicated method in which a high softening point resin with excellent hue is obtained by further hydrogenation after polymerization. (Problems to be Solved) The present inventors have completed the present invention as a result of extensive research into a method for producing resins with high softening points and excellent hue and solubility with good reproducibility. . That is, according to the method of the present invention, even if relatively low-purity DCPD raw materials are used as raw materials or polymerization is carried out under harsh conditions, the polymerization temperature is 100 to 220°C, more specifically 120 to 220°C. A DCPD petroleum resin having a high softening point and excellent hue and solubility can be obtained with good reproducibility. (Means for Solving the Problems) The present invention (1) thermally polymerizes DCPD raw materials to a predetermined degree of polymerization, and (2) distills the solvent and some or all monomers under negative or increased pressure. In this method, the desired petroleum resin can be obtained with good reproducibility by (3) further heating the polymerization solution in an open system to advance the polymerization reaction. Here, the order in which the steps are combined is also important, and if the steps are combined in any other order than the above, the desired excellent petroleum resin cannot be obtained satisfactorily. Note that the polymerized petroleum in the third step is not regulated by the polymerization temperature in the first step, but can be set according to the desired resin properties. To put the characteristics of the present invention in another way, in this production method, the reaction intermediate obtained by removing the solvent and some or all of the monomers from the polymerization liquid that has been polymerized to a certain extent has no color even if it is heated and polymerized at even harsher temperatures. This is based on the discovery that the polymer can be polymerized in a short period of time with at least little change, giving a resin with a higher softening point and excellent solubility. These facts are contrary to conventionally known techniques, and are a completely unexpected new manufacturing method. The method of the present invention will be explained in detail below. The raw material used in the present invention is a raw material (DCPD-based raw material) whose main component is CPD, DCPD, or an alkyl substituted product thereof, or a mixture thereof obtained by steam cracking of naphtha, etc.
Or the content of those alkyl substituents is 30wt
% or more, preferably about 50 wt% or more, and although not particularly strictly limited, it is generally desirable that these contents be high. This is because if the content of these alicyclic dienes is low, not only will the yield of the resulting resin decrease, making it uneconomical, but depending on the impurities contained, the hue of the resulting resin may deteriorate. This is because there is. On the other hand, when the content of these alicyclic dienes is high, it is possible to optionally dilute with a solvent as necessary. Refined raw materials with high purity generally have good hue, and therefore it is easy to obtain resin with excellent hue. Further, the DCPD raw material may contain an olefinic comonomer copolymerizable with these alicyclic dienes. These olefinic comonomers include aliphatic olefins such as isoprene, 1,3-pentadiene, butadiene, and butene, alicyclic olefins such as cyclopentene, and vinyl-substituted aromatics such as styrene and vinyltoluene. A mixture of the following may be mentioned. If the amount of olefins increases, the softening point of the resulting resin will decrease, or in the case of aromatic resins, the hue will deteriorate, and furthermore, problems that are contrary to the purpose of the present invention will occur, such as a decrease in resin yield. It is preferable that the concentration of these olefins is low, but 10wt of these cycloaliphatic dienes
It is acceptable if it is less than %. The first step of the invention is initiated under conventional polymerization conditions. That is, in the presence or absence of a solvent such as benzene, xylene, n-hexane or kerosene, using a fractional or continuous apparatus,
C., preferably in the temperature range of 240 to 300.degree. C., preferably in the presence of an inert gas such as nitrogen gas. Whether or not to use a solvent also depends on the content of alicyclic diene in the DCPD raw material; if the content is low, there is no need to use a solvent, and if the content is high, it is generally not necessary to use a solvent. Preferably, polymerization is carried out. The pressure of the reaction system may be any pressure that can maintain the system in a liquid phase, varies depending on the type or amount of solvent, and is not particularly specified. The polymerization time or residence time in the first step is set depending on the degree of polymerization desired for the first stage polymerization reaction product (intermediate resin), and the degree of polymerization is determined by the hue of the desired resin. That is, the polymerization in the first step is controlled to such an extent that the hue of the polymerization solution is not worse than the hue of the desired final product. Therefore, the first step is operated under relatively mild conditions, and the softening point of the resulting intermediate resin is also relatively low. The hue of the product liquid (mixture of monomer, solvent and intermediate resin) obtained in the first stage polymerization reaction is as follows:
In addition to the first-stage polymerization conditions (temperature, time), they vary depending on the composition and purity of the raw materials used, the type and amount of the solvent, etc., and cannot be uniformly defined. Numerically speaking, the polymerization conditions that satisfy the above requirements are in the range of 10 minutes to 10 hours at a temperature of 200 to 300°C; the higher the temperature, the shorter the time, and the lower the temperature, the longer the time. I need. Considering the preferred range of 240 to 300°C, the time is 10 minutes to 5 hours. Next, the solvent and some or all of the monomers in the second step are removed in a thin film evaporator or a reaction vessel in the first reaction step in the presence or absence of nitrogen or water vapor, either batchwise or continuously. The polymerization is carried out at a reduced pressure than that used in the first stage polymerization. The pressure used may be negative pressure or slight pressurization.
Further, pressurization may be used as long as the necessary solvent can be removed. The solvent may be removed by either distillation or evaporation. When removing the solvents, it is preferable to simultaneously remove part or most of the unreacted monomers. This is because these unreacted monomers are converted into a resin having a relatively low softening point in the next third step of polymerization. In the present invention, unreacted monomers refer to monomers in DCPD raw materials or oligomers such as dimers and trimers thereof. To describe the conditions of the solvent removal process numerically, the requirements governing the solvent removal process are pressure, temperature, and time, and these are interrelated. Generally preferred conditions include a substantial vacuum to a pressure of 5 kg/cm 2 (G);
The temperature range is 100-300℃. The time required varies greatly depending on the equipment used, ranging from several seconds to several tens of seconds for a thin film evaporator and several minutes to several hours for a distillation pot, but it takes a long time at high pressure and low temperature, and a short time at low pressure and high temperature. Of course, that's a good thing. Usually, when using a polymerization tank or distillation vessel, the pressure is selected so that the temperature is 150 to 300°C for 15 minutes to 2 hours. Generally, in the solvent removal step, by lowering the pressure after the first stage polymerization is completed, the solvent and monomers evaporate and the latent heat of vaporization is used up. The latent heat of vaporization is supplemented as necessary by heating to remove the solvent and monomers to the desired extent. Once the solvent and monomers have been substantially removed, heating can increase the temperature of the system. Therefore, the final stage of the solvent removal step may be indistinguishable from the subsequent second stage polymerization step. This is why a high temperature range is included as the temperature for the solvent removal step. Further, the second stage polymerization conditions in the third step are selected depending on the softening point of the target resin and the properties of the resin. In particular, the polymerization temperature is not limited by the polymerization temperature of the first step as in conventional known techniques, and may be higher or lower than the polymerization temperature of the first step. The temperature of the second stage polymerization, which is the third step, is 200 to 300℃, and the polymerization time is
The time is 0.1 to 5 hours, preferably 0.2 to 3 hours. The pressure during this second stage polymerization is not particularly limited, but it is preferable to use a pressure near negative pressure or normal pressure from the viewpoint of the process. The polymerization in the third step is preferably carried out in an atmosphere of an inert gas such as nitrogen gas, and is carried out batchwise or continuously in the absence of a solvent.
This is done in an open system. This second-stage polymerization does not involve repolymerization of unreacted monomers, especially oligomers, as in the conventional two-stage polymerization method, but instead decomposes and repolymerizes the DCPD petroleum resin that has already formed to increase its molecular weight. It is thought that the This means that some or all of the unreacted monomers, including oligomers, are removed in the previous solvent removal step, and that the yield of resin obtained by the method of the present invention is of course lower than that of the conventional two-stage polymerization method. This is also recognized because the yield of resin obtained by the step polymerization method is the same or lower than that. The reason why a high-quality DCPD petroleum resin with a high softening point and excellent hue and solubility can be obtained by the method of the present invention is that a method of increasing the molecular weight by decomposition and repolymerization, which has not been used in the past, is adopted. This seems to be one of the reasons. Although the DCPD petroleum resin obtained by the method of the present invention has a high softening point of 120°C or higher as measured by the ring and ball method, it has excellent solubility in organic solvents. For example, one volume of petroleum resin obtained by the method of the present invention is Completely soluble in at least 1 volume of toluene at room temperature. A solution of 1 volume of this resin and 1 volume of toluene has a Gardner number of 10 or less and a good hue. (Effects of the Invention) As described above, according to the method of the present invention, it is possible to stably obtain a high softening point resin with an excellent pale yellow to yellow hue, and the resin is made of carbonized resin such as benzene, xylene or cyclohexane. It dissolves well in hydrogen solvents and is used in printing inks and paint resins, tackifiers, rubber compounding agents, etc. (Example) The present invention will be specifically described below with reference to Examples.
Each example includes a conventional known technique (Comparative Example A) for obtaining a resin by removing the solvent and unreacted monomers at a temperature below the polymerization temperature immediately after the completion of polymerization (first step), and a conventional technique (comparative example A) for polymerization (first step). After completion in the presence of solvent 2
Method for carrying out stage polymerization reaction (Step 1 → Step 3 →
Step 2 and Comparative Example B) are also shown. Example 1 shows an example in which the first step was carried out under relatively mild conditions (250° C. x 3 HR), and the third step was carried out at 270° C., which is higher than the known technology. The examples were treated under normal conditions (260°C x 2HR), and the third step was carried out at a polymerization temperature of 240°C, which was lower than the polymerization temperature of the first step.
An example conducted at a temperature of °C is shown. Therefore, Comparative Example-B
is a production method using a conventional two-stage polymerization technique. The example shows a production example in which the material was further treated under high temperature conditions (280°C x 0.5HR) and then the third step of polymerization was carried out at 280°C, which is higher than the known technology. The operating conditions of each example and comparative example and the properties of the obtained resin are summarized in Table 1. As is clear from Table 1, although the resins produced according to the method of the present invention have a somewhat lower resin yield than the conventional one-stage polymerization technique (Comparative Example A), they all have high softening points (Comparative Example A). 32-123℃ increase compared to A)
It shows comparable good hue and good solubility. On the other hand, in Comparative Example B, in which the second stage polymerization is carried out in the presence of a solvent, the resin yield is improved compared to Comparative Example A, but the hue (Gardner) is very poor, with the Gardner number increasing by 4 to 7. Increase in softening point is also 30-40
Is it moderate to °C (Comparative Examples-B, -B)?
Alternatively, the hue is good and at the same level, but the softening point increases only slightly (Comparative Example-B), and the method of the present invention is far superior. Furthermore, when producing a high softening point resin according to the method of Comparative Example B, depending on the selected conditions, some resins may be insoluble in toluene, which limits the production conditions. In addition, in each example and comparative example, DCPD-based raw materials (Gardner,
1- ) was mixed with xylene and polymerized. The weight ratio of DCPD-based raw material/xylene was set to 60/40. The softening point of the obtained resin was determined by the ring and ball method, and the hue was 50vol%.
A toluene solution was measured by the Gardner method, and solubility was measured in a 50 vol% toluene solution. Note that the temperature and pressure values in the solvent removal step shown in the following Examples and Comparative Examples are the values at the final stage of the solvent removal step. In the laboratory operations in these examples, the removal of the solvent and monomers was completed in a relatively short period of time, about 10 minutes, and thereafter
It was possible to maintain the condition substantially as shown in . Example 600 g of DCPD raw material and 400 g of xylene were charged into 3 autoclaves equipped with a stirrer, and after purging the inside of the system with nitrogen gas, the reaction system was rapidly heated to 250°C and maintained at the same temperature for 3 hours. A one-step polymerization reaction was carried out. The pressure inside the system was 15Kg/cm 2 (G). After the first step, the solvent and unreacted monomers were removed using a rotary evaporator under a nitrogen atmosphere and a slight pressure of 270°C. Approximately 30
It took several minutes. Subsequently, the same conditions were maintained for 90 minutes to carry out the third step of polymerization. The yield of the resin was 41 wt% based on the DCPD raw material, and it exhibited a softening point of 152°C and a hue (Gardner) of 8. Comparative Example -A A polymerization solution obtained in the same manner as in the first step of Example was heated under a nitrogen atmosphere using a rotary evaporator.
The mixture was maintained at 180° C. under a reduced pressure of 50 TORR for 1 hour to remove the solvent and unreacted monomers. Softening point 92℃,
320g of resin of hue 6 was obtained. Comparative Example -B A polymerization system obtained in the same manner as the first step of Example was subsequently heated to 270°C, held at the same temperature for 2 hours, and a second stage polymerization was performed in the presence of a solvent. (3rd step). After the polymerization was completed, the pressure was reduced to 50 TORR in a nitrogen atmosphere using a rotary evaporator, and the temperature was maintained at 180°C for 1 hour to remove the solvent and unreacted monomers. 430 g of resin having a softening point of 122°C and a hue of 10 was obtained. Examples -1 to -2 and Comparative Examples -A to -
B was carried out by a method corresponding to each of the above Examples and Comparative Examples. In the third step of Example 2, the second stage polymerization was carried out using an autoclave under pressure of 2 kg/cm 2 (G) with nitrogen gas and flowing nitrogen gas. The manufacturing conditions are as shown in Table 1. In addition, Examples-1, -2 and Comparative Example-
The molecular weight distributions of A and -B measured by gel permeation chromatography (GPC) are shown in FIG. When processed by the method of the present invention, (1) a high molecular weight DCPD petroleum resin is newly generated in the third step, and the softening point increases. Furthermore, it can be clearly understood that (2) this tendency increases as the polymerization temperature in the third step is raised. As a more concrete example, the molecular weight distribution of Examples and Comparative Example-A by GPC is shown in FIG.
Note that when treated by the method of the present invention, the molecular weight distribution is somewhat broadened.

【表】 *2:実施例−1ではシリコンオイル浴を使用し、
他はグリセリン浴を使用した。
*3:比較例−Bの色相は樹脂がトルエンに完全に
溶解しないので懸濁液について測定した。
参考例 1 比較例−Aで得た樹脂に溶媒除去工程で除去
した溶媒(キシレン)と同量のキシレンをオート
クレーブに加え、窒素ガスで加圧し280℃、20
Kg/cm2(G)で1.5時間保持し第2段目の重合を行つ
た。終了後ロータリーエバポレーターにより窒素
雰囲気下50TORRの減圧下180℃で1時間キシレ
ンを除去し、軟化点127℃および色相(ガードナ
ー)13の樹脂を得た。なお該樹脂はトルエンに可
溶であつた。 このように本発明以外の組合せ順序でDCPD樹
脂を製造しても本発明のような高軟化点で色相の
よい樹脂を得ることはできない。
[Table] *2: In Example-1, a silicone oil bath was used,
Others used a glycerin bath.
*3: The hue of Comparative Example-B was measured on a suspension because the resin was not completely dissolved in toluene.
Reference Example 1 The same amount of xylene as the solvent (xylene) removed in the solvent removal process was added to the resin obtained in Comparative Example-A in an autoclave, and the mixture was pressurized with nitrogen gas and heated at 280°C for 20
Kg/cm 2 (G) was maintained for 1.5 hours to carry out the second stage polymerization. After completion of the reaction, xylene was removed using a rotary evaporator at 180° C. under a reduced pressure of 50 TORR in a nitrogen atmosphere for 1 hour to obtain a resin with a softening point of 127° C. and a hue (Gardner) of 13. Note that the resin was soluble in toluene. As described above, even if a DCPD resin is produced using a combination order other than the one according to the present invention, it is not possible to obtain a resin with a high softening point and good hue as in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例−1,−2,比較例−A
および−Bで得られた樹脂のGPCによる分子
量分布を示すグラフであり、横軸は分子量を常用
対数で示し縦軸は相対強度であり図中1は実施例
−1,2は実施例−2,3は比較例−Bそ
して4は比較例−Aについてのグラフであり、
そして第2図は実施例および比較例−Aにつ
いての第1図と同じグラフであり、図中1は実施
例そして2は比較例−Aについてのグラフで
ある。
Figure 1 shows Examples-1 and -2 and Comparative Example-A.
This is a graph showing the molecular weight distribution by GPC of the resins obtained in and -B, where the horizontal axis shows the molecular weight in common logarithm, and the vertical axis shows relative strength. In the figure, 1 is Example-1 and 2 is Example-2. , 3 is a graph for Comparative Example-B and 4 is a graph for Comparative Example-A,
FIG. 2 is the same graph as FIG. 1 for Examples and Comparative Example-A, and in the figure, 1 is a graph for Example and 2 is a graph for Comparative Example-A.

Claims (1)

【特許請求の範囲】[Claims] 1 シクロペンタジエンまたはジシクロペンタジ
エンを主成分とする原料を、溶媒の存在下あるい
は不存在下において200〜300℃の温度で10分〜10
時間熱重合し、圧力を下げ得られた重合体溶液か
ら未反応成分や溶媒を除去し、さらにこの重合体
を200〜300℃の温度で0.1〜5時間熱重合するこ
とを特徴とするジシクロペンタジエン系石油樹脂
の製造方法。
1 A raw material containing cyclopentadiene or dicyclopentadiene as a main component is heated at a temperature of 200 to 300°C for 10 to 10 minutes in the presence or absence of a solvent.
dicyclo, which is characterized by thermally polymerizing for a period of time, lowering the pressure, removing unreacted components and solvent from the obtained polymer solution, and further thermally polymerizing this polymer at a temperature of 200 to 300°C for 0.1 to 5 hours. Method for producing pentadiene petroleum resin.
JP26492184A 1984-12-15 1984-12-15 Production of dicyclopentadiene-based petroleum resin Granted JPS61143413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26492184A JPS61143413A (en) 1984-12-15 1984-12-15 Production of dicyclopentadiene-based petroleum resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26492184A JPS61143413A (en) 1984-12-15 1984-12-15 Production of dicyclopentadiene-based petroleum resin

Publications (2)

Publication Number Publication Date
JPS61143413A JPS61143413A (en) 1986-07-01
JPH0437847B2 true JPH0437847B2 (en) 1992-06-22

Family

ID=17410044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26492184A Granted JPS61143413A (en) 1984-12-15 1984-12-15 Production of dicyclopentadiene-based petroleum resin

Country Status (1)

Country Link
JP (1) JPS61143413A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786132B2 (en) * 1987-04-20 1995-09-20 丸善石油化学株式会社 Method for producing high-softening point cyclopentadiene-based petroleum resin
CN102443103B (en) * 2011-09-16 2013-07-03 中国海洋石油总公司 Preparation method of low-chroma high-softening-point dicyclopentadiene petroleum resin
CN110204657B (en) * 2019-06-18 2022-07-19 安徽同心新材料科技有限公司 Light-color C9 heat-polymerized petroleum resin product with high softening point and preparation process thereof
US20230126192A1 (en) 2020-03-31 2023-04-27 Eneos Corporation Method of producing petroleum resin for hot-melt adhesive and method of producing hydrogenated petroleum resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084147A (en) * 1958-06-27 1963-04-02 Velsicol Chemical Corp Thermal polymerization of dicyclopentadiene
JPS502633A (en) * 1973-04-27 1975-01-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084147A (en) * 1958-06-27 1963-04-02 Velsicol Chemical Corp Thermal polymerization of dicyclopentadiene
JPS502633A (en) * 1973-04-27 1975-01-11

Also Published As

Publication number Publication date
JPS61143413A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
US3701760A (en) Hydrocarbon dac-b resin prepared by polymerizing dac-b using two polymerization temperature ranges followed by hydrogenation
EP0225945B1 (en) Aromatic high softening point petroleum resin and process for its preparation
JP3281366B2 (en) Method for producing copolymer of conjugated diene and vinyl aromatic compound
JPH0437847B2 (en)
JPS5855163B2 (en) Petroleum resin manufacturing method
JP2964511B2 (en) Method for producing high softening point aliphatic petroleum resin
US2894937A (en) Process for preparing petroleum resins ii
US4011385A (en) Polymerization of olefins
US3446785A (en) Polymerization of olefins
KR102261420B1 (en) Cleaning solution composition and method for cleaning polymerization device using by the composition
EP0063419B1 (en) Process for preparing light colored petroleum resins and resins produced thereby
EP0233074A2 (en) Low color aromatic resins
EP0057510B1 (en) Improvements in the production of hydrocarbon resins and products resulting therefrom
US4057682A (en) Polymerization of α-pinene
US3467632A (en) Method of making modified beta-pinene resin and resultant product
CA1087154A (en) Cationic polymerization process
EP0499941B1 (en) Process for the preparation of colourless hydrocarbon resins and products obtained thereby
JP2013517346A (en) High CIS polybutadiene rubber in harmless solvent and process for preparing the same
EP0412597B1 (en) Method for removing A1C13-based catalyst residues from polymer mixtures
US4232137A (en) Cooling an alpha-methylstyrene polymerization mass
US3354132A (en) Polymerization of bicyclic monoterpenes with an alkyl tin halide-aluminum chloride catalyst
US3418306A (en) Process for thermally degrading polyethylene
JPH09316116A (en) Production of hydrocarbon resin
US2513244A (en) Process of polymerizing butadiene-1, 3
JPH0786132B2 (en) Method for producing high-softening point cyclopentadiene-based petroleum resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees