JPH04372626A - Process for bonding fluororesin film - Google Patents

Process for bonding fluororesin film

Info

Publication number
JPH04372626A
JPH04372626A JP3151573A JP15157391A JPH04372626A JP H04372626 A JPH04372626 A JP H04372626A JP 3151573 A JP3151573 A JP 3151573A JP 15157391 A JP15157391 A JP 15157391A JP H04372626 A JPH04372626 A JP H04372626A
Authority
JP
Japan
Prior art keywords
substrate
fluororesin film
treated
film
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3151573A
Other languages
Japanese (ja)
Inventor
Hiroaki Suzuki
博章 鈴木
Naomi Kojima
小嶋 尚美
Akio Sugama
明夫 菅間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3151573A priority Critical patent/JPH04372626A/en
Priority to KR1019910016150A priority patent/KR960012335B1/en
Priority to EP91308484A priority patent/EP0476980B1/en
Priority to DE69125557T priority patent/DE69125557T2/en
Priority to US07/993,486 priority patent/US5358619A/en
Publication of JPH04372626A publication Critical patent/JPH04372626A/en
Priority to US08/153,144 priority patent/US5431806A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To bond a fluororesin film firmly to a substrate by treating the surface of the film with a plurality of specified reagents and fusing this film to the substrate. CONSTITUTION:A process for bonding a fluororesin film (e.g. fluorinated ethylene/propylene copolymer film) to a substrate (e.g. silicon wafer) comprising treating the surface of the film with a reagent containing metallic sodium (e.g. Chemgrip, a product of Norton Co.) and then with a silane coupling agent (e.g. gamma-aminopropyltriethoxysilane) and fusing the treated film to the substrate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、基板上へのフッ素樹脂
膜の接着方法に関し、更に詳しくは半導体プロセスおよ
びマイクロマシーニング等の分野においてシリコンウェ
ハ、ガラス基板などにフッ素樹脂膜を強固に接着する方
法に関する。
[Industrial Application Field] The present invention relates to a method for adhering a fluororesin film onto a substrate, and more specifically, the present invention relates to a method for firmly adhering a fluororesin film to a silicon wafer, glass substrate, etc. in the fields of semiconductor processing and micromachining. Regarding how to.

【0002】0002

【従来の技術および発明が解決しようとする課題】半導
体プロセスやマイクロマシーニング等の分野において、
例えばガス透過膜や絶縁材料としてのフッ素樹脂膜を、
シリコンウェハやガラス基板などに強固に接着しなけれ
ばならない要請がある。例えば、マイクロマシン技術を
利用した小型クラーク型(隔膜型)電極の場合である。
[Prior art and problems to be solved by the invention] In the fields of semiconductor processing and micromachining,
For example, gas permeable membranes and fluororesin membranes as insulating materials,
There is a need for strong adhesion to silicon wafers, glass substrates, etc. For example, this is the case with small Clark-type (diaphragm-type) electrodes that utilize micromachine technology.

【0003】ところで、酸素電極は近年、種々の分野に
おいて、溶存酸素濃度の測定に有利に用いられている。 例えば、水質保全の見地から水中の生化学的酸素要求量
(BOD)の測定が行われているが、この溶存酸素濃度
の測定器としてこの小型酸素電極を使用することができ
る。 また、醗酵工業において、効率良くアルコール醗酵を進
めるためには醗酵槽中の溶存酸素濃度の調整が必要であ
り、この測定器として本発明の小型酸素電極を使用する
ことができる。さらにまた、小型酸素電極は、酵素と組
み合わせて酵素電極を形成し、糖やアルコールなどの濃
度測定に用いることもできる。例えば、グルコースはグ
ルコースオキシダーゼという酵素を触媒とし、溶存酸素
と反応してグルコノラクトンに酸化するが、これにより
酸素電極セルの中に拡散してくる溶存酸素が減ることを
利用し、溶存酸素の消費量からグルコース濃度を測定す
ることができる。
Incidentally, in recent years, oxygen electrodes have been advantageously used in various fields for measuring dissolved oxygen concentrations. For example, biochemical oxygen demand (BOD) in water is measured from the viewpoint of water quality conservation, and this small oxygen electrode can be used as a measuring device for dissolved oxygen concentration. Further, in the fermentation industry, in order to efficiently proceed with alcohol fermentation, it is necessary to adjust the dissolved oxygen concentration in the fermenter, and the small oxygen electrode of the present invention can be used as a measuring device for this purpose. Furthermore, the small oxygen electrode can be combined with an enzyme to form an enzyme electrode, which can be used to measure the concentration of sugars, alcohols, and the like. For example, glucose is oxidized to gluconolactone by reacting with dissolved oxygen using the enzyme glucose oxidase as a catalyst. Glucose concentration can be determined from consumption.

【0004】このように小型酸素電極は、環境計測、醗
酵工業、臨床医療など各種の分野で使用することができ
るが、特に臨床医療分野においてカテーテルに装着し、
体内に挿入する用途においては、小型であるとともに使
い捨て可能で低価格であるので、非常に利用価値がある
。本発明者らは、従来の酸素電極では、小型化ができず
大量生産も不可能であるため、異方性エッチングを利用
した小型酸素電極(特開昭63−238548)あるい
は異方性エッチングと陽極接合を利用した小型酸素電極
(特願平2−243849)を開発した。これらの酸素
電極は、小型で、特性のばらつきが少なく、また一括大
量生産ができるために、低コストである。ここでガス透
過性膜の形成は、前者においてははっ水性ポリマー膜を
ディップコーティングまたはスピンコーティングにより
形成し、後者においてはフッ素系のFEP膜を熱融着に
より接着した。
[0004] As described above, small oxygen electrodes can be used in various fields such as environmental measurement, fermentation industry, and clinical medicine.
When used for insertion into the body, it is small, disposable, and inexpensive, making it very useful. Since conventional oxygen electrodes cannot be miniaturized and cannot be mass-produced, the present inventors developed a compact oxygen electrode using anisotropic etching (Japanese Patent Application Laid-Open No. 63-238548) or an anisotropic etching method. We have developed a small oxygen electrode (patent application No. 2-243849) using anodic bonding. These oxygen electrodes are small, have little variation in characteristics, and can be mass-produced at once, so they are low cost. Here, the gas permeable membrane was formed by forming a water-repellent polymer membrane by dip coating or spin coating in the former case, and by adhering a fluorine-based FEP membrane by thermal fusion in the latter case.

【0005】特開昭63−238548号に開示した方
法は、簡便ではあるが、膜パターンの選択的形成と膜の
強度に問題があり、これらを両立させることは一般には
難しい。 また、特願平2−243849に開示した方法はガス透
過性膜としてFEP膜を使用するものであるが、これは
膜が化学的に非常に安定である上に、全工程に渡ってウ
エハー状での作製を可能にするため、非常に優れた方法
である。
Although the method disclosed in JP-A-63-238548 is simple, it has problems with the selective formation of a film pattern and the strength of the film, and it is generally difficult to achieve both. In addition, the method disclosed in Japanese Patent Application No. 2-243849 uses an FEP membrane as a gas-permeable membrane, but this membrane is chemically very stable and requires a wafer-like structure throughout the entire process. This is an excellent method as it allows for the production of

【0006】ところで、従来半導体プロセスなどで、ガ
ス透過膜や絶縁材料としてフッ素樹脂を、シリコーンウ
エハやガラス基板などに接着する際、フッ素樹脂の溶解
する温度(280℃前後)で融着をする方法は以前から
知られていた。しかしこの方法だと、融着時に混入する
気泡、湿度の変化、摩擦などによって非常に剥離しやす
く、特に水濡れには弱く問題となっていた。
By the way, when bonding fluororesin as a gas permeable film or insulating material to silicone wafers, glass substrates, etc. in conventional semiconductor processes, etc., there is a method of fusion bonding at the temperature at which the fluororesin melts (around 280°C). has been known for a long time. However, with this method, it is very easy to peel off due to air bubbles mixed in during fusion, changes in humidity, friction, etc., and it is particularly vulnerable to water wetting, which has been a problem.

【0007】また、小型センサー等のバイオセンサーを
医療分野で用いる場合、予じめこれを高圧蒸気滅菌する
必要があるが、このような高圧蒸気滅菌時にしばしばガ
ス透過膜が剥離するという問題があった。これは実用上
極めて重大な問題である。
[0007] Furthermore, when biosensors such as small sensors are used in the medical field, it is necessary to sterilize them with high-pressure steam in advance, but there is a problem that the gas permeable membrane often peels off during such high-pressure steam sterilization. Ta. This is a very serious problem in practice.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意検討を重ねた結果、以下に述べる
ような2つの手段により前記課題を解決できることの知
見を得て本発明を解決した。第一の手段は、フッ素樹脂
表面あるいは、シリコーンウエハ表面を化学修飾し、両
者間に化学結合を形成することで接着力を強化せんとす
るものである。
[Means for Solving the Problems] As a result of intensive studies in order to solve the above problems, the present inventors have found that the above problems can be solved by the following two means, and have invented the present invention. solved. The first method is to chemically modify the fluororesin surface or the silicone wafer surface to form a chemical bond between the two to strengthen the adhesive force.

【0009】フッ素樹脂は反応性が無いことが特徴であ
るが、表層のフッ素のみを脱離し、シランカップリング
剤で処理することにより、シリコーンウエハとの化学結
合を生じ、強固に接着させることが可能となる。すなわ
ち、第一の手段たる発明はフッ素樹脂膜表面を金属ナト
リウムを含む試剤で処理し、次いでシランカップリング
剤で処理し、更にこのように処理したフッ素樹脂膜と基
板を加熱融着することを特徴とするものであり、あるい
はまた、基板表面をシランカップリング剤で処理し、更
にこのように処理した基板とフッ素樹脂膜を加熱融着す
ることを特徴とする。なお、後者の方法においてフッ素
樹脂として、金属ナトリウムを含む試剤で処理したフッ
素樹脂膜を用いることができ、あるいは金属ナトリウム
を含む試剤で処理し、次いでシランカップリング剤で処
理したフッ素樹脂膜を用いることもできる。
Fluororesin is characterized by its lack of reactivity, but by removing only the fluorine from the surface layer and treating it with a silane coupling agent, it can form a chemical bond with the silicone wafer and create a strong bond. It becomes possible. That is, the invention as the first means involves treating the surface of the fluororesin film with a reagent containing sodium metal, then treating it with a silane coupling agent, and then heat-sealing the thus treated fluororesin film and the substrate. Alternatively, the substrate surface is treated with a silane coupling agent, and the thus treated substrate and the fluororesin film are further heat-fused. In addition, in the latter method, a fluororesin membrane treated with a reagent containing metallic sodium can be used as the fluororesin, or a fluororesin membrane treated with a reagent containing metallic sodium and then treated with a silane coupling agent can be used. You can also do that.

【0010】第二の手段は、特に前記の後者の問題に対
処するためのものである。すなわち、高圧蒸気滅菌時の
剥離の現象はフッ素樹脂膜の熱融着時に気泡が膜と基板
間に残り、これが膜と基板の接着面積を減少させるばか
りでなく、高圧蒸気滅菌時に気泡が膨張し、膜を剥離さ
せるためであることが判明した。そこで、本発明者は気
泡を真空中で蒸去する方法、または熱融着工程を全て真
空中で行うことによりこの問題を解決できることを見出
した。
[0010] The second means is specifically designed to deal with the latter problem mentioned above. In other words, the phenomenon of peeling during high-pressure steam sterilization is caused by air bubbles remaining between the film and the substrate during thermal fusion of the fluororesin film, which not only reduces the adhesion area between the film and the substrate, but also causes the bubbles to expand during high-pressure steam sterilization. It turned out that this was to cause the film to peel off. The inventors of the present invention have found that this problem can be solved by evaporating the air bubbles in a vacuum, or by performing the entire thermal fusion process in a vacuum.

【0011】従って、第二の手段たる発明はフッ素樹脂
膜表面を金属ナトリウムを含む試剤で処理し、次いでシ
ランカップリング剤で処理し、次いでこのように処理し
たフッ素樹脂膜を基板上に熱融着し、次いで熱融着した
基板を真空中に放置し、その後該熱着した基板を大気圧
下に戻した後再び熱融着することを特徴とし、あるいは
又フッ素樹脂膜表面を金属ナトリウムを含む試剤で処理
し、次いでシランカップリング剤で処理し、次いでこの
ように処理したフッ素樹脂膜を真空下、基板上に熱融着
し、次いでそのまま真空中に放置した後、再び真空下で
熱融着することを特徴とする。
Therefore, the second means of the invention is to treat the surface of a fluororesin film with a reagent containing sodium metal, then with a silane coupling agent, and then heat-fuse the fluororesin film thus treated onto a substrate. The heat-sealed substrate is then left in a vacuum, and then the heat-sealed substrate is returned to atmospheric pressure and then heat-sealed again.Alternatively, the surface of the fluororesin film is coated with metallic sodium. The fluororesin film treated in this way is then heat-sealed onto the substrate under vacuum, then left in vacuum, and then heat-sealed under vacuum again. It is characterized by being fused.

【0012】なお、本発明方法で「基板」とはシリコン
ウェハおよびガラス基板等をいう。また、シランカップ
リング剤とはγ−APTES(γ−アミノプロピルトリ
エトキシシランあるいはヘキサメチルジシラザン等のシ
リコーン化合物をいう。以下、更に実施例により本発明
に説明するが、本発明がこれらの実施例に限定されない
ことはもとよりである。
[0012] In the method of the present invention, the term "substrate" refers to silicon wafers, glass substrates, and the like. In addition, the silane coupling agent refers to a silicone compound such as γ-APTES (γ-aminopropyltriethoxysilane or hexamethyldisilazane). Of course, it is not limited to the example.

【0013】[0013]

【実施例】実施例1 フッ素樹脂膜としてFEP(フッ化エチレンプロピレン
、東レ(株)製、12μm厚)を用いた。次にエタノー
ルを用いて該FEP膜を洗浄し、乾燥させた(第1段階
)。洗浄したサンプルをNa を含む試剤(CHEMG
RIP、ノートン社製)に30秒間浸漬して反応させ、
アセトンで3回洗浄した(第2段階)。さらにγ−AP
TES(γ−アミノプロピルトリエトキシシラン、シラ
ンカップリング剤、アルドリッチ製)10%水溶液に5
0℃で30分間浸漬して反応させた(第3段階)。
Examples Example 1 FEP (fluorinated ethylene propylene, manufactured by Toray Industries, Inc., 12 μm thick) was used as the fluororesin membrane. The FEP membrane was then washed with ethanol and dried (first step). The washed sample was treated with a reagent containing Na (CHEMG).
RIP (manufactured by Norton) for 30 seconds to react.
Washed three times with acetone (second stage). Furthermore, γ-AP
TES (γ-aminopropyltriethoxysilane, silane coupling agent, manufactured by Aldrich) in a 10% aqueous solution.
It was immersed at 0° C. for 30 minutes to react (third stage).

【0014】このように上記1〜3の各段階で処理をと
めたサンプルを作成した。一方、基板としてシリコンウ
ェハを用い、このシリコンウェハを、未処理のもの(a
)とシランカップリング剤(γ−APTES)で処理し
たもの(b)の2種類を用意した。次に(a)および(
b)の2種類のウェハ上に前記各段階で処理を止めたサ
ンプルをのせ、 280℃のホットプレート上で融着を
行った。その後、オートクレーブで、水中高圧滅菌(1
20℃、2気圧、15分間)を行い、その後の融着状態
を調べた。
[0014] In this way, samples were prepared that had been processed at each of the steps 1 to 3 above. On the other hand, a silicon wafer is used as a substrate, and this silicon wafer is used as an untreated silicon wafer (a
) and (b) treated with a silane coupling agent (γ-APTES) were prepared. Then (a) and (
The samples treated at each stage were placed on the two types of wafers of b), and fusion bonding was performed on a hot plate at 280°C. After that, autoclave and underwater high pressure sterilization (1
(20° C., 2 atm, 15 minutes), and the state of fusion bonding thereafter was examined.

【0015】滅菌後のFEP接着割合を第1表に示す。 サンプル数はそれぞれ10片ずつとした。因みに、従来
の接着方法は■−(a)で、水中では非常に剥離しやす
い。これと比較すると■−(a)以外の表面処理サンプ
ルは全て水中でも剥離せずに強固に接着していることが
わかる。特に■−(b)は接着力が強く、セロテープに
よる剥離試験にも耐性だった。
Table 1 shows the FEP adhesion ratio after sterilization. The number of samples was 10 pieces each. Incidentally, the conventional adhesion method is (1)-(a), which is very easy to peel off in water. Comparing this with this, it can be seen that all the surface treated samples other than ■-(a) were firmly adhered without peeling even in water. In particular, ■-(b) had strong adhesive strength and was resistant to a peel test using cellophane tape.

【0016】[0016]

【表1】[Table 1]

【0017】実施例2 まず小型酸素電極等のセンサ本体の形成された基板を十
分純水中で超音波洗浄する。次いでFEP膜(東レ製、
膜厚12μm)を金属ナトリウムを含む処理剤(例えば
CHEMGRIP)中に浸漬し、膜表面のフッ素原子を
除去する。 更にシランカップリング(γ−APTES)で該FEP
膜を処理する。
Example 2 First, a substrate on which a sensor body such as a small oxygen electrode is formed is ultrasonically cleaned in pure water. Next, FEP membrane (manufactured by Toray,
The film (thickness: 12 μm) is immersed in a treatment agent containing metallic sodium (for example, CHEMGRIP) to remove fluorine atoms on the film surface. Furthermore, the FEP is isolated by silane coupling (γ-APTES).
Treat the membrane.

【0018】このように表面処理した膜を 270℃に
加熱した基板上に置き、熱融着を行う。膜−基板間に残
った気泡を除去するため、膜を融着した基板を真空中に
5分間置き、ただちに常圧に戻した後、再び 270℃
に加熱する。必要に応じ、加熱工程を繰り返す。この工
程により、膜の密着性が改善される。
The thus surface-treated film is placed on a substrate heated to 270° C. and thermally bonded. To remove air bubbles remaining between the film and the substrate, the substrate with the film fused thereon was placed in a vacuum for 5 minutes, immediately returned to normal pressure, and then heated again to 270°C.
Heat to. Repeat the heating process if necessary. This step improves the adhesion of the film.

【0019】膜を平坦な基板上に融着する場合には実施
例1に記載したように金属ナトリウムとシランカップリ
ング剤処理のみで十分な強度が得られるが、実際の小型
酸素電極のように表面に凹凸がある基板上に融着する場
合には、膜−基板間にしばしば気泡が入る。これは高圧
蒸気滅菌処理時に膨張して膜を剥離する恐れがある上、
膜と基板の接触面積を小さくし密着性を悪くする。かか
る場合、膜融着時の真空処理が有効である。
When a film is fused onto a flat substrate, sufficient strength can be obtained by treatment with metallic sodium and a silane coupling agent as described in Example 1, but as with an actual small-sized oxygen electrode, When fusion bonding is performed on a substrate with an uneven surface, air bubbles often form between the film and the substrate. This may expand during the high-pressure steam sterilization process and cause the membrane to peel off.
This reduces the contact area between the film and the substrate, resulting in poor adhesion. In such cases, vacuum treatment during film fusion is effective.

【0020】実施例2の方法で処理し気泡を除去した場
合の効果を第2表に示す。ここでは、実施例2で記載し
た如く金属ナトリウムとγ−APTESによる処理を行
った膜を何も処理していないシリコン基板上に融着し真
空処理して小型酸素電極を完成させる。一方、金属ナト
リウムとγ−APTESによる処理を行った膜を何を処
理していないシリコン基板上に融着し真空処理しない小
型酸素電極を対照電極として用いた。それぞれの電極を
高圧蒸気滅菌し、その後の膜の剥離状態を比較した。結
果を表2に示す。
[0020] Table 2 shows the effect of removing air bubbles by treatment according to the method of Example 2. Here, a film treated with metallic sodium and γ-APTES as described in Example 2 is fused onto an untreated silicon substrate and subjected to vacuum treatment to complete a small oxygen electrode. On the other hand, a film treated with metallic sodium and γ-APTES was fused onto an untreated silicon substrate, and a small oxygen electrode without vacuum treatment was used as a control electrode. Each electrode was sterilized using high-pressure steam, and the state of membrane peeling after that was compared. The results are shown in Table 2.

【0021】[0021]

【表2】[Table 2]

【0022】表2より真空処理の著しい効果が確認され
た。
From Table 2, it was confirmed that the vacuum treatment had a significant effect.

【0023】[0023]

【発明の効果】以上説明したように本発明は構成される
ので、基板とフッ素樹脂膜とを強固に接着せしめること
ができ該フッ素樹脂膜の基板からの剥離を防止できる効
果を奏する。特に、例えば実際の小型酸素電極を作成し
、これを高圧蒸気滅菌するような過酷な条件にさらす場
合でも、真空処理する本発明方法ではガス透過膜の密着
性が著るしく改善されるため膜剥離は全く認められない
という効果を奏する。
As described above, since the present invention is configured, it is possible to firmly bond the substrate and the fluororesin film, and it is possible to prevent the fluororesin film from peeling off from the substrate. In particular, even when creating an actual small oxygen electrode and subjecting it to harsh conditions such as high-pressure steam sterilization, the vacuum treatment method of the present invention significantly improves the adhesion of the gas permeable membrane. The effect is that no peeling is observed at all.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  基板上にフッ素樹脂膜を接着する方法
であって、該フッ素樹脂膜表面を金属ナトリウムを含む
試剤で処理し、次いでシランカップリング剤で処理し、
更にこのように処理したフッ素樹脂膜と基板を加熱融着
することを含んでなる、フッ素樹脂膜の接着方法。
1. A method for bonding a fluororesin film onto a substrate, the surface of the fluororesin film being treated with a reagent containing sodium metal, and then treated with a silane coupling agent,
A method for adhering a fluororesin film, further comprising heat-sealing the fluororesin film treated in this way and a substrate.
【請求項2】  基板上にフッ素樹脂膜を接着する方法
であって、該基板表面をシランカップリング剤で処理し
、更にこのように処理した基板とフッ素樹脂膜を加熱融
着することを含んでなる前記方法。
2. A method for bonding a fluororesin film onto a substrate, the method comprising treating the surface of the substrate with a silane coupling agent and further heat-sealing the thus treated substrate and the fluororesin film. The method comprising:
【請求項3】  フッ素樹脂膜として、金属ナトリウム
を含む試剤で処理したフッ素樹脂膜を用いる請求項2の
方法。
3. The method according to claim 2, wherein the fluororesin membrane is a fluororesin membrane treated with a reagent containing sodium metal.
【請求項4】  フッ素樹脂膜として、金属ナトリウム
を含む試剤で処理し、次いでシランカップリング剤で処
理したフッ素樹脂膜を用いる請求項2の方法。
4. The method according to claim 2, wherein the fluororesin film is a fluororesin film treated with a reagent containing sodium metal and then treated with a silane coupling agent.
【請求項5】  基板上にフッ素樹脂膜を接着する方法
であって、該フッ素樹脂膜表面を金属ナトリウムを含む
試剤で処理し、次いでシランカップリング剤で処理し、
次いでこのように処理したフッ素樹脂膜を基板上に熱融
着し、次いで熱融着した基板を真空中に放置し、その後
該熱融着した基板を大気圧下に戻した後再び熱融着する
ことを含んでなる前記方法。
5. A method for adhering a fluororesin film onto a substrate, comprising: treating the surface of the fluororesin film with a reagent containing metallic sodium, and then treating it with a silane coupling agent;
Next, the fluororesin film treated in this way is heat-sealed onto the substrate, the heat-sealed substrate is left in a vacuum, and then the heat-sealed substrate is returned to atmospheric pressure and then heat-sealed again. The method comprising:
【請求項6】  基板上にフッ素樹脂膜を接着する方法
であって、該フッ素樹脂膜表面を金属ナトリウムを含む
試剤で処理し、次いでシランカップリング剤で処理し、
次いでこのように処理したフッ素樹脂膜を真空下、基板
上に熱融着し、次いでそのまま真空中に放置した後、再
び真空下で熱融着することを含んでなる前記方法。
6. A method for adhering a fluororesin film onto a substrate, the surface of the fluororesin film being treated with a reagent containing sodium metal, and then treated with a silane coupling agent,
The method described above comprises the steps of: heat-sealing the fluororesin film treated in this way onto a substrate under vacuum, then leaving it as it is in vacuum, and then heat-sealing it again under vacuum.
JP3151573A 1990-09-17 1991-06-24 Process for bonding fluororesin film Withdrawn JPH04372626A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3151573A JPH04372626A (en) 1991-06-24 1991-06-24 Process for bonding fluororesin film
KR1019910016150A KR960012335B1 (en) 1990-09-17 1991-09-16 Oxygen electrode
EP91308484A EP0476980B1 (en) 1990-09-17 1991-09-17 Oxygen electrode and process for the production thereof
DE69125557T DE69125557T2 (en) 1990-09-17 1991-09-17 Oxygen electrode and process for its manufacture
US07/993,486 US5358619A (en) 1990-09-17 1992-12-17 Oxygen electrode
US08/153,144 US5431806A (en) 1990-09-17 1993-11-17 Oxygen electrode and temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3151573A JPH04372626A (en) 1991-06-24 1991-06-24 Process for bonding fluororesin film

Publications (1)

Publication Number Publication Date
JPH04372626A true JPH04372626A (en) 1992-12-25

Family

ID=15521478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3151573A Withdrawn JPH04372626A (en) 1990-09-17 1991-06-24 Process for bonding fluororesin film

Country Status (1)

Country Link
JP (1) JPH04372626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103034A (en) * 1996-10-08 2000-08-15 Toyota Jidosha Kabushiki Kaisha Method and apparatus for welding hard resin product to substrate, method of manufacturing window glass and window glass
JP2010280911A (en) * 2008-09-16 2010-12-16 Asahi Rubber Inc Method for producing three dimensional silicone rubber bonded object
WO2023182389A1 (en) * 2022-03-23 2023-09-28 株式会社クレハ Molded body and method for producing molded body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103034A (en) * 1996-10-08 2000-08-15 Toyota Jidosha Kabushiki Kaisha Method and apparatus for welding hard resin product to substrate, method of manufacturing window glass and window glass
JP2010280911A (en) * 2008-09-16 2010-12-16 Asahi Rubber Inc Method for producing three dimensional silicone rubber bonded object
WO2023182389A1 (en) * 2022-03-23 2023-09-28 株式会社クレハ Molded body and method for producing molded body

Similar Documents

Publication Publication Date Title
KR960012335B1 (en) Oxygen electrode
US7455874B2 (en) Method for the fabrication of a biosensor comprising an enzyme electrode arrangement
JPH04372626A (en) Process for bonding fluororesin film
Tang et al. Composite liquid membrane for enzyme electrode construction
JP3461696B2 (en) Micro online biosensor and production method thereof
US5358619A (en) Oxygen electrode
JP3881731B2 (en) Enzyme reaction sensor and manufacturing method thereof
JPS61145447A (en) Immobilized enzyme membrane
Zhu et al. An overview of Si-based biosensors
JP2000230916A (en) Integrated type biosensor and its preparation method
JP2004219325A (en) Electrochemical online type biosensor and its manufacturing method
JP2743535B2 (en) Integrated sensor and manufacturing method thereof
JPS6254155A (en) Formation of enzyme immobilized film for semiconductor biosensor
JPS61283862A (en) Manufacture of enzyme immobilized film
JP2687942B2 (en) Method for forming immobilized enzyme membrane
JP2001103994A (en) Glutamic acid sensor and method for producing the same
JPS63230078A (en) Biosensor and production thereof
JPS60192249A (en) Method for measuring blood sugar value
Lillis et al. Development of an amperometric biosensor for lactate
JPS63111454A (en) Production of immobilized enzyme film
JPH04215053A (en) Enzyme film fixing method for biosensor
JPH04231858A (en) Biosensor
Chen et al. Biocompatible Membranes with Special Functions for Biosensor's Application
JPS63231257A (en) Biosensor and its preparation
JP2019060868A (en) Microchannel device and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903