JPH04372559A - Fault detector for rotating rectifier of brushless generator - Google Patents

Fault detector for rotating rectifier of brushless generator

Info

Publication number
JPH04372559A
JPH04372559A JP3150711A JP15071191A JPH04372559A JP H04372559 A JPH04372559 A JP H04372559A JP 3150711 A JP3150711 A JP 3150711A JP 15071191 A JP15071191 A JP 15071191A JP H04372559 A JPH04372559 A JP H04372559A
Authority
JP
Japan
Prior art keywords
generator
alternator
excitation current
value
calculation result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3150711A
Other languages
Japanese (ja)
Other versions
JP2870559B2 (en
Inventor
Shigeki Watanabe
渡辺 重喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3150711A priority Critical patent/JP2870559B2/en
Publication of JPH04372559A publication Critical patent/JPH04372559A/en
Application granted granted Critical
Publication of JP2870559B2 publication Critical patent/JP2870559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To supervise abnormality easily and at all times by obtaining a caluculated value of loaded excitation current corresponding to a load condition by a simulator circuit, and issuing an alarm when the difference from a real value is larger than a specified value. CONSTITUTION:A power detector 13 calculates effective power Px and reactive power Qx from current and voltage detected with a current transformer 11 and an instrument transformer 12, and puts its outputs into a simulator circuit 20. The first function generator 14 outputs a calculated value of no-load excitation current Ifo which corresponds to the voltage and puts it into the simulation circuit 20. As the simulator circuit 20 simulates the output limit characteristic of an AC generator 2, it outputs a calculated value of loaded excitation current Ifx corresponding to the load condition of the AC generator 2 at that time, by inputting various kinds of data. And it becomes possible to judge whether or not the elements of rotating rectifiers 6 are abnormal by judging whether or not the detected value of the real excitation current IF of the AC generator 2 is equal to the calculated value of the loaded excitation current Ifx.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ブラシレス発電機の
主要な構成要素である回転整流器の故障を検出する装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting a failure in a rotary rectifier, which is a major component of a brushless generator.

【0002】0002

【従来の技術】図6はブラシレス発電機の構成の概略を
示した構成図である。この図6において、交流発電機は
固定した電機子2Aと回転磁極2Fとでなっており、こ
の回転磁極2Fに交流発電機励磁電流IF を流すこと
により、電機子2Aからは3相交流電力を出力する。こ
の交流発電機励磁電流IF を供給するための交流励磁
機は回転電機子3Aと固定磁極3Fとでなり、励磁電源
3Sから固定磁極3Fへ交流励磁機励磁電流IFEを流
すことで、回転電機子3Aは3相交流電力を出力する。 そこで交流発電機の回転磁極2Fと、交流励磁機の回転
電機子3Aとを共通の回転軸5で結合し、この回転軸5
を原動機4で駆動する。このとき、回転軸5に回転整流
器6を固着し、交流励磁機の回転電機子3Aが出力する
交流電力をこの回転整流器6で直流電力に変換し、交流
発電機の回転磁極2Fへ交流発電機励磁電流IF とし
て与えるようにすれば、回転整流器6は回転磁極2F及
び回転電機子3Aと同体で回転するので、この交流発電
機はスリップリングやブラシを必要とせず、所謂ブラシ
レス発電機となる。
2. Description of the Related Art FIG. 6 is a block diagram schematically showing the structure of a brushless generator. In Fig. 6, the alternator consists of a fixed armature 2A and a rotating magnetic pole 2F, and by passing an alternator excitation current IF through the rotating magnetic pole 2F, three-phase AC power is supplied from the armature 2A. Output. The AC exciter for supplying this AC generator excitation current IF consists of a rotating armature 3A and a fixed magnetic pole 3F. 3A outputs three-phase AC power. Therefore, the rotating magnetic pole 2F of the AC generator and the rotating armature 3A of the AC exciter are connected by a common rotating shaft 5, and this rotating shaft 5
is driven by prime mover 4. At this time, a rotating rectifier 6 is fixed to the rotating shaft 5, and the alternating current power output by the rotating armature 3A of the AC exciter is converted into direct current power by the rotating rectifier 6, and the alternating current power is sent to the rotating magnetic pole 2F of the alternator. If the excitation current IF is applied, the rotating rectifier 6 rotates together with the rotating magnetic pole 2F and the rotating armature 3A, so this alternator does not require a slip ring or brushes, and becomes a so-called brushless generator.

【0003】ブラシレス発電機はブラシなど磨耗する部
品が無く、スリップリングなどを保守点検する手間を省
略出来るので多用されている。尚、回転整流器6の保護
用として従来はヒューズを挿入することもあったが、こ
のヒューズは回転整流器6と共に回転するので遠心力に
より破損する恐れがあり、構造上の弱点になる。一方適
用技術の向上により、回転整流器6が破損する恐れは少
なくなって来ているので、近頃は保護ヒューズを省略す
ることが多い。
Brushless generators are widely used because they do not have parts that wear out, such as brushes, and can eliminate the need for maintenance and inspection of slip rings and the like. Incidentally, conventionally, a fuse has been inserted to protect the rotary rectifier 6, but since this fuse rotates together with the rotary rectifier 6, there is a risk of damage due to centrifugal force, resulting in a structural weakness. On the other hand, with the improvement of applied technology, the risk of damage to the rotary rectifier 6 has decreased, so the protective fuse is often omitted these days.

【0004】0004

【発明が解決しようとする課題】回転整流器6に保護ヒ
ューズを挿入していない近頃のブラシレス発電機では、
整流素子が短絡する故障を生じると交流発電機励磁電流
IF は増加するのであるが、従来は交流発電機が無負
荷で定格電圧を出力する状態における交流発電機励磁電
流と、全負荷で定格電圧を出力する状態における交流発
電機励磁電流の2点しか監視していなかったので、交流
発電機がそれ以外の状態で運転しているときは、整流素
子が短絡する故障を生じてもこれを検出することは出来
ない不具合があった。
[Problem to be solved by the invention] In recent brushless generators in which a protective fuse is not inserted in the rotary rectifier 6,
The alternator excitation current IF increases when a rectifier short-circuit occurs, but conventionally, the alternator excitation current when the alternator outputs the rated voltage with no load, and the rated voltage at full load Since only two points of the alternator excitation current were monitored when the alternator was in the state where it was outputting, when the alternator was operating in other conditions, even if a fault such as a short circuit in the rectifying element occurred, this could be detected. There was a problem that made it impossible to do so.

【0005】そこでこの発明の目的は、ブラシレス発電
機がどのような負荷状態で運転していても、その運転状
態に対応した交流発電機励磁電流を常時演算し、この演
算値と交流発電機励磁電流検出値とに所定値以上の差を
生じれば、回転整流器の故障と判断して警報を発するこ
とにある。
[0005] Therefore, an object of the present invention is to constantly calculate the alternator excitation current corresponding to the operating condition, no matter what load condition the brushless generator is operating under, and to combine this calculated value with the alternator excitation current. If a difference of more than a predetermined value occurs between the current detection value and the current detection value, it is determined that the rotary rectifier is malfunctioning and an alarm is issued.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めにこの発明の回転整流器故障検出装置は、固定子が電
機子で回転子が磁極の交流発電機の回転磁極と、固定子
が磁極で回転子が電機子の交流励磁機の回転電機子とを
共通の回転軸で結合し、この交流励磁機の回転電機子が
出力する交流電力を前記回転軸に取付けた回転整流手段
で整流し、励磁電流として前記交流発電機の回転磁極に
与える構成のブラシレス発電機において、前記交流発電
機が出力する有効電力と無効電力とを検出する電力検出
手段、交流発電機端子電圧を検出する電圧検出手段、交
流発電機の励磁電流を検出する交流発電機励磁電流検出
手段、交流発電機の無負荷飽和特性を模擬する第1関数
発生手段、及び交流発電機の出力限界特性を模擬する模
擬回路とを備え、前記交流発電機の無負荷時は前記交流
発電機端子電圧検出値と前記第1関数発生手段とにより
この交流発電機の無負荷励磁電流計算値を求め、前記交
流発電機の負荷時はこの交流発電機の有効電力検出値、
無効電力検出値、前記第1関数発生手段によるこの交流
発電機の無負荷励磁電流計算値、及び前期交流発電機の
直軸同期リアクタンスと横軸同期リアクタンスとを用い
て前記模擬回路からこの交流発電機の励磁電流計算値を
求め、これら交流発電機無負荷時、又は負荷時の励磁電
流計算値と前記交流発電機励磁電流検出値とを比較し、
両者の差異が所定値以上のとき、前記回転整流手段の故
障と判定するものとする。
[Means for Solving the Problems] In order to achieve the above object, the rotating rectifier failure detection device of the present invention is provided with rotating magnetic poles of an alternator in which the stator is an armature and the rotor is a magnetic pole, and the stator is a magnetic pole. The rotor is connected to a rotating armature of an AC exciter whose armature is connected by a common rotating shaft, and the AC power output from the rotating armature of this AC exciter is rectified by a rotating rectifying means attached to the rotating shaft. , a brushless generator configured to apply exciting current to rotating magnetic poles of the alternator, power detection means for detecting active power and reactive power output by the alternator; voltage detection for detecting alternator terminal voltage; means, alternator excitation current detection means for detecting an excitation current of the alternator, first function generation means for simulating no-load saturation characteristics of the alternator, and a simulating circuit for simulating output limit characteristics of the alternator. When the alternator is not loaded, a calculated value of the no-load excitation current of the alternator is calculated using the detected alternator terminal voltage value and the first function generating means, and when the alternator is loaded, is the detected active power value of this alternator,
The AC generator is generated from the simulated circuit using the detected reactive power value, the calculated no-load excitation current value of the AC generator by the first function generating means, and the direct axis synchronous reactance and horizontal axis synchronous reactance of the former AC generator. Find the calculated value of the excitation current of the machine, compare these calculated values of the excitation current when the alternator is not loaded or when the alternator is loaded, and the detected value of the excitation current of the alternator,
When the difference between the two is greater than or equal to a predetermined value, it is determined that the rotary rectifying means is malfunctioning.

【0007】[0007]

【作用】この発明は、交流発電機出力電圧に対応した無
負荷励磁電流計算値を求めると共に交流発電機が出力し
ている有効電力PX と無効電力QX を検出し、これ
らと当該交流発電機の定数である発電機直軸同期リアク
タンスと発電機横軸同期リアクタンスとを模擬回路に与
えて、この模擬回路からその時の負荷状態に対応した交
流発電機の負荷時励磁電流計算値IfXを求め、この負
荷時励磁電流計算値IfXと交流発電機励磁電流検出値
IF との差が所定値以上になれば、回転整流器故障と
判定して警報しようとするものである。尚、上述の模擬
回路は交流発電機の出力限界特性を模擬した回路構成と
する。
[Operation] This invention calculates the calculated no-load excitation current corresponding to the output voltage of the alternator, detects the active power PX and reactive power QX output by the alternator, and combines these with the output voltage of the alternator. The generator direct axis synchronous reactance and the generator horizontal axis synchronous reactance, which are constants, are given to a simulated circuit, and from this simulated circuit, the calculated value of the excitation current during load of the alternator corresponding to the load condition at that time IfX is obtained. If the difference between the load excitation current calculation value IfX and the alternator excitation current detection value IF exceeds a predetermined value, it is determined that the rotary rectifier has failed and an alarm is issued. Note that the above-mentioned simulation circuit has a circuit configuration that simulates the output limit characteristics of an alternator.

【0008】[0008]

【実施例】図1は本発明の第1実施例を表した回路図で
ある。この図1において、電機子2Aと回転磁極2Fと
で構成している交流発電機2と、回転電機子3Aと固定
磁極3Fとで構成している交流励磁機3と、回転整流器
6とにより、図6で既述のブラシレス発電機を構成して
おり、励磁電源3Sからは交流励磁機3の固定磁極3F
へ交流励磁機励磁電流IFEを供給することで、交流発
電機2の回転磁極2Fには交流発電機励磁電流IF が
流れ、交流発電機2の電機子2Aからは遮断器7を介し
て母線8へ交流電力を出力している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit diagram showing a first embodiment of the present invention. In FIG. 1, an AC generator 2 includes an armature 2A and a rotating magnetic pole 2F, an AC exciter 3 includes a rotating armature 3A and a fixed magnetic pole 3F, and a rotating rectifier 6. The brushless generator described above is configured in FIG. 6, and the fixed magnetic pole 3F of the AC exciter 3 is connected from the excitation power source 3S
By supplying the AC exciter excitation current IFE to the rotating magnetic pole 2F of the alternator 2, the alternator excitation current IF flows from the armature 2A of the alternator 2 to the bus bar 8 via the circuit breaker 7. AC power is output to.

【0009】交流発電機2の出力側には変流器11と計
器用変圧器12とを設けて、交流発電機の出力電流と出
力電圧とを検出している。電力検出器13は、この電流
と電圧から当該交流発電機2が出力している有効電力P
X と無効電力QX を演算して模擬回路20へ出力す
る。 又第1関数発生器14は、交流発電機の無負荷飽和特性
を模擬した関数を発生しているので、計器用変圧器12
で検出した電圧を入力することにより、その電圧に対応
した無負荷励磁電流計算値If0を模擬回路20へ出力
する。更に、第1定数設定器15は発電機直軸同期リア
クタンスXd の逆数であるAなる値を設定し、第2定
数設定器16は発電機横軸同期リアクタンスXq の逆
数であるBなる値を設定し、これら設定値を模擬回路2
0へ入力している。
A current transformer 11 and an instrument transformer 12 are provided on the output side of the alternator 2 to detect the output current and output voltage of the alternator. The power detector 13 determines the active power P output by the AC generator 2 from this current and voltage.
X and reactive power QX are calculated and output to the simulation circuit 20. Also, since the first function generator 14 generates a function that simulates the no-load saturation characteristic of the alternator, the voltage transformer 12
By inputting the detected voltage, the no-load excitation current calculation value If0 corresponding to the voltage is output to the simulation circuit 20. Further, the first constant setter 15 sets a value A, which is the reciprocal of the generator direct axis synchronous reactance Xd, and the second constant setter 16 sets a value B, which is the reciprocal of the generator horizontal axis synchronous reactance Xq. Then, these setting values are applied to simulation circuit 2.
It is inputting to 0.

【0010】模擬回路20は交流発電機2の出力限界特
性を模擬しているので、この模擬回路20へ上述の各種
データを入力することにより、交流発電機2のその時点
に於ける負荷状態に対応した負荷時励磁電流計算値If
Xを、この模擬回路20が出力する。それ故、交流発電
機励磁電流検出値IF がこのようにして計算した負荷
時励磁電流計算値IfXに一致しているか否かを検出す
ることで、回転整流器6の素子に異常を生じているか否
かを判断することが出来る。
Since the simulation circuit 20 simulates the output limit characteristics of the alternator 2, by inputting the above-mentioned various data to this simulation circuit 20, the load state of the alternator 2 at that point in time can be determined. Corresponding load-on excitation current calculation value If
This simulation circuit 20 outputs X. Therefore, by detecting whether or not the AC generator excitation current detection value IF matches the load excitation current calculation value IfX calculated in this way, it is possible to determine whether an abnormality has occurred in the elements of the rotary rectifier 6. It is possible to judge whether

【0011】図2は交流発電機の出力限界特性をを示し
たグラフであって、縦軸は有効電力を単位法で、横軸は
無効電力を同じく単位法で表しているが、横軸の右方向
は進みの無効電力を負極性で表し、横軸の左方向は遅れ
の無効電力を正極性で表すものとする。この図2に示す
グラフにおいて、A=1/Xd (但しXd は発電機
直軸同期リアクタンス)とし、B=1/Xq(但しXq
 は発電機横軸同期リアクタンス)であるから、円弧A
Bは半径が(B−A)/2で、C点を中心とする円の一
部である。但しC点の座標は、〔A+(B−A)/2,
0〕である。このようにすると、線分OA(但しOはこ
のグラフの原点)が無負荷励磁電流If0に対応した大
きさになり、線分CDから前述の円の半径を差し引いた
大きさが負荷時励磁電流IfXに対応したものとなる。
FIG. 2 is a graph showing the output limit characteristics of an alternator, in which the vertical axis represents active power in units, and the horizontal axis represents reactive power in units. The right direction represents leading reactive power with negative polarity, and the left direction of the horizontal axis represents lagging reactive power with positive polarity. In the graph shown in FIG. 2, A=1/Xd (where Xd is the generator direct axis synchronous reactance) and B=1/Xq (however, Xq
is the generator horizontal axis synchronous reactance), so the arc A
B is a part of a circle whose radius is (B-A)/2 and centered at point C. However, the coordinates of point C are [A+(B-A)/2,
0]. In this way, the line segment OA (O is the origin of this graph) will have a size corresponding to the no-load excitation current If0, and the size obtained by subtracting the radius of the circle mentioned above from the line segment CD will be the load excitation current. It is compatible with IfX.

【0012】そこで図2に表している負荷時励磁電流I
fX(即ち線分CDから円の半径を引いた長さ)は下記
の数1に示すようになる。
Therefore, the exciting current I during load shown in FIG.
fX (that is, the length obtained by subtracting the radius of the circle from the line segment CD) is as shown in Equation 1 below.

【0013】[0013]

【数1】[Math 1]

【0014】図3は本発明の第2実施例を表したブロッ
ク回路図であって、前述の数1を演算する回路である。 即ち発電機直軸同期リアクタンスXd の逆数であるA
と、発電機横軸同期リアクタンスXq の逆数であるB
との差を演算し(第1減算器21)、その演算結果を2
で割ること(第1除算器22)で、図2で既述の円の半
径を算出している。第1加算器23はこの第1除算器2
2の演算結果と、前述の値Aと、無効電力検出値QX 
とを加算し、更に第1乗算器24はこの値の2乗を演算
する。一方、第2乗算器25は有効電力検出値PX の
2乗を演算するので、この第2乗算器25の演算結果と
第1乗算器24の演算結果とを加算(第2加算器26)
し、これの平方根を平方根演算器27で求める。第2減
算器28は平方根演算器27の演算結果と、前述した第
1除算器22の演算結果との差の演算を行い、その演算
結果を値Aで割り算する(第2除算器29)。この割り
算結果と無負荷励磁電流計算値If0との掛け算を第3
乗算器30において行うことにより、負荷時励磁電流計
算値IfXを求めることが出来る。
FIG. 3 is a block circuit diagram showing a second embodiment of the present invention, which is a circuit for calculating the above-mentioned equation 1. In other words, A is the reciprocal of the generator direct axis synchronous reactance Xd
and B, which is the reciprocal of the generator horizontal axis synchronous reactance Xq
(first subtractor 21), and the result of the calculation is calculated as 2.
By dividing by (first divider 22), the radius of the circle already described in FIG. 2 is calculated. The first adder 23 is the first divider 2
2, the above-mentioned value A, and the reactive power detection value QX
The first multiplier 24 then calculates the square of this value. On the other hand, since the second multiplier 25 calculates the square of the active power detection value PX, the calculation result of the second multiplier 25 and the calculation result of the first multiplier 24 are added (second adder 26).
Then, the square root of this is determined by a square root calculator 27. The second subtracter 28 calculates the difference between the calculation result of the square root calculator 27 and the calculation result of the first divider 22 described above, and divides the calculation result by the value A (second divider 29). This division result is multiplied by the no-load excitation current calculation value If0 as the third
By performing this in the multiplier 30, it is possible to obtain the load excitation current calculation value IfX.

【0015】図4は図3で図示の第2実施例回路で得ら
れる負荷時励磁電流計算値と交流発電機励磁電流検出値
とを比較して警報出力を得る回路を表した回路図であっ
て、第3除算器41、コンパレータ42、及び警報設定
器43で構成している。即ち負荷時励磁電流計算値If
Xと交流発電機励磁電流検出値IF との比率を第3除
算器41で演算し、その演算結果が警報設定器43で設
定した値に達すると、コンパレータ42が警報信号を出
力する仕組みである。但し、ブラシレス発電機の場合は
、交流発電機励磁電流IF を検出するのは困難である
。そこで、この交流発電機励磁電流IF を検出する代
わりに、これとはほぼ線形の関係にある交流励磁機励磁
電流検出値IFEを利用する。
FIG. 4 is a circuit diagram showing a circuit for obtaining an alarm output by comparing the load excitation current calculated value obtained by the second embodiment circuit shown in FIG. 3 with the AC generator excitation current detection value. It is composed of a third divider 41, a comparator 42, and an alarm setting device 43. That is, the calculated value of excitation current under load If
The third divider 41 calculates the ratio between X and the alternator excitation current detection value IF, and when the calculation result reaches the value set by the alarm setting device 43, the comparator 42 outputs an alarm signal. . However, in the case of a brushless generator, it is difficult to detect the alternator excitation current IF. Therefore, instead of detecting this alternating current generator excitation current IF, an alternating current exciter excitation current detection value IFE, which has a substantially linear relationship with this, is used.

【0016】図5は本発明の第3実施例を表した回路図
である。図4で既述したように、警報信号を出力するの
にあたって、検出が困難な交流発電機励磁電流IF の
代わりに交流励磁機励磁電流検出値IFEを用いると、
両者の関係はほぼ線形であっても誤差を生じる。そこで
交流励磁機励磁電流検出値IFEを第2関数発生器50
に入力することで、この第2関数発生器50からは交流
発電機励磁電流IF に一致した信号を取り出し、この
信号を第3除算器41に与えているので、コンパレータ
42は正確な警報を出力出来る。
FIG. 5 is a circuit diagram showing a third embodiment of the present invention. As already described in FIG. 4, when outputting the alarm signal, if the AC exciter excitation current detection value IFE is used instead of the AC generator excitation current IF which is difficult to detect,
Even if the relationship between the two is approximately linear, errors occur. Therefore, the AC exciter excitation current detection value IFE is converted to the second function generator 50.
By inputting to I can do it.

【0017】[0017]

【発明の効果】ブラシレス発電機では、従来は交流発電
機が無負荷定格電圧状態のときの励磁電流と、全負荷定
格電圧状態のときの励磁電流しか監視していなかったの
で、回転整流器の整流素子が短絡するような異常を生じ
ても、この異常を検出することは出来なかった。本発明
においては、交流発電機の無負荷励磁電流とこの交流発
電機が出力する有効電力と無効電力とを検出し、これら
の検出値と交流発電機の定数とを模擬回路に与える。こ
の模擬回路は交流発電機の出力限界特性を模擬している
ので、この模擬回路は上述の値を入力して負荷時励磁電
流を計算し、これを出力する。従って、ブラシレス発電
機がどのような運転状態にあっても、その運転状態にお
ける交流発電機の励磁電流を正確に演算するので、この
励磁電流計算値と交流発電機励磁電流検出値(実際は交
流励磁機励磁電流で代用する)とを比較することで、回
転整流器に異常を生じたか否かの監視が、常時に且つ容
易に行える効果が得られる。
[Effect of the invention] Conventionally, in brushless generators, only the excitation current when the alternator was in the no-load rated voltage state and the excitation current when the alternator was in the full-load rated voltage state were monitored, so the rectification of the rotating rectifier Even if an abnormality such as a short circuit occurred in the element, this abnormality could not be detected. In the present invention, the no-load excitation current of an alternator and the active power and reactive power output by the alternator are detected, and these detected values and constants of the alternator are provided to a simulation circuit. Since this simulation circuit simulates the output limit characteristics of an alternator, this simulation circuit inputs the above-mentioned values, calculates the load excitation current, and outputs it. Therefore, no matter what operating state the brushless generator is in, the excitation current of the alternator in that operating state is accurately calculated. (substituted by machine excitation current), it is possible to constantly and easily monitor whether or not an abnormality has occurred in the rotary rectifier.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1実施例を表した回路図[Fig. 1] A circuit diagram showing a first embodiment of the present invention.

【図2】交
流発電機の出力限界特性をを示したグラフ
[Figure 2] Graph showing the output limit characteristics of an alternator

【図3】本発
明の第2実施例を表したブロック回路図
FIG. 3 is a block circuit diagram showing a second embodiment of the present invention.

【図4】図3で
図示の第2実施例回路で得られる負荷時励磁電流計算値
と交流発電機励磁電流検出値とを比較して警報出力を得
る回路を表した回路図
[Fig. 4] A circuit diagram showing a circuit for obtaining an alarm output by comparing the load excitation current calculated value obtained by the second embodiment circuit shown in Fig. 3 and the AC generator excitation current detection value.

【図5】本発明の第3実施例を表した回路図[Fig. 5] Circuit diagram showing a third embodiment of the present invention

【図6】ブ
ラシレス発電機の構成の概略を示した構成図
[Figure 6] Configuration diagram showing the outline of the configuration of a brushless generator

【符号の説明】[Explanation of symbols]

2    交流発電機 2F  交流発電機回転磁極 3    交流励磁機 3A  交流励磁機回転電機子 4    原動機 5    回転軸 6    回転整流器 13    電力検出器 14    第1関数発生器 20    模擬回路 21    第1減算器 22    第1除算器 23    第1加算器 24    第1乗算器 25    第2乗算器 26    第2加算器 27    平方根演算器 28    第2減算器 29    第2除算器 30    第3乗算器 41    第3除算器 42    コンパレータ 50    第2関数発生器 2   AC generator 2F AC generator rotating magnetic pole 3 AC exciter 3A AC exciter rotating armature 4. Prime mover 5 Rotation axis 6 Rotating rectifier 13 Power detector 14 First function generator 20 Simulated circuit 21 First subtractor 22 First divider 23 First adder 24 First multiplier 25 Second multiplier 26 Second adder 27 Square root calculator 28 Second subtractor 29 Second divider 30 Third multiplier 41 3rd divider 42 Comparator 50 Second function generator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】固定子が電機子で回転子が磁極の交流発電
機の回転磁極と、固定子が磁極で回転子が電機子の交流
励磁機の回転電機子とを共通の回転軸で結合し、この交
流励磁機の回転電機子が出力する交流電力を前記回転軸
に取付けた回転整流手段で整流し、励磁電流として前記
交流発電機の回転磁極に与える構成のブラシレス発電機
において、前記交流発電機が出力する有効電力と無効電
力とを検出する電力検出手段、交流発電機端子電圧を検
出する電圧検出手段、交流発電機の励磁電流を検出する
交流発電機励磁電流検出手段、交流発電機の無負荷飽和
特性を模擬する第1関数発生手段、及び交流発電機の出
力限界特性を模擬する模擬回路とを備え、前記交流発電
機の無負荷時は前記交流発電機端子電圧検出値と前記第
1関数発生手段とによりこの交流発電機の無負荷励磁電
流計算値を求め、前記交流発電機の負荷時はこの交流発
電機の有効電力検出値、無効電力検出値、前記第1関数
発生手段によるこの交流発電機の無負荷励磁電流計算値
、及び前期交流発電機の直軸同期リアクタンスと横軸同
期リアクタンスとを用いて前記模擬回路からこの交流発
電機の励磁電流計算値を求め、これら交流発電機無負荷
時又は負荷時の励磁電流計算値と前記交流発電機励磁電
流検出値とを比較し、両者の差異が所定値以上のとき前
記回転整流手段の故障と判定することを特徴とするブラ
シレス発電機の回転整流器故障検出装置。
Claim 1: A rotating magnetic pole of an alternating current generator in which the stator is an armature and a rotor is a magnetic pole, and a rotating armature of an AC exciter in which the stator is a magnetic pole and the rotor is an armature are coupled together by a common rotating shaft. In this brushless generator, the AC power output from the rotating armature of the AC exciter is rectified by a rotary rectifying means attached to the rotating shaft, and the AC power is applied as excitation current to the rotating magnetic poles of the AC generator. Power detection means for detecting active power and reactive power output by a generator, voltage detection means for detecting alternator terminal voltage, alternator excitation current detection means for detecting excitation current of the alternator, alternator a first function generating means for simulating the no-load saturation characteristic of the alternator, and a simulating circuit for simulating the output limit characteristic of the alternator. A first function generation means calculates a no-load excitation current calculation value of this alternator, and when the alternator is loaded, the active power detection value, reactive power detection value of this alternator, and the first function generation means The excitation current calculation value of this alternator is obtained from the above simulation circuit using the no-load excitation current calculation value of this alternator, and the direct axis synchronous reactance and horizontal axis synchronous reactance of the previous alternator, and these AC The calculated excitation current value when the generator is unloaded or when the generator is loaded is compared with the detected value of the alternator excitation current, and when the difference between the two is greater than or equal to a predetermined value, it is determined that the rotary rectifying means has failed. Rotating rectifier failure detection device for brushless generators.
【請求項2】請求項1に記載のブラシレス発電機の回転
整流器故障検出装置において、前記模擬回路は交流発電
機定数である発電機直軸同期リアクタンスの逆数Aと、
同じく交流発電機定数である発電機横軸同期リアクタン
スの逆数であるBとの差を演算する第1減算器と、この
第1減算器の演算結果を2で割り算する第1除算器と、
この第1除算器の演算結果と前記の値Aと前記無効電力
検出値とを加算する第1加算器と、この第1加算器の演
算結果を2乗する第1乗算器と、前記有効電力検出値を
2乗する第2乗算器と、これら第1乗算器の演算結果と
第2乗算器の演算結果とを加算する第2加算器と、この
第2加算器の演算結果の平方根を演算する平方根演算器
と、この平方根演算器の演算結果と前記第1除算器の演
算結果との差を演算する第2減算器と、この第2減算器
の演算結果を前記の値Aで割り算する第2除算器と、こ
の第2除算器の演算結果と前記第1関数発生手段が出力
する無負荷励磁電流計算値とを掛け算する第3乗算器と
で構成し、この第3乗算器の演算結果と前記交流発電機
励磁電流検出値とを比較し、両者の差異が所定値以上の
とき前記回転整流手段の故障と判定することを特徴とす
るブラシレス発電機の回転整流器故障検出装置。
2. The brushless generator rotary rectifier failure detection device according to claim 1, wherein the simulating circuit has a reciprocal A of a generator direct axis synchronous reactance, which is an alternating current generator constant;
A first subtracter that calculates the difference between B, which is the reciprocal of the generator horizontal axis synchronous reactance, which is also an AC generator constant, and a first divider that divides the calculation result of this first subtracter by 2.
a first adder that adds the calculation result of the first divider, the value A, and the reactive power detection value; a first multiplier that squares the calculation result of the first adder; and a first multiplier that squares the calculation result of the first adder; A second multiplier that squares the detected value, a second adder that adds the calculation results of the first multiplier and the second multiplier, and calculates the square root of the calculation result of the second adder. a second subtractor that calculates the difference between the calculation result of the square root calculation unit and the calculation result of the first divider; and a second subtractor that calculates the difference between the calculation result of the square root calculation unit and the calculation result of the first divider, and divides the calculation result of the second subtractor by the value A. It is composed of a second divider and a third multiplier that multiplies the calculation result of the second divider by the no-load excitation current calculation value outputted by the first function generating means, and the calculation result of the third multiplier is A rotary rectifier failure detection device for a brushless generator, characterized in that the result is compared with the detected value of the alternating current generator excitation current, and when the difference between the two is greater than a predetermined value, it is determined that the rotary rectifier has failed.
【請求項3】請求項1又は請求項2に記載のブラシレス
発電機の回転整流器故障検出装置において、前記交流発
電機励磁電流検出値を前記交流励磁機励磁電流検出値に
換算する第2関数発生手段を備えていることを特徴とす
るブラシレス発電機の回転整流器故障検出装置。
3. The rotary rectifier failure detection device for a brushless generator according to claim 1 or 2, wherein a second function is generated for converting the AC generator excitation current detection value into the AC exciter excitation current detection value. A rotary rectifier failure detection device for a brushless generator, comprising: means.
JP3150711A 1991-06-24 1991-06-24 Rotary rectifier failure detection device for brushless generator Expired - Lifetime JP2870559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150711A JP2870559B2 (en) 1991-06-24 1991-06-24 Rotary rectifier failure detection device for brushless generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150711A JP2870559B2 (en) 1991-06-24 1991-06-24 Rotary rectifier failure detection device for brushless generator

Publications (2)

Publication Number Publication Date
JPH04372559A true JPH04372559A (en) 1992-12-25
JP2870559B2 JP2870559B2 (en) 1999-03-17

Family

ID=15502740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150711A Expired - Lifetime JP2870559B2 (en) 1991-06-24 1991-06-24 Rotary rectifier failure detection device for brushless generator

Country Status (1)

Country Link
JP (1) JP2870559B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120835A (en) * 2002-09-24 2004-04-15 Nishishiba Electric Co Ltd Automatic voltage regulator of synchronous generator
JP2009531012A (en) * 2006-03-17 2009-08-27 インヘテアム エネルヒイ ソシエダー アニノマ Dynamic brake of a variable speed wind turbine having an exciter and a power converter not connected to the grid
US20150198668A1 (en) * 2014-01-16 2015-07-16 Rolls-Royce Plc Fault detection in brushless exciters
CN117554810A (en) * 2024-01-10 2024-02-13 南京师范大学 Fault diagnosis method for aviation three-stage starting/generator rotating rectifier

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120835A (en) * 2002-09-24 2004-04-15 Nishishiba Electric Co Ltd Automatic voltage regulator of synchronous generator
JP2009531012A (en) * 2006-03-17 2009-08-27 インヘテアム エネルヒイ ソシエダー アニノマ Dynamic brake of a variable speed wind turbine having an exciter and a power converter not connected to the grid
JP2009531011A (en) * 2006-03-17 2009-08-27 インヘテアム エネルヒイ ソシエダー アニノマ Variable speed wind turbine with exciter and power converter not connected to the grid
JP2009533011A (en) * 2006-03-17 2009-09-10 インヘテアム エネルヒイ ソシエダー アニノマ High speed DC link power transmission system for variable speed wind turbine
US20150198668A1 (en) * 2014-01-16 2015-07-16 Rolls-Royce Plc Fault detection in brushless exciters
US9459320B2 (en) * 2014-01-16 2016-10-04 Rolls-Royce Plc Fault detection in brushless exciters
CN117554810A (en) * 2024-01-10 2024-02-13 南京师范大学 Fault diagnosis method for aviation three-stage starting/generator rotating rectifier
CN117554810B (en) * 2024-01-10 2024-03-19 南京师范大学 Fault diagnosis method for aviation three-stage starting/generator rotating rectifier

Also Published As

Publication number Publication date
JP2870559B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
US9910083B2 (en) Rectifier diode fault detection in brushless exciters
US9459320B2 (en) Fault detection in brushless exciters
US10782351B2 (en) Diagnosing a winding set of a stator
Jlassi et al. A single method for multiple IGBT, current, and speed sensor faults diagnosis in regenerative PMSM drives
Yun et al. Detection and classification of stator turn faults and high-resistance electrical connections for induction machines
US10473708B2 (en) Methods and systems for real-time monitoring of the insulation state of wind-powered generator windings
Dorrell et al. Detection of inter-turn stator faults in induction motors using short-term averaging of forward and backward rotating stator current phasors for fast prognostics
Stojčić et al. Detecting faults in doubly fed induction generator by rotor side transient current measurement
US11258394B2 (en) Method for detection of upcoming pole slip
Ruschetti et al. Effects of partial rotor demagnetization on permanent magnet synchronous machines
JPH057926B2 (en)
JPH04372559A (en) Fault detector for rotating rectifier of brushless generator
US4492999A (en) Supervisory unit for rotary electrical machinery and apparatus
Barendse et al. The application of wavelets for the detection of inter-turn faults in induction machines
Prabakaran et al. Analysis of 3 phase Induction Motor Protection Using Numerical Relay
Pardo et al. Detection and location of a ground-fault in the excitation circuit of a 106 MVA synchronous generator by a new on-line method
US11165379B2 (en) Monitoring a multi-winding set stator
JPH08262085A (en) Three-phase unbalance detector and power converter
JP7362950B1 (en) inverter device
El Menzhi et al. Induction motor fault diagnosis using voltage spectrum of an auxiliary winding
US11309815B2 (en) Control method for operating a synchronous machine
CN110208695B (en) Collecting ring fault monitoring method and device
JPS6112469B2 (en)
JP3537629B2 (en) Cross-flow protection device for cross-compound type turbine generator
JPH0336920A (en) Ground protector for electrical rotary machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13