JPH04372955A - Dispersion of phthalocyanine pigment and manufacture of electrophotographic photoreceptor - Google Patents

Dispersion of phthalocyanine pigment and manufacture of electrophotographic photoreceptor

Info

Publication number
JPH04372955A
JPH04372955A JP17576091A JP17576091A JPH04372955A JP H04372955 A JPH04372955 A JP H04372955A JP 17576091 A JP17576091 A JP 17576091A JP 17576091 A JP17576091 A JP 17576091A JP H04372955 A JPH04372955 A JP H04372955A
Authority
JP
Japan
Prior art keywords
dispersion
phthalocyanine pigment
electrophotographic photoreceptor
phthalocyanine
dispersing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17576091A
Other languages
Japanese (ja)
Other versions
JP2887215B2 (en
Inventor
Hideyuki Sonoya
相野谷 英之
Hideki Anayama
秀樹 穴山
Yoshiyuki Yoshihara
淑之 吉原
Nobuyuki Hanami
葉波 信之
Junichi Kishi
淳一 岸
Hiroshi Aoto
寛 青砥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17576091A priority Critical patent/JP2887215B2/en
Publication of JPH04372955A publication Critical patent/JPH04372955A/en
Application granted granted Critical
Publication of JP2887215B2 publication Critical patent/JP2887215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To provide the dispersion capable of efficiently dispersing a phthalocyanine pigment into uniform and stable fine grains with no crystal conversion in a very short time and maintaining the stability during circulation and the manufacture of an electrophotographic photoreceptor capable of obtaining a good image with no image defect. CONSTITUTION:The process in which a mixture containing a phthalocyanine pigment and a dispersion medium collides together at the flow speed 43-75m/sec via a dispersion device constituted of members 1-4 is provided in the dispersion method of the phthalocyanine pigment, the phthalocyanine pigment can be efficiently dispersed into uniform and stable fine grains with no crystal conversion, the stability is maintained during circulation, no paint film defect is generated when a film is formed, and an electrophotographic photoreceptor made of a dispersion solution obtained in this dispersion method can obtain a good image with no image defect.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はフタロシアニン顔料の分
散方法および該分散方法により得られた分散液を用いる
電子写真感光体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dispersing phthalocyanine pigments and a method for producing an electrophotographic photoreceptor using the dispersion obtained by the dispersion method.

【0002】0002

【従来の技術】従来、顔料等の固体を分散する分散装置
はロールミル、ボールミル、振動ボールミル、アトライ
ターまたはコロイドミルなど各種いろいろな形態のもの
が考えられている。
2. Description of the Related Art Conventionally, various types of dispersion devices for dispersing solids such as pigments have been considered, such as roll mills, ball mills, vibrating ball mills, attritors, and colloid mills.

【0003】これらの中で有効であり、かつ代表的な手
段としてはベツセル内部にガラスビーズ等のメジウムを
入れ回転分散手段であるディスクまたはドラムを回転さ
せて微分散するいわゆるサンドミル分散装置を用いる方
法がある。
[0003] Among these methods, an effective and representative method is a method using a so-called sand mill dispersion device in which a medium such as glass beads is placed inside a Betu cell and finely dispersed by rotating a disk or drum serving as a rotational dispersion means. There is.

【0004】サンドミル分散装置を用いて顔料等を分散
する場合、被分散液を循環する機構を有する連続式分散
方法と、この機構をもたないバッチ式の分散方法とがあ
る。連続式分散方法の場合、ベツセル内総てに分散液が
充填されるため、分散効率が良くなるという長所をもつ
が、循環を行うため、ポンプ部、配管部および装置によ
っては液だめ部などが必要となり、被分散液が多量に必
要な上、実際に分散される時間、すなわちベツセル内に
滞留する時間が短いという欠点がある。また粘性が高く
なるような被分散液の場合、ベツセル内でバイパス現象
(被分散液をベツセル内の下から上へ循環している際に
、被分散液の粘度の低い部分に圧力が集中して、不十分
な分散のままで被分散液が上へ抜ける現象)が生じ、十
分に分散する所と分散しにくい所ができる可能性があり
、均一な分散ができないことがあった。
When dispersing pigments and the like using a sand mill dispersion device, there are two types: a continuous dispersion method that has a mechanism for circulating the liquid to be dispersed, and a batch dispersion method that does not have this mechanism. Continuous dispersion methods have the advantage of improving dispersion efficiency because the entire vessel is filled with the dispersion liquid. This method requires a large amount of the liquid to be dispersed, and has the disadvantage that the time for actual dispersion, that is, the time for residence in the vessel, is short. In addition, in the case of a liquid to be dispersed that has a high viscosity, a bypass phenomenon occurs within the vessel (when the liquid to be dispersed is circulated from the bottom to the top of the vessel, pressure is concentrated in the lower viscosity part of the liquid to be dispersed). This may cause the liquid to be dispersed to escape upwards while remaining insufficiently dispersed, resulting in areas where it is sufficiently dispersed and areas where it is difficult to disperse, and uniform dispersion may not be possible.

【0005】これに対し、バッチ式の分散方法では、バ
イパス現象が起きるようなことはなく、またベツセル内
の滞留時間が短くなるということもない。しかしながら
、バッチ式の場合、上ブタと分散液の間にデッドスペー
スがあり、最上部のディスクまたはドラムにより被分散
液とメジウムがはねとばされることが多く、連続式に比
べ著しく分散効率が悪くなるという欠点があった。
On the other hand, in the batch type dispersion method, the bypass phenomenon does not occur, and the residence time in the vessel does not become short. However, in the case of the batch type, there is a dead space between the top lid and the dispersion liquid, and the liquid to be dispersed and the medium are often splashed away by the uppermost disk or drum, resulting in significantly lower dispersion efficiency than in the continuous type. There was a drawback.

【0006】また、顔料の中でもフタロシアニン顔料、
特にオキシチタニウムフタロシアニン顔料の結晶形は多
種に渡っており、分散方法によっては分散前後で結晶形
が変換してしまうこともあった。
[0006] Among the pigments, phthalocyanine pigments,
In particular, there are many different crystal forms of oxytitanium phthalocyanine pigments, and depending on the dispersion method, the crystal forms may change before and after dispersion.

【0007】近年の電子写真分野における高画質化に伴
い、より短時間で分散効率良く結晶形を変換することも
なく安定して微細粒子に均一に分散できるような分散方
法が検討されている。
[0007] With the recent improvement in image quality in the field of electrophotography, studies are being conducted on dispersion methods that can stably and uniformly disperse fine particles in a shorter time and with higher dispersion efficiency without converting the crystal form.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上述
のような欠点のない、即ち短時間で均一な安定した微細
粒子にまで分散をすることができる分散効率の良い分散
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly efficient dispersion method that does not have the above-mentioned drawbacks and can disperse particles evenly and stably into fine particles in a short period of time. There is a particular thing.

【0009】また、本発明の目的は、フタロシアニン顔
料の結晶形を変換することなく分散することができる分
散方法を提供することにある。
Another object of the present invention is to provide a dispersion method capable of dispersing a phthalocyanine pigment without changing its crystal form.

【0010】また、本発明の目的は、成膜したときに塗
膜欠陥が生じることのなく、粒径の小さい分散液を得る
ことができる分散方法を提供することにある。
Another object of the present invention is to provide a dispersion method that can produce a dispersion with small particle sizes without causing coating defects during film formation.

【0011】また、本発明の目的は、電子写真感光体の
感光層の形成に用いて、画像欠陥の生ずることのない電
子写真感光体の製造が可能な分散液を得ることのできる
分散方法を提供することにある。
Another object of the present invention is to provide a dispersion method that can be used to form a photosensitive layer of an electrophotographic photoreceptor to obtain a dispersion liquid that can produce an electrophotographic photoreceptor without image defects. It is about providing.

【0012】また、本発明の目的は、分散液の増粒性が
小さく、これが循環時にも維持されるため長期間にわた
って電子写真感光体に使用できる分散液の分散方法を提
供することにある。
Another object of the present invention is to provide a method for dispersing a dispersion, which has a small particle-enhancing property and is maintained even during circulation, so that it can be used in an electrophotographic photoreceptor for a long period of time.

【0013】また、本発明は上記分散方法により得られ
た分散液を用いた電子写真感光体の製造方法を提供する
ことにある。
Another object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor using a dispersion obtained by the above-mentioned dispersion method.

【0014】[0014]

【課題を解決するための手段】即ち、本発明はフタロシ
アニン顔料および分散媒を含有する混合物同士を43〜
75m/secの流速で衝突させる工程を有することを
特徴とするフタロシアニン顔料の分散方法である。
[Means for Solving the Problems] That is, the present invention provides a method for mixing a mixture containing a phthalocyanine pigment and a dispersion medium with
This is a method for dispersing phthalocyanine pigments, which comprises a step of colliding at a flow rate of 75 m/sec.

【0015】また、本発明は上記分散方法により得られ
た分散液により電荷発生層を形成する工程を有する電子
写真感光体の製造方法である。
The present invention also provides a method for producing an electrophotographic photoreceptor, which includes the step of forming a charge generation layer using a dispersion obtained by the above-mentioned dispersion method.

【0016】本発明においては、混合物をエアーポンプ
やメカニカルポンプによる圧力でインタラクションチャ
ンバーへ導き、導入された混合物はチャンバー内部で2
つの流路に分岐された後、衝突区域においてこれら分岐
された混合物が衝突させられる。その際の衝撃力と、混
合物の流体が高速で通過する際に生ずる真空作用による
キャビテーションとの相互作用により、微粒子化作用お
よび均一分散化作用が引き起こされるものと考える。
[0016] In the present invention, the mixture is guided into the interaction chamber by pressure from an air pump or a mechanical pump, and the introduced mixture is heated inside the chamber by two
After being branched into two channels, these branched mixtures are collided in a collision zone. It is believed that the interaction between the impact force at that time and the cavitation caused by the vacuum effect that occurs when the fluid of the mixture passes at high speed causes atomization and uniform dispersion.

【0017】本発明に用いられる分散装置を部材ごとに
分解した例を図1に示す。
FIG. 1 shows an example of disassembling the dispersion device used in the present invention into parts.

【0018】図1において、フタロシアニン顔料と分散
媒を含有した混合物をポンプ(不図示)により部材1に
矢印方向に導入する。なお、矢印は混合物の流れを示し
ている。導入された混合物は部材2に設けられた2つの
穴により2つの流れに分岐され、部材2の下流側でこれ
ら分岐された混合物が衝突する。この際部材2に設けら
れた穴により流路が細くなるために、混合物の流速は非
常に加速されている。衝突した混合物は、部材3により
再び2つの流れに分岐された後、部材4を通って排出さ
れる。
In FIG. 1, a mixture containing a phthalocyanine pigment and a dispersion medium is introduced into a member 1 in the direction of the arrow by a pump (not shown). Note that the arrows indicate the flow of the mixture. The introduced mixture is split into two streams by two holes provided in the member 2, and these branched mixtures collide on the downstream side of the member 2. At this time, since the flow path becomes narrow due to the holes provided in the member 2, the flow rate of the mixture is greatly accelerated. The impinged mixture is again split into two streams by element 3 and then discharged through element 4.

【0019】この様な分散装置を用いてフタロシアニン
顔料を分散することによって顔料を短時間で均一な分散
液とすることが可能である。特に微細な分散粒径と分散
の均一性が要求される電子写真感光体塗工液に含有され
る電荷発生物質としてのフタロシアニン顔料の分散に対
して極めて有効な手段となる。
By dispersing the phthalocyanine pigment using such a dispersing device, it is possible to form a uniform dispersion of the pigment in a short time. In particular, it is an extremely effective means for dispersing phthalocyanine pigments as charge-generating substances contained in electrophotographic photoreceptor coating solutions that require fine dispersed particle size and uniformity of dispersion.

【0020】混合物を衝突させるときの流速が43m/
sec未満または75m/secを越えると、循環時に
増粒してしまう他、製造された感光体が画像欠陥を発生
させてしまう。
[0020] The flow velocity when the mixture collides is 43 m/
If it is less than sec or exceeds 75 m/sec, particles will increase during circulation, and the manufactured photoreceptor will develop image defects.

【0021】本発明によれば、フタロシアニン顔料の中
でも特に多くの種類の結晶形が確認されているオキシチ
タニウムフタロシアニン結晶を分散しても分散の前後で
結晶形の変換は生じない。特に、CuKαのX線回折に
おけるブラッグ角2θ±0.2°が9.0°、14.2
°、23.9°および27.1°に強いピークを有する
、所謂I型オキシチタニウムフタロシアニンなどの比較
的不安定な結晶形を有するフタロシアニン結晶の分散に
対し、本発明は有効である。
According to the present invention, even when oxytitanium phthalocyanine crystals, which are known to have many types of crystal forms among phthalocyanine pigments, are dispersed, no change in crystal form occurs before and after dispersion. In particular, the Bragg angle 2θ±0.2° in X-ray diffraction of CuKα is 9.0° and 14.2°.
The present invention is effective for dispersing phthalocyanine crystals having relatively unstable crystal forms, such as so-called type I oxytitanium phthalocyanine, which has strong peaks at 23.9° and 27.1°.

【0022】以下、本発明の分散方法を用いて、I型オ
キシチタニウムフタロシアニン結晶を含有する感光層を
有する電子写真感光体を例にして詳しく説明する。
Hereinafter, the dispersion method of the present invention will be explained in detail, taking as an example an electrophotographic photoreceptor having a photosensitive layer containing type I oxytitanium phthalocyanine crystals.

【0023】電子写真感光体が有する感光層の構成の代
表的な例として電荷発生物質であるI型オキシチタニウ
ムフタロシアニンと電荷輸送物質を同一の層に含有する
、所謂単一層型と、I型オキシチタニウムフタロシアニ
ンを含有する電荷発生層と電荷輸送物質を含有する電荷
輸送層に機能分離された、所謂積層型が挙げられる。
Typical examples of the structure of the photosensitive layer of an electrophotographic photoreceptor include a so-called single layer type in which type I oxytitanium phthalocyanine, which is a charge generating substance, and a charge transport substance are contained in the same layer, and A so-called laminated type layer includes a charge generation layer containing titanium phthalocyanine and a charge transport layer containing a charge transport material, which are functionally separated.

【0024】単一層型、積層型にかかわらずフタロシア
ニン顔料を含有する層を形成するための塗工液について
は本発明の分散方法が用いられる。
[0024] The dispersion method of the present invention is used for coating liquids for forming a layer containing a phthalocyanine pigment, regardless of whether it is a single layer type or a multilayer type.

【0025】電荷発生層用の塗工液は、例えばI型オキ
シチタニウムフタロシアニンを適当な有機溶剤、例えば
テトラヒドロフラン、シクロヘキサノン、メチルエチル
ケトン、酢酸エチル、メタノール、メチルセルソルブ、
アセトン、ジオキサンおよびN,N−ジメチルホルムア
ミドなどを分散媒として本発明の分散方法により分散液
として調製される。この時に結着剤として高分子物質を
一緒に加えても良いし、顔料と分散媒だけであらかじめ
分散した後、結着剤を加えても良い。
The coating solution for the charge generation layer is, for example, a type I oxytitanium phthalocyanine mixed with a suitable organic solvent such as tetrahydrofuran, cyclohexanone, methyl ethyl ketone, ethyl acetate, methanol, methyl cellosolve,
A dispersion liquid is prepared by the dispersion method of the present invention using acetone, dioxane, N,N-dimethylformamide, etc. as a dispersion medium. At this time, a polymeric substance may be added together as a binder, or the binder may be added after the pigment and dispersion medium have been predispersed.

【0026】結着剤としては広範な絶縁性樹脂から選択
でき、またポリ−N−ビニルカルバゾール、ポリビニル
アントラセンやポリビニルポレンなどの有機光導電性ポ
リマーからも選択できる。好ましくは、ポリビニルブチ
ラール、ポリアリレート(ビスフェノールAとフタル酸
の縮重合体など)、ポリカーボネート、ポリエステル、
フェノキシ樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリ
アクリルアミド樹脂、ポリアミド、ポリビニルピリジン
、セルロース系樹脂、ウレタン樹脂、エポキシ樹脂、カ
ゼイン、ポリビニルアルコール、ポリビニルピロリドン
などの絶縁性樹脂を挙げることができる。
The binder can be selected from a wide variety of insulating resins and also from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene and polyvinylpolene. Preferably, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester,
Examples include insulating resins such as phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, cellulose resin, urethane resin, epoxy resin, casein, polyvinyl alcohol, and polyvinylpyrrolidone.

【0027】電荷発生層中の結着剤の割合は80重量%
以下が好ましく、特には40重量%以下が好ましい。
The proportion of binder in the charge generation layer is 80% by weight.
It is preferably at most 40% by weight or less, particularly preferably at most 40% by weight.

【0028】分散媒に対する顔料および結着剤を含めた
固型分の割合は重量%で0.5〜80%程度であれば良
い。特に電子写真感光体の電荷発生物質を分散する時は
3〜15%が好ましい。
The proportion of the solid content including the pigment and binder to the dispersion medium may be about 0.5 to 80% by weight. In particular, when dispersing a charge generating substance for an electrophotographic photoreceptor, the amount is preferably 3 to 15%.

【0029】また、電荷発生層は上記の様な物質を含有
する分散液を導電性支持体上に塗布することによって形
成され、その膜厚は5μm以下が好ましく、特には0.
05〜1μmが好ましい。
Further, the charge generation layer is formed by coating a dispersion containing the above-mentioned substances on a conductive support, and the thickness thereof is preferably 5 μm or less, particularly 0.5 μm or less.
05 to 1 μm is preferable.

【0030】電荷輸送層は主として電荷輸送物質と結着
剤とを溶剤中に溶解させた塗料を塗工乾燥して形成する
The charge transport layer is mainly formed by applying and drying a paint in which a charge transport substance and a binder are dissolved in a solvent.

【0031】用いられる電荷輸送物質としては各種のト
リアリールアミン系化合物、ヒドラゾン系化合物、スチ
ルベン系化合物、ピラゾリン系化合物、オキサゾール系
化合物、チアゾール系化合物、トリアリルメタン系化合
物などが挙げられる。**、顔料と分散媒だけであらか
じめ分散した後、結着剤を加えても良い。
[0031] Examples of the charge transport substance used include various triarylamine compounds, hydrazone compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triallylmethane compounds. **The binder may be added after the pigment and dispersion medium are predispersed.

【0032】また、結着剤としては上述したものを用い
ることができる。
[0032] Furthermore, as the binder, those mentioned above can be used.

【0033】膜厚は5〜40μmが好ましく、特には1
0〜30μmが好ましい。
[0033] The film thickness is preferably 5 to 40 μm, particularly 1
0 to 30 μm is preferable.

【0034】感光層が単一層の場合も上述したような物
質を用いて同様に形成することができ、その膜厚は5〜
40μmが好ましく、特には10〜30μmが好ましい
Even when the photosensitive layer is a single layer, it can be formed in the same manner using the above-mentioned materials, and the film thickness is 5 to 5.
The thickness is preferably 40 μm, particularly preferably 10 to 30 μm.

【0035】本発明においては、感光層と導電性支持体
の間に接着機能とバリヤー機能とを有する下引層を設け
ることができる。
In the present invention, a subbing layer having an adhesive function and a barrier function can be provided between the photosensitive layer and the conductive support.

【0036】また、本発明においては感光層を外部から
の衝撃から保護するために感光層上に薄い保護層を設け
ることもできる。
Further, in the present invention, a thin protective layer may be provided on the photosensitive layer in order to protect the photosensitive layer from external impact.

【0037】これら各種層の塗布方法としては、ディッ
ピング法、スプレーコーティング法、スピンナーコーテ
ィング法、ビードコーティング法、ブレードコーティン
グ法およびビームコーティング法などを用いることがで
きる。本発明の製造方法により得られた電子写真感光体
は、レーザービームプリンター、LEDプリンター、C
RTプリンターなどのプリンターのみならず、通常の電
子写真複写機やファクシミリその他電子写真応用分野に
広く適用することができる。
As a method for applying these various layers, a dipping method, a spray coating method, a spinner coating method, a bead coating method, a blade coating method, a beam coating method, etc. can be used. The electrophotographic photoreceptor obtained by the manufacturing method of the present invention can be used in laser beam printers, LED printers, C
It can be widely applied not only to printers such as RT printers, but also to ordinary electrophotographic copying machines, facsimile machines, and other electrophotographic application fields.

【0038】[0038]

【実施例】以下、本発明を実施例により説明する。実施
例中、部は重量部を示す。
[Examples] The present invention will be explained below with reference to Examples. In the examples, parts indicate parts by weight.

【0039】(実施例1)I型オキシチタニウムフタロ
シアニン10g、ブチラール樹脂(エスレックBM−2
、積水化学製)5gおよびシクロヘキサノン135gの
混合物を図1に示されるような分散装置を用いて分散し
た。混合物の衝突時の流速は66m/secであり、分
散時間は10秒程度であった。分散を3回繰り返し、分
散液を得た。
(Example 1) 10 g of type I oxytitanium phthalocyanine, butyral resin (S-LEC BM-2
(manufactured by Sekisui Chemical) and 135 g of cyclohexanone were dispersed using a dispersion apparatus as shown in FIG. The flow velocity of the mixture at the time of collision was 66 m/sec, and the dispersion time was about 10 seconds. Dispersion was repeated three times to obtain a dispersion liquid.

【0040】このようにして得られた分散液の分散直後
の粒径と分散後5日間液を放置した後の粒径を測定した
。更に、分散後、ダイヤフラムポンプで1リットル/m
inの流量で30日間循環させた後の粒径を測定した。 なお、粒径の測定は液相沈降法を基本原理とした堀場製
作所製の遠心式粒度測定装置(CAPA500)を使用
し、得られた平均粒径の値を分散液の粒径とした。 結果を表1に示す。表1から、顔料が液中に細かく分散
されており、放置してもほとんど増粒しないことが分か
る。
The particle diameter of the thus obtained dispersion was measured immediately after dispersion and after the dispersion was allowed to stand for 5 days. Furthermore, after dispersion, 1 liter/m with a diaphragm pump.
The particle size was measured after circulation for 30 days at a flow rate of in. The particle size was measured using a centrifugal particle size analyzer (CAPA500) manufactured by Horiba, Ltd. whose basic principle is liquid phase sedimentation, and the obtained average particle size was taken as the particle size of the dispersion. The results are shown in Table 1. From Table 1, it can be seen that the pigment is finely dispersed in the liquid and hardly increases in size even if left standing.

【0041】先の5日間放置後の分散液をシクロヘキサ
ノン/酢酸エチル=1/1(重量比)の混合溶媒を用い
て2重量%の液に希釈調製し、ワイヤーバーで50μm
アルミニウムシートに塗布した。得られた塗膜を目視で
観察したところブツ、ポチのない均一な塗膜が得られた
。このことから、分散時間が短くても、安定な粒径の小
さい分散液が得られることが分かる。
The dispersion after being left for 5 days was diluted to a 2% by weight solution using a mixed solvent of cyclohexanone/ethyl acetate = 1/1 (weight ratio), and then diluted to 50 μm with a wire bar.
Coated on an aluminum sheet. When the obtained coating film was visually observed, it was found that a uniform coating film was obtained without any bumps or spots. This shows that even if the dispersion time is short, a stable dispersion with a small particle size can be obtained.

【0042】また、分散前後のオキシチタニウムフタロ
シアニンについて、理化学電器製X線回折装置RAD−
Aシステムを用いてCuKα特性X線回折測定を行なっ
た。分散前は顔料の粉体を、分散後は分散液をスライド
ガラス上に塗布し乾燥させたものについて測定した。結
果を図2,3に示す。図2,3から、結晶形は分散前後
で変化していないことが分かる。
[0042] Oxytitanium phthalocyanine before and after dispersion was analyzed using an X-ray diffractometer RAD-
CuKα characteristic X-ray diffraction measurements were performed using the A system. Before dispersion, the pigment powder was measured, and after dispersion, the dispersion liquid was applied onto a glass slide and dried. The results are shown in Figures 2 and 3. It can be seen from FIGS. 2 and 3 that the crystal form did not change before and after dispersion.

【0043】更に、洗浄済み30φ×250mmのアル
ミシリンダー上に、先に得られた分散液を電荷発生層用
塗工液として、ディッピング法にて塗布し、110℃で
10分間乾燥して0.3μm厚の電荷発生層を形成した
Further, the dispersion obtained above was applied as a coating liquid for the charge generation layer by dipping onto a cleaned aluminum cylinder of 30φ×250mm, and dried at 110° C. for 10 minutes to give a coating of 0.05 mm. A charge generation layer having a thickness of 3 μm was formed.

【0044】次に、下記式で示される構造を有するトリ
フェニルアミン化合物10部、
Next, 10 parts of a triphenylamine compound having the structure shown by the following formula,

【0045】[0045]

【化1】 ビスフェノールZ型ポリカーボネート樹脂(粘度平均分
子量22000)10部を、モノクロルベンゼン50部
、ジクロルメタン10部に溶解した。この塗料を前述の
電荷発生層の上にディッピング法で塗布し、110℃で
1時間乾燥し20μmの電荷輸送層を形成した。
embedded image 10 parts of bisphenol Z type polycarbonate resin (viscosity average molecular weight: 22,000) was dissolved in 50 parts of monochlorobenzene and 10 parts of dichloromethane. This paint was applied onto the charge generation layer described above by dipping, and dried at 110° C. for 1 hour to form a charge transport layer of 20 μm.

【0046】このようにして製造した電子写真感光体を
、−5.6KVコロナ帯電、画像露光、トナー現象、普
通紙へのトナー転写、ウレタンゴムブレードによるクリ
ーニング工程を有する電子写真複写機に取り付けてコピ
ーを行った。結果を表3に示す。
The electrophotographic photoreceptor produced in this way was installed in an electrophotographic copying machine that has -5.6 KV corona charging, image exposure, toner phenomenon, toner transfer to plain paper, and cleaning steps using a urethane rubber blade. I made a copy. The results are shown in Table 3.

【0047】(実施例2〜4)I型オキシチタニウムフ
タロシアニンの代りに、A,BおよびY型オキシチタニ
ウムフタロシアニンを用いた他は実施例1と同様にして
分散液を得て評価した。それぞれの分散液の分散粒径を
表1に、感光体の特性を表2に、分散前後の顔料のX線
回折図を図4〜9図に示す。
(Examples 2 to 4) Dispersions were obtained and evaluated in the same manner as in Example 1, except that type A, B and Y oxytitanium phthalocyanines were used instead of type I oxytitanium phthalocyanine. Table 1 shows the dispersed particle size of each dispersion, Table 2 shows the characteristics of the photoreceptor, and X-ray diffraction patterns of the pigment before and after dispersion are shown in FIGS. 4 to 9.

【0048】また、得られた塗膜も実施例1同様に均一
なものであった。
[0048] Also, the obtained coating film was also uniform as in Example 1.

【0049】(実施例5)混合物の衝突時の流速を46
m/secとした他は実施例1と同様にして分散液を得
て評価した。それぞれの分散液の分散粒径を表1に、感
光体の特性を表2に示す。
(Example 5) The flow velocity at the time of collision of the mixture was set to 46
A dispersion was obtained and evaluated in the same manner as in Example 1 except that the dispersion was changed to m/sec. Table 1 shows the dispersed particle size of each dispersion liquid, and Table 2 shows the characteristics of the photoreceptor.

【0050】また、得られた塗膜は実施例1同様に均一
なものであった (実施例6)混合物の衝突時の流速を72m/secと
した他は実施例1と同様にして分散液を得て評価した。 分散液の分散粒径を表1に、感光体の特性を表2に示す
The obtained coating film was uniform as in Example 1 (Example 6) The dispersion was prepared in the same manner as in Example 1 except that the flow velocity at the time of collision of the mixture was 72 m/sec. was evaluated. Table 1 shows the dispersed particle size of the dispersion liquid, and Table 2 shows the characteristics of the photoreceptor.

【0051】また、得られた塗膜は実施例1と同様に均
一なものであった (比較例1)混合物の衝突時の流速を36m/secと
した他は実施例1と同様にして分散液を得て評価した。 それぞれの分散液の分散粒径を表1に、感光体の特性を
表2に示す。
Furthermore, the obtained coating film was uniform as in Example 1 (Comparative Example 1) Dispersion was carried out in the same manner as in Example 1, except that the flow velocity at the time of collision of the mixture was 36 m/sec. A liquid was obtained and evaluated. Table 1 shows the dispersed particle size of each dispersion liquid, and Table 2 shows the characteristics of the photoreceptor.

【0052】また、30日間循環した分散液により得ら
れた塗膜には、ブツおよびポチ状の斑点が認められた。
[0052] In addition, spots and pock-like spots were observed in the coating film obtained from the dispersion that was circulated for 30 days.

【0053】(比較例2)混合物の衝突時の流速を96
m/secとした他は実施例1と同様にして分散液を得
て評価した。それぞれの分散液の分散粒径を表1に、感
光体の特性を表2に示す。
(Comparative Example 2) The flow velocity at the time of collision of the mixture was set to 96
A dispersion was obtained and evaluated in the same manner as in Example 1 except that the dispersion was changed to m/sec. Table 1 shows the dispersed particle size of each dispersion liquid, and Table 2 shows the characteristics of the photoreceptor.

【0054】また、30日間循環した分散液により得ら
れた塗膜には、ブツおよびポチ状の斑点が認められた。
[0054] In addition, spots and pock-like spots were observed in the coating film obtained from the dispersion that was circulated for 30 days.

【0055】[0055]

【表1】[Table 1]

【0056】[0056]

【表2】   表2から、本発明の分散方法により得られた分散液
を用いて作成した電子写真感光体は、画像欠陥がない良
好な画像を提供できることが分かる。
[Table 2] Table 2 shows that the electrophotographic photoreceptor produced using the dispersion liquid obtained by the dispersion method of the present invention can provide a good image without image defects.

【0057】[0057]

【発明の効果】以上のように、本発明によれば、フタロ
シアニン顔料を極めて短時間で効率良く、結晶変換が起
きず、均一で安定した微細粒子に分散することができ、
循環時の安定性に優れ、従って成膜したときに塗膜欠陥
が生じない。また、本発明の分散方法により分散した分
散液を用いて製造した電子写真感光体は画像欠陥がない
良好な画像を得ることができる。
As described above, according to the present invention, phthalocyanine pigments can be efficiently dispersed into uniform and stable fine particles without crystal conversion in a very short time.
It has excellent stability during circulation, so no coating defects occur when it is formed. Further, an electrophotographic photoreceptor manufactured using a dispersion liquid dispersed by the dispersion method of the present invention can obtain good images without image defects.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に用いられる分散装置を部材ごとに分解
した例を示す図である。
FIG. 1 is a diagram showing an example in which a dispersion device used in the present invention is disassembled into parts.

【図2】実施例1における分散前のオキシチタニウムフ
タロシアニン顔料のCuKα特性X線回折図である。
FIG. 2 is a CuKα characteristic X-ray diffraction diagram of the oxytitanium phthalocyanine pigment before dispersion in Example 1.

【図3】実施例1における分散後のオキシチタニウムフ
タロシアニン顔料のCuKα特性X線回折図である。
FIG. 3 is a CuKα characteristic X-ray diffraction diagram of the oxytitanium phthalocyanine pigment after dispersion in Example 1.

【図4】実施例2における分散前のオキシチタニウムフ
タロシアニン顔料のCuKα特性X線回折図である。
FIG. 4 is a CuKα characteristic X-ray diffraction diagram of the oxytitanium phthalocyanine pigment before dispersion in Example 2.

【図5】実施例2における分散後のオキシチタニウムフ
タロシアニン顔料のCuKα特性X線回折図である。
FIG. 5 is a CuKα characteristic X-ray diffraction diagram of the oxytitanium phthalocyanine pigment after dispersion in Example 2.

【図6】実施例3における分散前のオキシチタニウムフ
タロシアニン顔料のCuKα特性X線回折図である。
FIG. 6 is a CuKα characteristic X-ray diffraction diagram of the oxytitanium phthalocyanine pigment before dispersion in Example 3.

【図7】実施例3における分散後のオキシチタニウムフ
タロシアニン顔料のCuKα特性X線回折図である。
7 is a CuKα characteristic X-ray diffraction diagram of the oxytitanium phthalocyanine pigment after dispersion in Example 3. FIG.

【図8】実施例4における分散前のオキシチタニウムフ
タロシアニン顔料のCuKα特性X線回折図である。
8 is a CuKα characteristic X-ray diffraction diagram of the oxytitanium phthalocyanine pigment before dispersion in Example 4. FIG.

【図9】実施例4における分散後のオキシチタニウムフ
タロシアニン顔料のCuKα特性X線回折図である。
9 is a CuKα characteristic X-ray diffraction diagram of the oxytitanium phthalocyanine pigment after dispersion in Example 4. FIG.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  フタロシアニン顔料および分散媒を含
有する混合物同士を43〜75m/secの流速で衝突
させる工程を有することを特徴とするフタロシアニン顔
料の分散方法。
1. A method for dispersing a phthalocyanine pigment, which comprises the step of colliding mixtures containing a phthalocyanine pigment and a dispersion medium at a flow rate of 43 to 75 m/sec.
【請求項2】  前記フタロシアニン顔料が、オキシチ
タニウムフタロシアニンの結晶である請求項1に記載の
フタロシアニン顔料の分散方法。
2. The method for dispersing a phthalocyanine pigment according to claim 1, wherein the phthalocyanine pigment is a crystal of oxytitanium phthalocyanine.
【請求項3】  前記オキシチタニウムフタロシアニン
結晶が、CuKαのX線回折におけるブラッグ角2θ±
0.2°が9.0°、14.2°、23.9°および2
7.1°に強いピークを有するオキシチタニウムフタロ
シアニン結晶である請求項2に記載のフタロシアニン顔
料の分散方法。
3. The oxytitanium phthalocyanine crystal has a Bragg angle of 2θ± in X-ray diffraction of CuKα.
0.2° is 9.0°, 14.2°, 23.9° and 2
The method for dispersing a phthalocyanine pigment according to claim 2, which is an oxytitanium phthalocyanine crystal having a strong peak at 7.1°.
【請求項4】  請求項1,2または3記載の分散方法
により得られた分散液により電荷発生層を形成する工程
を有することを特徴とする電子写真感光体の製造方法。
4. A method for producing an electrophotographic photoreceptor, comprising the step of forming a charge generation layer using a dispersion obtained by the dispersion method according to claim 1, 2 or 3.
JP17576091A 1991-06-21 1991-06-21 Method for dispersing phthalocyanine pigment and method for producing electrophotographic photoreceptor Expired - Fee Related JP2887215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17576091A JP2887215B2 (en) 1991-06-21 1991-06-21 Method for dispersing phthalocyanine pigment and method for producing electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17576091A JP2887215B2 (en) 1991-06-21 1991-06-21 Method for dispersing phthalocyanine pigment and method for producing electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH04372955A true JPH04372955A (en) 1992-12-25
JP2887215B2 JP2887215B2 (en) 1999-04-26

Family

ID=16001776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17576091A Expired - Fee Related JP2887215B2 (en) 1991-06-21 1991-06-21 Method for dispersing phthalocyanine pigment and method for producing electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2887215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440631B1 (en) 1999-01-08 2002-08-27 Canon Kabushiki Kaisha Process for producing electrophotographic photosensitive member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440631B1 (en) 1999-01-08 2002-08-27 Canon Kabushiki Kaisha Process for producing electrophotographic photosensitive member

Also Published As

Publication number Publication date
JP2887215B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
US5418107A (en) Process for fabricating an electrophotographic imaging members
US5055368A (en) Electrophotographic recording elements containing titanyl phthalocyanine pigments and their preparation
KR100302427B1 (en) Titanyloxyphthalocyanine crystals, methods for their preparation and electrophotographic photosensitive members using the crystals
US5725985A (en) Charge generation layer containing mixture of terpolymer and copolymer
JP3586742B2 (en) Electrophotographic photoconductor containing fluorenyl-azine derivative as charge transfer additive
US5681678A (en) Charge generation layer containing hydroxyalkyl acrylate reaction product
JP2005208617A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus
US5324615A (en) Method of making electrostatographic imaging members containing vanadyl phthalocyanine
US5292607A (en) Electrophotographic photoreceptor containing polycarbonate resin as a binder and method for preparation thereof
JP2887215B2 (en) Method for dispersing phthalocyanine pigment and method for producing electrophotographic photoreceptor
EP1672007B1 (en) Imaging member
JP3039701B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH04372954A (en) Dispersion of phthalocyanine pigment and manufacture of electrophotographic photoreceptor
JPH06273962A (en) Production of electrophotographic sensitive body
JP4498123B2 (en) Electrophotographic equipment
JPH03143538A (en) Batch operated wet type dispersion device and method for dispersing coating liquid for electrophotographic sensitive body by using the same device
JP2567480B2 (en) Batch-type wet dispersion device and method for dispersing electrophotographic photoreceptor coating liquid using the same
JP2850665B2 (en) Electrophotographic photoreceptor
JP2891388B2 (en) Coating method of intermediate layer in electrophotographic photoreceptor
JP2002099105A (en) Manufacturing method for pigment for charge generating layer, electrophotographic photoreceptor using the same pigment for charge generating layer, process cartridge having the same electrophotographic photoreceptor, and electrophotographic device
JPH1097086A (en) Adjustable image forming element and its production
JP3083112B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus
JPH05156173A (en) Production of oxytitaniumphthalocyanine crystal
JP2789822B2 (en) Electrophotographic photoreceptor
JPH0651545A (en) Production of organic electrophotographic sensitive body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees