JPH04372887A - Charged particle beam device - Google Patents

Charged particle beam device

Info

Publication number
JPH04372887A
JPH04372887A JP15145691A JP15145691A JPH04372887A JP H04372887 A JPH04372887 A JP H04372887A JP 15145691 A JP15145691 A JP 15145691A JP 15145691 A JP15145691 A JP 15145691A JP H04372887 A JPH04372887 A JP H04372887A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
magnetic field
sample
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15145691A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shinada
博之 品田
Hiroshi Suzuki
寛 鈴木
Hideo Todokoro
秀男 戸所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15145691A priority Critical patent/JPH04372887A/en
Publication of JPH04372887A publication Critical patent/JPH04372887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To realize a charged particle beam device capable of measuring the relation between the high frequency exciting current applied to a magnetic head and the high frequency magnetic field generated thereby with high time resolving power and high time accuracy. CONSTITUTION:A current detecting resistor 4 is inserted in a magnetic head in series and the voltage generated across both terminals thereof is applied to a deflector 5. Stroboscopic pulse electron beam 11 of the same timing as the measuring time of a magnetic field is passed through the deflecting plate 5 and a current value is calculated by the conversion from the quantity of deflection thereof. By this constitution, the high frequency characteristics of a device generating a high frequency magnetic field such as the magnetic head can be more accurately evaluated in detail.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁気ヘッド等に印加す
る高周波励磁電流とそれにより発生する高周波磁界との
関係を、高い時間分解能かつ高い時間精度で測定するこ
とのできる荷電粒子線装置に関する。
[Field of Industrial Application] The present invention relates to a charged particle beam device capable of measuring the relationship between a high frequency excitation current applied to a magnetic head etc. and a high frequency magnetic field generated thereby with high time resolution and high time accuracy. .

【0002】0002

【従来の技術】計算機用磁気ディスク装置、磁気テープ
装置 及び、VTR等の磁気記録装置の高密度化、書き
込み読みだしの高速化の進展は著しく、これらの装置に
用いられる磁気ヘッドの高性能化が要請されている。
[Background Art] Magnetic disk drives for computers, magnetic tape drives, and magnetic recording devices such as VTRs have made remarkable progress in increasing the density and speed of reading and writing, and the performance of the magnetic heads used in these devices has also improved. is requested.

【0003】高密度の磁気記録を達成するためには、急
峻な記録磁界分布を有する狭トラックの磁気ヘッドが必
要となる。このようなヘッドを開発するには、ヘッドか
ら発生する記録磁界の分布を詳細に測定できる装置の開
発が重要である。磁気ヘッドの記録磁界分布を測定する
方法として、電子ビームを磁気ヘッドのギャップの近傍
を通過させ、電子ビームが磁界によりローレンツ力を受
け曲げられることを利用して、磁界分布を測定する方法
が知られている。磁界の三次元分布を測定するためには
、磁界を発生する試料を少しずつ回転しながら、電子ビ
ームを走査し、磁界による電子ビームの偏向量を位置検
出器により検出し、電子ビームの偏向量データを得る。 そして、このデータを基にして、コンピュータ断層映像
法(Computed Tomography;以下C
Tと略す)を用いて計算し、もとの磁界分布を再構成す
るローレンツトモグラフィ法が知られている。
In order to achieve high-density magnetic recording, a narrow-track magnetic head with a steep recording magnetic field distribution is required. In order to develop such a head, it is important to develop an apparatus that can precisely measure the distribution of the recording magnetic field generated by the head. A known method for measuring the recording magnetic field distribution of a magnetic head is to make an electron beam pass near the gap of the magnetic head and take advantage of the fact that the electron beam is bent by the Lorentz force caused by the magnetic field. It is being To measure the three-dimensional distribution of a magnetic field, the sample that generates the magnetic field is rotated little by little while the electron beam is scanned, the amount of deflection of the electron beam due to the magnetic field is detected by a position detector, and the amount of deflection of the electron beam is measured. Get data. Then, based on this data, computed tomography (hereinafter referred to as C
A Lorentz tomography method is known in which the original magnetic field distribution is reconstructed by calculation using

【0004】一方、書き込み読みだしの高速化には磁気
ヘッドの周波数特性の向上が必須である。磁気ヘッドに
印加する電流の周波数を高くしていくとヘッド磁極を構
成する磁性体の磁化の反転が電流の変化に応答できなく
なり、ヘッド磁極先端から発生する磁界の強度が減少し
てしまう。これにより書き込み速度が制限される。高速
動作可能な磁気ヘッドを開発するには、磁気ヘッドを高
周波で動作させた状態での磁界分布測定が必須である。 このような高周波磁界分布を測定する方法として、ロー
レンツトモグラフィ法にパルス電子ビームによるストロ
ボ測定を採用する方法が知られている。この方法は、励
磁電流波形一周期の間に一発のパルス電子ビームを発生
させ、このパルス電子ビームの位相を制御する。位相を
固定して測定を行えば、パルス電子ビームが通過した位
相の瞬間における磁界強度をあたかも直流磁界であるか
のように測定することができる。またパルス電子ビーム
の位相を少しづつ変化させて一周期分測定することで一
周期分の変化を測定できる。このような例は第51回応
用物理学会学術講演会予稿集P510(1990年10
月)、および日本学術振興会荷電粒子ビームの工業への
応用第132委員会第113回研究会資料p7に述べら
れている。しかし、この測定では励磁電流と磁界の応答
を高い時間精度で対応づけることが困難であった。なぜ
なら、従来励磁電流はストロボ法では測定できず、通常
の電流プローブを用いてリアルタイムで測定しており、
測定された発生磁界と励磁電流の時間の基準が一致しな
いためであった。
On the other hand, in order to increase the speed of writing and reading, it is essential to improve the frequency characteristics of the magnetic head. As the frequency of the current applied to the magnetic head increases, the reversal of magnetization of the magnetic material constituting the head pole becomes unable to respond to changes in the current, and the strength of the magnetic field generated from the tip of the head pole decreases. This limits the writing speed. In order to develop a magnetic head capable of high-speed operation, it is essential to measure the magnetic field distribution while the magnetic head is operating at high frequency. As a method for measuring such a high-frequency magnetic field distribution, a method is known in which strobe measurement using a pulsed electron beam is employed in Lorentz tomography. In this method, one pulsed electron beam is generated during one period of the excitation current waveform, and the phase of this pulsed electron beam is controlled. If the measurement is performed with the phase fixed, the magnetic field strength at the instant of the phase when the pulsed electron beam passes can be measured as if it were a DC magnetic field. Also, by changing the phase of the pulsed electron beam little by little and measuring one period, changes over one period can be measured. Such an example is given in Proceedings of the 51st Annual Conference of the Japan Society of Applied Physics, P510 (October 1990).
), and in the Japan Society for the Promotion of Science's 132nd Committee on Industrial Applications of Charged Particle Beams, 113th Research Meeting Materials, page 7. However, in this measurement, it was difficult to correlate the responses of the excitation current and magnetic field with high time accuracy. This is because conventionally, excitation current cannot be measured using the strobe method, and is measured in real time using an ordinary current probe.
This was because the time standards of the measured generated magnetic field and excitation current did not match.

【0005】[0005]

【発明が解決しようとする課題】磁気ヘッドが作る高周
波磁界と励磁電流の間の時間的な関係を正確に測定する
には両者の時間基準が一致した測定を行う必要がある。
In order to accurately measure the temporal relationship between the high frequency magnetic field generated by the magnetic head and the excitation current, it is necessary to perform measurements in which the time standards of both coincide.

【0006】[0006]

【課題を解決するための手段】磁気ヘッドに印加する高
周波励磁電流を磁界測定に用いるものと同じストロボパ
ルス電子ビームにより測定する。具体的には、磁気ヘッ
ドに直列に抵抗を挿入し両端に発生する電圧を偏向板に
印加する。この偏向板にストロボパルス電子ビームを通
し、その偏向量から電流値に換算する。又は、磁気ヘッ
ドに直列に空芯コイルを挿入する。そして、空芯コイル
の発生する磁界中にストロボパルス電子ビームを通し、
その偏向量から電流値を換算する。これらの方法により
、同一のタイミングのストロボパルス電子ビームで電流
と磁界を測定するため、両者の時間的対応が正確に取れ
る。
Means for Solving the Problems The high frequency excitation current applied to the magnetic head is measured using the same strobe pulsed electron beam as used for magnetic field measurement. Specifically, a resistor is inserted in series with the magnetic head, and a voltage generated at both ends is applied to the deflection plate. A strobe pulse electron beam is passed through this deflection plate, and the amount of deflection is converted into a current value. Alternatively, an air-core coil is inserted in series with the magnetic head. Then, a strobe pulse electron beam is passed through the magnetic field generated by the air-core coil.
The current value is converted from the amount of deflection. These methods measure current and magnetic field with a strobe pulsed electron beam at the same timing, allowing accurate temporal correspondence between the two.

【0007】[0007]

【作用】電流値をストロボパルス電子ビームで直接測定
する手段はない。そこで、電流から磁界、電界又は電圧
に変換することでこれを可能とする。
[Operation] There is no means to directly measure the current value using a strobe pulsed electron beam. Therefore, this is made possible by converting the current into a magnetic field, electric field, or voltage.

【0008】まず、電界に変換する場合について述べる
。磁気ヘッドに直列に抵抗を挿入し励磁電流波形をまず
電圧に変換する。この電圧を偏向板に印加することで励
磁電流波形と同タイミングの電界を発生させる。偏向板
の静電容量が十分小さいものであれば、励磁電流と発生
電界の遅延は無視できる。この偏向板内にストロボパル
ス電子ビームを通す。図1にこのストロボパルス電子ビ
ームのタイミングを励磁電流波形、電界波形、発生磁界
の時間変化と共に示す。偏向板内を通過したパルス電子
ビームは偏向板を通過した瞬間Aにおける電流値に相当
する偏向を受ける。従って、この偏向量を測定すること
で励磁電流値Aを求めることができる。この電流測定を
行った後、パルス電子ビームを磁気ヘッド表面近傍の磁
界を測定する領域に移動し、磁界による偏向量を測定す
る。この測定により、Aの瞬間における磁界強度が測定
できる。上記測定をパルス電子ビームと励磁電流波形の
間の位相関係を少しづつずらして一周期分測定を行えば
、励磁電流波形と磁界の変化の時間的対応を正確にとり
ながら一周期を測定することができる。
First, the case of converting into an electric field will be described. A resistor is inserted in series with the magnetic head, and the excitation current waveform is first converted into voltage. By applying this voltage to the deflection plate, an electric field having the same timing as the excitation current waveform is generated. If the capacitance of the deflection plate is sufficiently small, the delay between the excitation current and the generated electric field can be ignored. A strobe pulsed electron beam is passed through this deflection plate. FIG. 1 shows the timing of this strobe pulse electron beam along with time changes in the excitation current waveform, electric field waveform, and generated magnetic field. The pulsed electron beam that has passed through the deflection plate receives a deflection corresponding to the current value at the moment A when it passes through the deflection plate. Therefore, by measuring this amount of deflection, the excitation current value A can be determined. After this current measurement is performed, the pulsed electron beam is moved to a region near the surface of the magnetic head where the magnetic field is measured, and the amount of deflection due to the magnetic field is measured. Through this measurement, the magnetic field strength at the moment A can be measured. If the above measurement is performed for one cycle by slightly shifting the phase relationship between the pulsed electron beam and the excitation current waveform, it is possible to measure one cycle while accurately taking the temporal correspondence between the excitation current waveform and the change in the magnetic field. can.

【0009】また、励磁電流を磁界に変換する場合は、
抵抗の代わりに磁気ヘッドに直列に空芯コイルを挿入す
る。空芯コイルの発生する磁界はコイルに流れる電流と
同タイミングである。この磁界を電界の場合と同様にス
トロボパルス電子ビームで測定すれば良い。
[0009] Furthermore, when converting the excitation current into a magnetic field,
Instead of a resistor, an air-core coil is inserted in series with the magnetic head. The magnetic field generated by the air-core coil has the same timing as the current flowing through the coil. This magnetic field can be measured using a strobe pulse electron beam in the same way as the electric field.

【0010】励磁電流を電圧に変換する方式では、磁気
ヘッドに直列に抵抗を挿入する。ストロボパルス電子ビ
ームをこの抵抗の両端に照射し、そこから発生する二次
電子をエネルギ分析することで抵抗の両端の電圧を求め
る。抵抗の両端の電圧が測定できればこの抵抗に流れる
電流を求めることができる。
In the method of converting excitation current into voltage, a resistor is inserted in series with the magnetic head. A strobe pulse electron beam is applied to both ends of this resistor, and the energy of the secondary electrons generated is analyzed to determine the voltage across the resistor. If the voltage across a resistor can be measured, the current flowing through this resistor can be determined.

【0011】[0011]

【実施例】本発明の第一の実施例を図2により説明する
。駆動回路3は発振器1の高周波信号をトリガ信号とし
て高周波電流を発生する。この高周波電流により磁気ヘ
ッド2が励磁されている。磁気ヘッドと直列に電流検出
抵抗4が挿入されており、その両端には偏向板5が接続
されている。一方、発振器1の高周波信号は遅延回路6
にも送られ、パルス発生器7のトリガ信号となる。パル
ス発生器7からの信号は電子ビームブランカ8に印加さ
れ、ここで電子ビーム10がパルス化される。パルス化
された電子ビーム11は走査偏向器12により任意の位
置に移動できるようになっている。磁気ヘッド2の後方
にはパルス電子ビームの位置を検出する位置検出器14
が置かれている。磁気ヘッドを励磁する高周波電流を測
定する場合は、走査偏向器12によりパルス電子ビーム
を偏向板5にとおす。これによる偏向量を後方の位置検
出器14で測定し、電流値に換算する。パルス電子ビー
ムの位相は遅延回路6で制御する。遅延回路6の遅延量
を少しずつ変化させ、高周波電流の一周期分の測定を行
うことで、高周波電流波形が得られる。磁気ヘッド2の
発生する高周波磁界を測定する場合はパルス電子ビーム
11を走査偏向器12により磁気ヘッドの表面近傍の空
間に移動する。磁界によるパルス電子ビーム11の偏向
量を後方の位置検出器14で測定し、これを磁界強度に
換算する。高周波励磁電流一周期の間に磁界がどのよう
に変化するかを測定する場合には、遅延回路6により遅
延量を少しずつ変化させて測定を繰り返す。以上の測定
により、高周波励磁電流とそれにより発生する高周波磁
界の時間的対応が正確に測定できる。
[Embodiment] A first embodiment of the present invention will be explained with reference to FIG. The drive circuit 3 generates a high frequency current using the high frequency signal of the oscillator 1 as a trigger signal. The magnetic head 2 is excited by this high frequency current. A current detection resistor 4 is inserted in series with the magnetic head, and deflection plates 5 are connected to both ends of the current detection resistor 4. On the other hand, the high frequency signal of the oscillator 1 is transmitted to the delay circuit 6.
The signal is also sent to the pulse generator 7 and serves as a trigger signal for the pulse generator 7. The signal from the pulse generator 7 is applied to an electron beam blanker 8, where the electron beam 10 is pulsed. The pulsed electron beam 11 can be moved to any desired position by a scanning deflector 12. Behind the magnetic head 2 is a position detector 14 that detects the position of the pulsed electron beam.
is placed. When measuring the high frequency current that excites the magnetic head, a pulsed electron beam is passed through the deflection plate 5 by the scanning deflector 12. The amount of deflection caused by this is measured by the rear position detector 14 and converted into a current value. The phase of the pulsed electron beam is controlled by a delay circuit 6. By changing the delay amount of the delay circuit 6 little by little and measuring one cycle of the high frequency current, a high frequency current waveform can be obtained. When measuring the high frequency magnetic field generated by the magnetic head 2, the pulsed electron beam 11 is moved by a scanning deflector 12 to a space near the surface of the magnetic head. The amount of deflection of the pulsed electron beam 11 due to the magnetic field is measured by the rear position detector 14, and this is converted into magnetic field strength. When measuring how the magnetic field changes during one cycle of the high-frequency excitation current, the delay circuit 6 changes the amount of delay little by little and repeats the measurement. Through the above measurements, it is possible to accurately measure the temporal correspondence between the high-frequency excitation current and the high-frequency magnetic field generated thereby.

【0012】磁界分布を三次元で測定するローレンツト
モグラフィ法では、電子ビームを磁気ヘッドの表面近傍
に通して偏向量を測定するプロセスを磁気ヘッドを少し
づつ回転させて繰り返す必要がある。この測定の場合に
は、図2に示すような構造の試料台を用いると良い。磁
気ヘッド2は円筒上の試料台21の上部に載置されてい
る。この試料台21は非磁性の金属性で側面には貫通す
る穴が設けられ、その内部に偏向板5が設けられている
。このように偏向板5と試料台21を一体構造にするこ
とで試料台21を回転させても、偏向板5と磁気ヘッド
を結ぶリード線22がよじれることがない。また偏向板
5と磁気ヘッド2の距離を近付けられるため、磁気ヘッ
ド2と偏向板5との間のリード線22で生じる遅延が無
視できる。また、偏向板5が発生する電界は金属性の試
料台21の内部にあるため、磁気ヘッド2の表面近傍に
は影響をおよぼさない。このため、磁界を測定する際に
電界の影響を受けて測定誤差が生じることもない。
In the Lorentz tomography method for three-dimensionally measuring magnetic field distribution, it is necessary to repeat the process of passing an electron beam near the surface of a magnetic head and measuring the amount of deflection by rotating the magnetic head little by little. In the case of this measurement, it is preferable to use a sample stage having a structure as shown in FIG. The magnetic head 2 is placed on top of a cylindrical sample stage 21 . The sample stage 21 is made of non-magnetic metal, has a through hole in its side surface, and has a deflection plate 5 provided therein. By making the deflection plate 5 and the sample stage 21 into an integral structure in this way, even if the sample stage 21 is rotated, the lead wire 22 connecting the deflection plate 5 and the magnetic head will not be twisted. Furthermore, since the distance between the deflection plate 5 and the magnetic head 2 can be brought closer, the delay caused by the lead wire 22 between the magnetic head 2 and the deflection plate 5 can be ignored. Further, since the electric field generated by the deflection plate 5 is inside the metallic sample stage 21, it does not affect the vicinity of the surface of the magnetic head 2. Therefore, when measuring a magnetic field, measurement errors do not occur due to the influence of an electric field.

【0013】上記説明では、励磁電流を電界に変換する
方式について説明したが、磁界に変換する方式では、電
流検出抵抗4と偏向板5の代わりに空芯コイルを挿入す
れば良い。この場合空芯コイルの発生する磁界が磁気ヘ
ッド2の発生する磁界に影響を与えないように空芯コイ
ルと磁気ヘッドの間に磁気シールドを設ける必要がある
In the above description, the method of converting the excitation current into an electric field has been described. However, in the method of converting the excitation current into a magnetic field, an air-core coil may be inserted in place of the current detection resistor 4 and the deflection plate 5. In this case, it is necessary to provide a magnetic shield between the air-core coil and the magnetic head so that the magnetic field generated by the air-core coil does not affect the magnetic field generated by the magnetic head 2.

【0014】また、磁気ヘッド2に直列に挿入した電流
検出抵抗4の両端の電位をストロボパルス電子ビーム1
1によって測定し、励磁電流を求めることも可能である
。この例を図4により説明する。図2の構成に二次電子
のエネルギ分析器31が付加されたものである。パルス
電子ビーム11の照射によって発生する二次電子30の
エネルギは照射部の電位によって変化する。この二次電
子エネルギの変化量をエネルギ分析器31によって測定
する。これによりもとめた電流検出抵抗4の両端の電位
差から電流値を求める。
Furthermore, the potential across the current detection resistor 4 inserted in series with the magnetic head 2 is set to the strobe pulse electron beam 1.
It is also possible to determine the excitation current by measuring according to 1. This example will be explained with reference to FIG. A secondary electron energy analyzer 31 is added to the configuration of FIG. 2. The energy of the secondary electrons 30 generated by irradiation with the pulsed electron beam 11 changes depending on the potential of the irradiation part. The amount of change in this secondary electron energy is measured by an energy analyzer 31. The current value is determined from the potential difference between both ends of the current detection resistor 4 thus determined.

【0015】[0015]

【発明の効果】磁気ヘッド等の高周波電流で励磁しそれ
により発生する高周波磁界を電子ビームで測定する際に
、電流との時間対応を正確につけることができるように
なった。これにより、磁気ヘッド等の高周波特性の評価
がより詳細に行えるようになった。
[Effects of the Invention] When a magnetic head or the like is excited by a high-frequency current and the resulting high-frequency magnetic field is measured with an electron beam, it is now possible to accurately correlate the current with time. This has made it possible to evaluate the high frequency characteristics of magnetic heads and the like in more detail.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】磁気ヘッド励磁電流、発生磁界とパルス電子ビ
ームのタイミングを説明する図
[Figure 1] Diagram explaining magnetic head excitation current, generated magnetic field, and timing of pulsed electron beam

【図2】本発明の実施例の構成図[Figure 2] Configuration diagram of an embodiment of the present invention

【図3】本発明の他の実施例の構造を説明する図FIG. 3 is a diagram explaining the structure of another embodiment of the present invention.

【図4
】本発明の他の実施例の構成図
[Figure 4
] Configuration diagram of another embodiment of the present invention

【符号の説明】[Explanation of symbols]

1…発振器、2…磁気ヘッド、3…駆動回路、4…電流
検出抵抗、5…偏向板、6…遅延回路、7…パルス発振
器、8…電子ビームブランカ、10…電子ビーム、11
…パルス電子ビーム、12…走査偏向器、14…位置検
出器、21…試料台、22…リード線、30…二次電子
、31…エネルギ分析器。
DESCRIPTION OF SYMBOLS 1... Oscillator, 2... Magnetic head, 3... Drive circuit, 4... Current detection resistor, 5... Deflection plate, 6... Delay circuit, 7... Pulse oscillator, 8... Electron beam blanker, 10... Electron beam, 11
...Pulse electron beam, 12...Scanning deflector, 14...Position detector, 21...Sample stage, 22...Lead wire, 30...Secondary electron, 31...Energy analyzer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】高周波電流を印加することにより高周波磁
界を発生する試料と、該高周波電流に同期したパルス状
の荷電粒子線を発生させる手段と、該高周波電流を電圧
値に変換する手段と、該電圧値を印加する静電偏向板と
、上記パルス状の荷電粒子線を該静電偏向板または該高
周波磁界中の任意の場所に通す手段と、該静電偏向板の
発生する電界または上記試料が発生する該高周波磁界に
より曲げられた該荷電粒子線の偏向量を測定する手段と
から構成され、該電界による該荷電粒子線の偏向量から
該高周波電流を、該磁界による該荷電粒子線の偏向量か
ら該高周波磁界強度を求めることを特徴とする荷電粒子
線装置。
1. A sample that generates a high-frequency magnetic field by applying a high-frequency current, means for generating a pulsed charged particle beam synchronized with the high-frequency current, and means for converting the high-frequency current into a voltage value. an electrostatic deflection plate that applies the voltage value; a means for passing the pulsed charged particle beam through the electrostatic deflection plate or any location in the high-frequency magnetic field; and an electric field generated by the electrostatic deflection plate or the means for measuring the amount of deflection of the charged particle beam bent by the high frequency magnetic field generated by the sample; A charged particle beam device characterized in that the high frequency magnetic field strength is determined from the amount of deflection of the charged particle beam.
【請求項2】高周波電流を印加することにより高周波磁
界を発生する試料と、該高周波電流に同期したパルス状
の荷電粒子線を発生させる手段と、該試料に直列に挿入
された空芯コイルと、上記パルス状の荷電粒子線を該空
芯コイル近傍または該高周波磁界中の任意の場所に通す
手段と、該空芯コイルの発生する磁界または上記試料が
発生する該高周波磁界により曲げられた該荷電粒子線の
偏向量を測定する手段とから構成され、該電界による該
荷電粒子線の偏向量から該高周波電流を、該磁界による
該荷電粒子線の偏向量から該高周波磁界強度を求めるこ
とを特徴とする荷電粒子線装置。
2. A sample that generates a high-frequency magnetic field by applying a high-frequency current, means for generating a pulsed charged particle beam synchronized with the high-frequency current, and an air-core coil inserted in series with the sample. , a means for passing the pulsed charged particle beam near the air-core coil or any place in the high-frequency magnetic field; and a means for measuring the amount of deflection of the charged particle beam, the high frequency current being determined from the amount of deflection of the charged particle beam due to the electric field, and the high frequency magnetic field strength being determined from the amount of deflection of the charged particle beam due to the magnetic field. Characteristic charged particle beam device.
【請求項3】特許請求の範囲第1項における荷電粒子線
装置において、該荷電粒子線の進行方向と直交する軸を
回転中心として該試料を回転する手段を設け、該荷電粒
子線の該試料が発生する磁界による偏向量を回転角度の
異なる場合について複数回測定を行い、計算によって試
料表面の磁界の空間強度分布を求める荷電粒子線装置。
3. The charged particle beam apparatus according to claim 1, further comprising: means for rotating the sample around an axis perpendicular to the traveling direction of the charged particle beam; A charged particle beam device that measures the amount of deflection caused by the magnetic field generated by the sample multiple times at different rotation angles and calculates the spatial intensity distribution of the magnetic field on the sample surface.
【請求項4】特許請求の範囲第3項における荷電粒子線
装置において、該試料は非磁性の金属性試料台上部に載
置され、該試料台側面に貫通する穴が設けられ、その内
部に該偏向板が設けられていることを特徴とする荷電粒
子線装置。
4. In the charged particle beam device according to claim 3, the sample is placed on an upper part of a non-magnetic metal sample stage, and a hole is provided in the side surface of the sample stage to penetrate through the sample stage. A charged particle beam device comprising the deflection plate.
【請求項5】特許請求の範囲第2項における荷電粒子線
装置において、該荷電粒子線の進行方向と直交する軸を
回転中心として該試料を回転する手段を設け、該荷電粒
子線の該試料が発生する磁界による偏向量を回転角度の
異なる場合について複数回測定を行い、計算によって試
料表面の磁界の空間強度分布を求める荷電粒子線装置。
5. The charged particle beam device according to claim 2, further comprising: means for rotating the sample around an axis perpendicular to the traveling direction of the charged particle beam; A charged particle beam device that measures the amount of deflection caused by the magnetic field generated by the sample multiple times at different rotation angles and calculates the spatial intensity distribution of the magnetic field on the sample surface.
【請求項6】特許請求の範囲第5項における荷電粒子線
装置において、該試料は非磁性の金属性試料台上部に載
置され、該試料台側面に貫通する穴が設けられ、その内
部に該空芯コイルが設けられていることを特徴とする荷
電粒子線装置。
6. In the charged particle beam device according to claim 5, the sample is placed on an upper part of a non-magnetic metal sample stage, and a hole is provided in the side surface of the sample stage to pass through, and a hole is provided inside the charged particle beam device. A charged particle beam device comprising the air-core coil.
【請求項7】高周波電流を印加することにより高周波磁
界を発生する試料と、該高周波電流に同期したパルス状
の荷電粒子線を発生させる手段と、該試料に直列に挿入
した抵抗と、上記パルス状の荷電粒子線を該抵抗の両端
に照射または該高周波磁界中の任意の場所に通す手段と
、上記パルス状の荷電粒子線の照射により該抵抗の両端
から発生する二次電子をエネルギ分析し該抵抗の両端の
電圧値を測定する手段と、上記試料が発生する該高周波
磁界により曲げられた該荷電粒子線の偏向量を測定する
手段とから構成され、該抵抗の両端の電圧値から該高周
波電流を、該磁界による該荷電粒子線の偏向量から該高
周波磁界強度を求めることを特徴とする荷電粒子線装置
7. A sample that generates a high-frequency magnetic field by applying a high-frequency current, means for generating a pulsed charged particle beam synchronized with the high-frequency current, a resistor inserted in series with the sample, and a means for irradiating both ends of the resistor with a pulsed charged particle beam or passing it through any location in the high frequency magnetic field, and analyzing the energy of secondary electrons generated from both ends of the resistor by irradiating the pulsed charged particle beam. It consists of means for measuring the voltage value across the resistor, and means for measuring the amount of deflection of the charged particle beam bent by the high-frequency magnetic field generated by the sample. A charged particle beam device characterized in that the high frequency magnetic field strength of the high frequency current is determined from the amount of deflection of the charged particle beam due to the magnetic field.
JP15145691A 1991-06-24 1991-06-24 Charged particle beam device Pending JPH04372887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15145691A JPH04372887A (en) 1991-06-24 1991-06-24 Charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15145691A JPH04372887A (en) 1991-06-24 1991-06-24 Charged particle beam device

Publications (1)

Publication Number Publication Date
JPH04372887A true JPH04372887A (en) 1992-12-25

Family

ID=15518964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15145691A Pending JPH04372887A (en) 1991-06-24 1991-06-24 Charged particle beam device

Country Status (1)

Country Link
JP (1) JPH04372887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744249B2 (en) 2001-08-29 2004-06-01 Hitachi, Ltd. Method and instrument for measuring a magnetic field, a method for measuring a current waveform, and method for measuring an electric field
CN113495078A (en) * 2020-04-08 2021-10-12 Fei 公司 Rotating sample holder for random angle sampling in tomography

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744249B2 (en) 2001-08-29 2004-06-01 Hitachi, Ltd. Method and instrument for measuring a magnetic field, a method for measuring a current waveform, and method for measuring an electric field
CN113495078A (en) * 2020-04-08 2021-10-12 Fei 公司 Rotating sample holder for random angle sampling in tomography
EP3892987A1 (en) * 2020-04-08 2021-10-13 FEI Company Rotating sample holder for random angle sampling in tomography
US11257656B2 (en) 2020-04-08 2022-02-22 Fei Company Rotating sample holder for random angle sampling in tomography
US11756762B2 (en) 2020-04-08 2023-09-12 Fei Company Rotating sample holder for random angle sampling in tomography

Similar Documents

Publication Publication Date Title
JPS6333262B2 (en)
Schupp et al. Measurement of the g factor of free, high-energy electrons
EP0259435A1 (en) Method and apparatus for non-destructive materials testing and magnetostructural materials investigations
US3953732A (en) Dynamic mass spectrometer
JPH04372887A (en) Charged particle beam device
JPH0330258B2 (en)
US4803428A (en) Method and apparatus for non-destructive material testing, particularly for determination of thickness of coating layers on a base material by measuring electrical conductivity or magnetic permeability at the finished specimen
US3909610A (en) Apparatus for displaying the energy distribution of a charged particle beam
US2870407A (en) Method of peak current measurement
JPS61225751A (en) Indirect measurement for intensity distribution of particle beam pulse
Shinada et al. Time-resolved measurement of micro-magnetic field by stroboscopic electron beam tomography
JPS6254183A (en) Method and device for monitoring function of integrated circuit during operation
JP7369344B2 (en) Magnetic field measuring device and magnetic field measuring method
JPH0758297B2 (en) Non-contact potential measuring device
Elsbrock et al. Profiling of micromagnetic stray fields in front of magnetic recording media and heads by means of a SEM
SU769611A1 (en) Electronic probing device for testing magnetic head dissipation fields
US6744249B2 (en) Method and instrument for measuring a magnetic field, a method for measuring a current waveform, and method for measuring an electric field
Re et al. Magnetic switching characteristics at the pole tips of thin film heads
Elsbrock et al. Evaluation of dynamic magnetic stray fields with high spatial and temporal resolution
Prudnikov et al. Device for determination of charged particle beam profile and position
Brug et al. Measured fields and performance of recording heads
Fujioka et al. A real-time electron beam testing system (IC testing application)
JPH09147327A (en) Leakage magnetic field measuring instrument
Markovits et al. Diagnostic methods for investigation of collective ion acceleration
JPH03146887A (en) Magnetic field measuring instrument using charged particle beam