JPH04373168A - Manufacture of semiconductor storage device - Google Patents

Manufacture of semiconductor storage device

Info

Publication number
JPH04373168A
JPH04373168A JP3151541A JP15154191A JPH04373168A JP H04373168 A JPH04373168 A JP H04373168A JP 3151541 A JP3151541 A JP 3151541A JP 15154191 A JP15154191 A JP 15154191A JP H04373168 A JPH04373168 A JP H04373168A
Authority
JP
Japan
Prior art keywords
electrode
contact hole
insulating film
forming
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3151541A
Other languages
Japanese (ja)
Inventor
Masahiko Yanagi
雅彦 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3151541A priority Critical patent/JPH04373168A/en
Publication of JPH04373168A publication Critical patent/JPH04373168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce etching residue and increase electrode area, by a method wherein, after an insulating film having triangular protruding parts are formed on a gate electrode on a silicon substrate, a contact hole is formed, and an electrode is formed on the contact hole and the insulating film. CONSTITUTION:While O2 and Ar are made to flow in a plasma chamber, and SiH4 is made to flow in a wafer chamber, plasma is drawn in a shower state from the plasma chamber to a wafer chamber, SiO2 is deposited by applying an RF bias to a wafer holder, and Ar sputtering is performed. Thereby triangular protruding parts 4 whose inclination angles are about 45 deg. are formed. After a contact hole 5 is formed by photo etching process, a capacitor electrode 6 is formed bar a sputtering method. Thereby etching residue is reduced and the area of the electrode 6 can be increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、3次元的構造のキャパ
シタ電極を有する半導体記憶装置の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor memory device having a three-dimensionally structured capacitor electrode.

【0002】0002

【従来の技術】ダイナミックランダムアクセスメモリ(
DRAM)は、キャパシタに電荷を蓄積することにより
データを記憶する。上記キャパシタは、ある程度(数1
0fF)以上の容量が必要であり、半導体素子の微細化
が進むにつれて、キャパシタ電極が2次元的構造ではキ
ャパシタ面積が足りなくなっている。そこで、現在では
、3次元的構造のキャパシタ電極形成法が提案されてい
る。
[Prior art] Dynamic random access memory (
DRAM) stores data by storing charge in a capacitor. The above capacitor has a certain value (several 1
A capacitance of 0 fF or more is required, and as semiconductor devices become smaller, the capacitor area becomes insufficient if the capacitor electrode has a two-dimensional structure. Therefore, methods for forming capacitor electrodes having a three-dimensional structure are currently being proposed.

【0003】図2に局所平坦化法(LOPLAD)によ
る工程を示し、製造工程について説明する。まず、シリ
コン基板1上にトランジスタ部を形成し、ゲート電極2
を形成した後、ポリシリコン膜7をCVD法で堆積する
。次にフォトエッチング工程を用いて、所望の形状にポ
リシリコン膜を加工する(図2(a))。次に、CVD
法によりシリコン酸化膜8を堆積し、フォトエッチング
工程により所望の形状にシリコン酸化膜8を加工する。 その後、エッチング工程により、図2(b)示す様に、
ポリシリコン膜7をくりぬき、シリコン酸化膜8の突起
部8aを形成し、その後、スパッタ法によりキャパシタ
電極6を形成する(図2(c))。
FIG. 2 shows a process using a local planarization method (LOPLAD), and the manufacturing process will be explained. First, a transistor section is formed on a silicon substrate 1, and a gate electrode 2 is formed on the silicon substrate 1.
After forming, a polysilicon film 7 is deposited by CVD method. Next, the polysilicon film is processed into a desired shape using a photo-etching process (FIG. 2(a)). Next, CVD
A silicon oxide film 8 is deposited by a method, and is processed into a desired shape by a photo-etching process. After that, by an etching process, as shown in FIG. 2(b),
Polysilicon film 7 is hollowed out to form protrusions 8a of silicon oxide film 8, and then capacitor electrode 6 is formed by sputtering (FIG. 2(c)).

【0004】上記工程を用いることにより、シリコン酸
化膜8の突起部により、キャパシタ電極6は、3次元的
構造を有し、電極面積を増大させることができる。
By using the above process, the capacitor electrode 6 has a three-dimensional structure due to the protrusions of the silicon oxide film 8, and the electrode area can be increased.

【0005】[0005]

【発明が解決しようとする課題】上記工程により断面が
矩形状であるキャパシタ電極では、エッチング残りが生
じ易くなる。また、垂直な段差を形成するとその後のC
VD法による絶縁膜成長が、オーバーハング状になると
、その影になる部分に、電極材料のエッチング残りが生
じ、電極間においてショートする場合が生じる。
Problems to be Solved by the Invention In capacitor electrodes having a rectangular cross section due to the above process, etching residues are likely to be left. Also, if a vertical step is formed, the subsequent C
When the insulating film grown by the VD method becomes an overhang, etched residue of the electrode material is left in the shadowed portion, which may cause a short circuit between the electrodes.

【0006】本発明は、エッチング残りを減少させ、電
極面積を増大させる半導体記憶装置の製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor memory device that reduces etching residue and increases electrode area.

【0007】[0007]

【課題を解決するための手段】請求項1記載の本発明で
ある半導体記憶装置の製造方法は、シリコン基板上にゲ
ート電極形成後、バイアスECRCVD法を用いて、前
記ゲート電極上に三角状突起部を有する絶縁膜を形成す
る工程と、該工程後、コンタクトホールを形成し、該コ
ンタクトホール部及び前記絶縁膜上に電極材料を堆積し
、電極を形成する工程とを有することを特徴とする。
Means for Solving the Problems In the method of manufacturing a semiconductor memory device according to the present invention as set forth in claim 1, after forming a gate electrode on a silicon substrate, a triangular protrusion is formed on the gate electrode using a bias ECRCVD method. and, after the step, forming a contact hole and depositing an electrode material on the contact hole portion and the insulating film to form an electrode. .

【0008】また、請求項2記載の本発明の半導体記憶
装置の製造方法は、前記請求項1記載の半導体記憶装置
の製造方法におけるバイアスECRCVD法の代わりに
バイアススパッタ法を用いることを特徴とする。
A method for manufacturing a semiconductor memory device according to a second aspect of the present invention is characterized in that a bias sputtering method is used in place of the bias ECRCVD method in the method for manufacturing a semiconductor memory device according to the first aspect. .

【0009】[0009]

【作用】上記請求項1及び請求項2記載の本発明を用い
ることで、キャパシタ電極の突起部の傾斜角が約45°
になっているので、その後の加工工程に於いて、オーバ
ーハングにならず、エッチング残りが減少し、またキャ
パシタ電極部の面積が増大し、容量が増加する。
[Operation] By using the present invention as set forth in claims 1 and 2 above, the inclination angle of the protrusion of the capacitor electrode is approximately 45°.
Therefore, in subsequent processing steps, overhang does not occur, etching residue is reduced, and the area of the capacitor electrode portion is increased, resulting in an increase in capacitance.

【0010】0010

【実施例】以下、実施例に基づいて、本発明を詳細に説
明する。
EXAMPLES The present invention will be explained in detail below based on examples.

【0011】図1に請求項1及び請求項2記載の本発明
の一実施例の製造工程図を示す。
FIG. 1 shows a manufacturing process diagram of an embodiment of the present invention according to claims 1 and 2.

【0012】1はシリコン基板、2はゲート電極、3は
シリコン酸化膜、4は三角状突起部、5はコンタクトホ
ール、6はキャパシタ電極を示す。
Reference numeral 1 indicates a silicon substrate, 2 a gate electrode, 3 a silicon oxide film, 4 a triangular protrusion, 5 a contact hole, and 6 a capacitor electrode.

【0013】次に、請求項1記載の本発明の一実施例の
製造工程について述べる。まず、シリコン基板1上にゲ
ート電極2を従来技術を用いて形成する(図1(a))
。次に、バイアスECRCVD法(「ECR」は、「エ
レクトロ・サイクロトロン・レゾナンス」の略で、「電
子サイクロトロン共鳴」を示す。)により、配線上に断
面が傾斜角約45°の三角状突起部4となるシリコン酸
化膜3を堆積する(図1(b))。図3は、バイアスE
CRCVD法に用いる装置の概略図を示す。9はプラズ
マ室、10はウェハー室、11は導波管、12はコイル
、13はウェハー、14はウェハーホルダー、15はガ
ス導入管を示す。実際には、ブラズマ室9にガス導入管
15を通してO2 及びArを流し、ウェハー室10に
は、ガス導入管15を通してSiH4 を流しながら、
プラズマ室9よりプラズマをシャワー状にウェハー室1
0に引き出して、ウェハーホルダー14にRFバイアス
をかけることにより、SiO2 を堆積し、同時にAr
でスパッタすることにより三角状突起部4を形成する。 上記形成条件として、圧力は10−3  〜10−4 
 Torr,マイクロ波は2.45GHz ,磁束密度
は875Gaus,RFは13.56MHZである。次
に、従来の技術により、フォトエッチング工程により、
コンタクトホール5を形成した後(図1(c))、スパ
ッタ法によりキャパシタ電極6を形成する(図1(d)
)。
Next, a manufacturing process of an embodiment of the present invention as defined in claim 1 will be described. First, a gate electrode 2 is formed on a silicon substrate 1 using a conventional technique (FIG. 1(a)).
. Next, by bias ECRCVD method ("ECR" is an abbreviation for "electro cyclotron resonance" and indicates "electron cyclotron resonance"), a triangular protrusion 4 having a cross section with an inclination angle of about 45 degrees is formed on the wiring. A silicon oxide film 3 is deposited (FIG. 1(b)). Figure 3 shows the bias E
A schematic diagram of an apparatus used in the CRCVD method is shown. 9 is a plasma chamber, 10 is a wafer chamber, 11 is a waveguide, 12 is a coil, 13 is a wafer, 14 is a wafer holder, and 15 is a gas introduction tube. Actually, while O2 and Ar are flowing into the plasma chamber 9 through the gas introduction pipe 15, and SiH4 is flowing into the wafer chamber 10 through the gas introduction pipe 15.
Plasma is showered from plasma chamber 9 to wafer chamber 1.
By applying an RF bias to the wafer holder 14, SiO2 is deposited and at the same time Ar
Triangular protrusions 4 are formed by sputtering. As the above forming conditions, the pressure is 10-3 to 10-4
Torr, microwave is 2.45 GHz, magnetic flux density is 875 Gaus, and RF is 13.56 MHz. Next, by a photo-etching process using conventional technology,
After forming the contact hole 5 (FIG. 1(c)), a capacitor electrode 6 is formed by sputtering (FIG. 1(d)).
).

【0014】次に、請求項2記載の本発明の一実施例の
製造工程について述べる。まず、シリコン基板1上にゲ
ート電極2を従来技術を用いて形成する(図1(a))
。次にバイアススパッタ法により配線上に断面が傾斜角
約45°の三角状突起部4となるシリコン酸化膜3を堆
積する(図1(b))。バイアススパッタ法は、通常の
スパッタ法において、RFバイアスを加える方法であり
、シリコン酸化膜の形成に、石英をターゲットにして、
スパッタリングし、SiO2を物理的に付着させるもの
である。上記工程後、従来の技術により、フォトエッチ
ング工程により、コンタクトホール5を形成した後(図
1(c))、スパッタ法によりキャパシタ電極6を形成
する(図1(d))。製造工程の各断面図は、図1に示
すバイアスECRCVD法を用いた場合と同じ形状とな
る。
Next, a manufacturing process of an embodiment of the present invention as defined in claim 2 will be described. First, a gate electrode 2 is formed on a silicon substrate 1 using a conventional technique (FIG. 1(a)).
. Next, a silicon oxide film 3, which becomes a triangular protrusion 4 having a cross section with an inclination angle of about 45°, is deposited on the wiring by bias sputtering (FIG. 1(b)). The bias sputtering method is a method in which an RF bias is added to the normal sputtering method, and quartz is used as a target to form a silicon oxide film.
Sputtering is used to physically attach SiO2. After the above steps, a contact hole 5 is formed by a photo-etching process using a conventional technique (FIG. 1(c)), and then a capacitor electrode 6 is formed by a sputtering method (FIG. 1(d)). Each cross-sectional view of the manufacturing process has the same shape as when using the bias ECRCVD method shown in FIG.

【0015】[0015]

【発明の効果】以上詳細に説明した様に、請求項1及び
請求項2記載の本発明を用いることにより、ゲート電極
上に断面が三角状の突起部を設けることにより、キャパ
シタ面積を増大することができ、また、斜面が約45°
の傾斜をもつことになるのでエッチング残りが抑制でき
る。
As described above in detail, by using the present invention as claimed in claims 1 and 2, the area of the capacitor can be increased by providing a protrusion with a triangular cross section on the gate electrode. Also, the slope is approximately 45°.
Since it has a slope of , etching residue can be suppressed.

【0016】また、キャパシタ面積を更に増加させるた
め、ゲート電極の上にかさ上げ材をのせて段差をさらに
大きくしても溝を埋め込む事ができ、突起の部分で面積
を増大することができるため、更に高集積のDRAMを
得ることが可能となる。
Furthermore, in order to further increase the capacitor area, even if a raised material is placed on top of the gate electrode to further increase the step, the groove can be filled in, and the area can be increased at the protrusion. , it becomes possible to obtain a DRAM with even higher integration.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】請求項1及び請求項2記載の本発明の一実施例
の製造工程図である。
FIG. 1 is a manufacturing process diagram of an embodiment of the present invention according to claims 1 and 2.

【図2】従来技術の製造工程図である。FIG. 2 is a manufacturing process diagram of the prior art.

【図3】バイアスECRCVD法に用いる装置の概念図
である。
FIG. 3 is a conceptual diagram of an apparatus used in a bias ECRCVD method.

【符号の説明】[Explanation of symbols]

1  シリコン 2  ゲート電極 3  シリコン酸化膜 4  三角状突起部 5  コンタクトホール 6  キャパシタ電極 9  プラズマ室 10  ウェハー室 12  コイル 13  ウェハー 14  ウェハーホルダー 15  ガス導入管 1 Silicon 2 Gate electrode 3 Silicon oxide film 4 Triangular protrusion 5 Contact hole 6 Capacitor electrode 9 Plasma chamber 10 Wafer room 12 Coil 13 Wafer 14 Wafer holder 15 Gas introduction pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  3次元的構造のキャパシタ電極を有す
る半導体記憶装置の製造方法において、シリコン基板上
にゲート電極を形成後、バイアスECRCVD法を用い
て、前記ゲート電極上に三角状突起部を有する絶縁膜を
形成する工程と、該工程後、コンタクトホールを形成し
、該コンタクトホール部及び前記絶縁膜上に電極材料を
堆積し、電極を形成する工程とを有することを特徴とす
る、半導体記憶装置の製造方法。
1. A method for manufacturing a semiconductor memory device having a capacitor electrode having a three-dimensional structure, after forming a gate electrode on a silicon substrate, a bias ECRCVD method is used to form a triangular protrusion on the gate electrode. A semiconductor memory comprising a step of forming an insulating film, and a step of forming a contact hole after the step and depositing an electrode material on the contact hole portion and the insulating film to form an electrode. Method of manufacturing the device.
【請求項2】  3次元的構造のキャパシタ電極を有す
る半導体記憶装置の製造方法において、シリコン基板上
にゲート電極を形成後、バイアススパッタ法を用いて、
前記ゲート電極上に三角状突起部を有する絶縁膜を形成
する工程と、該工程後、コンタクトホールを形成し、該
コンタクトホール部及び前記絶縁膜上に電極材料を堆積
し、電極を形成する工程とを有することを特徴とする、
半導体記憶装置の製造方法。
2. In a method of manufacturing a semiconductor memory device having a capacitor electrode having a three-dimensional structure, after forming a gate electrode on a silicon substrate, using a bias sputtering method,
A step of forming an insulating film having a triangular protrusion on the gate electrode, and after this step, forming a contact hole and depositing an electrode material on the contact hole portion and the insulating film to form an electrode. characterized by having
A method for manufacturing a semiconductor memory device.
JP3151541A 1991-06-24 1991-06-24 Manufacture of semiconductor storage device Pending JPH04373168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3151541A JPH04373168A (en) 1991-06-24 1991-06-24 Manufacture of semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3151541A JPH04373168A (en) 1991-06-24 1991-06-24 Manufacture of semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH04373168A true JPH04373168A (en) 1992-12-25

Family

ID=15520769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3151541A Pending JPH04373168A (en) 1991-06-24 1991-06-24 Manufacture of semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH04373168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739036A2 (en) * 1995-04-17 1996-10-23 Oki Electric Industry Co., Ltd. Semiconductor memory cell and method of manufacturing the same
KR100399915B1 (en) * 1996-06-28 2004-07-23 주식회사 하이닉스반도체 Method for fabricating capacitor of semiconductor device to increase surface area of lower electrode and improve capacitance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739036A2 (en) * 1995-04-17 1996-10-23 Oki Electric Industry Co., Ltd. Semiconductor memory cell and method of manufacturing the same
EP0739036A3 (en) * 1995-04-17 1999-11-10 Oki Electric Industry Co., Ltd. Semiconductor memory cell and method of manufacturing the same
KR100399915B1 (en) * 1996-06-28 2004-07-23 주식회사 하이닉스반도체 Method for fabricating capacitor of semiconductor device to increase surface area of lower electrode and improve capacitance

Similar Documents

Publication Publication Date Title
US6867141B2 (en) Method for fabricating semiconductor device and forming interlayer dielectric film using high-density plasma
US5405799A (en) Method of making a storage electrode of DRAM cell
JPH05217815A (en) Manufacture and structure of memory cell capacitor
US9080239B2 (en) Method and apparatus for angular high density plasma chemical vapor deposition
US5240558A (en) Method for forming a semiconductor device
JP2882301B2 (en) Method for manufacturing semiconductor device
US6939805B2 (en) Method of etching a layer in a trench and method of fabricating a trench capacitor
US5346846A (en) Method of manufacturing a highly integrated semiconductor device
TWI803122B (en) Method for preparing fine metal lines with high aspect ratio
JPH04373168A (en) Manufacture of semiconductor storage device
KR100220933B1 (en) Forming method for metal wiring of semiconductor device
US20010005630A1 (en) Method of filling gap by use of high density plasma oxide film and deposition apparatus therefor
US20030077872A1 (en) Process flow for sacrificial collar with polysilicon void
JP2972145B2 (en) Method for growing hemispherical granular silicon
JP3114640B2 (en) Method for manufacturing semiconductor device
JP3093225B2 (en) Method of manufacturing capacitor electrode for semiconductor memory
US6187629B1 (en) Method of fabricating a DRAM capacitor
KR100190194B1 (en) Fabrication method of semiconductor device
JP2002016134A (en) Manufacturing method of semiconductor device
US6144059A (en) Process and structure for increasing capacitance of stack capacitor
JP2003100911A (en) Method for forming capacitor
KR100400284B1 (en) Method for forming storage node electrode of semiconductor device
JPH10261769A (en) Method for forming storage node
KR100291410B1 (en) Selective hemispherical silicon grain charge storage electrode formation method of semiconductor device
KR20030025317A (en) Method for fabricating capacitor of semiconductor device