JPH04372520A - Ground directional relay - Google Patents

Ground directional relay

Info

Publication number
JPH04372520A
JPH04372520A JP15137391A JP15137391A JPH04372520A JP H04372520 A JPH04372520 A JP H04372520A JP 15137391 A JP15137391 A JP 15137391A JP 15137391 A JP15137391 A JP 15137391A JP H04372520 A JPH04372520 A JP H04372520A
Authority
JP
Japan
Prior art keywords
phase
current
zero
transformer
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15137391A
Other languages
Japanese (ja)
Inventor
Kenshichiro Mishima
健七郎 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15137391A priority Critical patent/JPH04372520A/en
Publication of JPH04372520A publication Critical patent/JPH04372520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To provide a cheap and reliable ground directional relay for judging the grounding fault and of a nonearthed distribution line and its direction. CONSTITUTION:This is compose of a current transformer 3, which detects the grounding conductor current of a three-phase transformer 1, a zero-phase current transformer 4, and a ground directional relay 5. The judgment of grounding fault and the judgment of fault direction are performed by the phase difference between the grounding conductor current and the zero-phase current and the levels of both currents.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非接地系の三相高圧配
電線路における地絡事故方向を検出する地絡方向継電装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault direction relay device for detecting the direction of a ground fault fault in an ungrounded three-phase high voltage distribution line.

【0002】0002

【従来の技術】配電線路の地絡事故を事故方向まで判定
する装置としては、図5に示すように零相変流器4と、
三相配電線路R,S,Tの各相にコンデンサC9,C1
0およびC11の一端を接続し他の一端を共通に接続し
た接続点に零相電圧検出用コンデンサC0の一端を、ま
たコンデンサC0の他端を大地に接続し、さらにコンデ
ンサC0に並列に高圧から低圧に降圧し出力する絶縁変
圧器Trを接続して構成された零相電圧検出器bと、零
相変流器4と零相電圧検出器6の出力を入力して、その
レベルと位相角から地絡事故レベルと事故方向を判定す
る地絡方向継電器5にて構成するのが一般的であった。
2. Description of the Related Art As a device for determining a ground fault in a power distribution line up to the direction of the fault, a zero-phase current transformer 4 and a zero-phase current transformer 4 are used as shown in FIG.
Capacitors C9 and C1 are installed in each phase of the three-phase distribution line R, S, and T.
One end of the zero-phase voltage detection capacitor C0 is connected to the connection point where one end of C0 and C11 are connected and the other end is connected in common, and the other end of the capacitor C0 is connected to the ground. A zero-phase voltage detector b configured by connecting an isolation transformer Tr that steps down and outputs a low voltage, and the outputs of a zero-phase current transformer 4 and a zero-phase voltage detector 6 are input, and the level and phase angle are determined. It has generally been constructed with a ground fault direction relay 5 that determines the ground fault fault level and fault direction from the ground fault level.

【0003】0003

【発明が解決しようとする課題】配電線路の停電区間を
できる限り小さくするためには、配電線路上に多くの地
絡方向継電装置を設置しなければならず、したがって上
述した零相電圧検出要素である零相電圧検出器も多く設
置されることになり、これが高圧配電線路の信頼性を低
下させる原因になっていた。またコスト的にも相当高価
なものになる。
[Problem to be Solved by the Invention] In order to minimize the power outage section of the distribution line, it is necessary to install many ground fault direction relay devices on the distribution line, and therefore the above-mentioned zero-sequence voltage detection is required. Many zero-phase voltage detectors were also installed, which was a factor in reducing the reliability of high-voltage distribution lines. Moreover, it is also quite expensive in terms of cost.

【0004】本発明は、高圧配電線路に零相電圧を検出
するための機器を設置することを要しない低廉で信頼性
の高い地絡方向継電装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive and highly reliable ground fault directional relay device that does not require installation of equipment for detecting zero-sequence voltage on a high-voltage distribution line.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の地絡方向継電装置は、三相高圧配電線路に
Y結線またはΔ結線によって高圧側を接続した1台の三
相変圧器または単相変圧器3台で構成した三相変圧器と
、その変圧器の接地線電流を検出する変流器と、地絡事
故電流を検出する零相変流器と、変圧器の接地電流を検
出する変流器の検出出力と零相変流器の検出出力を入力
して地絡事故レベルと事故方向を判定する地絡方向継電
器とで構成したものである。
[Means for Solving the Problems] In order to achieve the above object, the ground fault direction relay device of the present invention is a three-phase high-voltage power distribution line connected to the high-voltage side by a Y connection or a delta connection. A three-phase transformer consisting of three transformers or single-phase transformers, a current transformer that detects the grounding wire current of the transformer, a zero-phase current transformer that detects the ground fault current, and a It consists of a ground fault direction relay that inputs the detection output of a current transformer that detects ground current and the detection output of a zero-phase current transformer to determine the ground fault fault level and fault direction.

【0006】[0006]

【作用】三相変圧器の接地線電流が、その変圧器の一次
側巻線と鉄心間の分布静電容量によるものであり、その
容量は等価回路的には三相Y結線であることから、その
電流レベルは零相電圧に比例し、その位相は零相電圧よ
り90度進んでいることを利用して、接地線電流を変流
器によって検出し、これにより従来の零相電圧検出器と
同一の機能を果すことができる。
[Operation] The grounding wire current of a three-phase transformer is due to the distributed capacitance between the transformer's primary winding and the iron core, and that capacity is equivalent to a three-phase Y connection. By utilizing the fact that the current level is proportional to the zero-sequence voltage and its phase is 90 degrees ahead of the zero-sequence voltage, the grounding wire current is detected by a current transformer, which allows the conventional zero-sequence voltage detector to It can perform the same function as .

【0007】[0007]

【実施例】以下本発明の実施例について、図を用いて説
明する。図1は本発明の構成を示す回路図であり、1は
高圧側巻線が非接地系三相高圧配電線路R,S,TにY
結線にて接続され、低圧側をΔ結線として、R′,S′
,T′として低圧回路を構成した三相変圧器である。2
は三相変圧器1の凾体および鉄心の接地線で、一種接地
にて大地に接地されている。3は接地線電流を検出する
変流器であり、その2次出力は地絡方向継電器5に入力
される。また地絡方向継電器5には、配電線路の地絡事
故電流を検出するための零相変流器4の出力も入力され
る。なお、地絡事故電流の検出は零相変流器4によらず
、変流器により各相電流を検出しその値から三相合成零
相電流成分を求める方法であってもよい。
EXAMPLES Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing the configuration of the present invention, and 1 is a circuit diagram in which the high voltage side winding is connected to ungrounded three-phase high voltage distribution lines R, S, and T.
Connected by wire connection, with Δ connection on the low voltage side, R', S'
, T' are three-phase transformers that constitute a low voltage circuit. 2
is a grounding wire for the housing and iron core of the three-phase transformer 1, which is grounded to the earth as a type of grounding. Reference numeral 3 denotes a current transformer that detects the ground line current, and its secondary output is input to the earth fault direction relay 5. Furthermore, the output of the zero-phase current transformer 4 for detecting a ground fault fault current in the distribution line is also input to the ground fault direction relay 5. Note that the detection of the ground fault current may be performed not by the zero-phase current transformer 4, but by a method in which each phase current is detected by a current transformer and the three-phase composite zero-phase current component is determined from the detected value.

【0008】以上の構成において、三相変圧器1の接地
線電流は、三相変圧器1が高圧側巻線がY接続の場合は
図2に示す等価回路のように、三相高圧配電線路R,S
,Tに対して、変圧器一次高圧巻線と鉄心間で、L1,
L2,L3の誘導リアクタンス分と、C1,C2,C3
,C4の分布静電容量分によって構成され、一方高圧側
巻線がΔ接続の場合は、図3に示す等価回路のように、
三相高圧配電線路R,S,Tに対して、変圧器一次高圧
巻線と鉄心間でL4,L5,L6の誘導リアクタンス分
と、C5,C6,C7,C8の分布静電容量分によって
構成される。しかし、各分布静電容量に対して各誘導リ
アクタンス分はインピーダンスが小さいので各誘導リア
クタンス分を無視すると、図2および図3に示す等価回
路はいずれも図4に示す等価回路として表わすことがで
きる。すなわちR相と鉄心間はCR,S相と鉄心間はC
S,T相と鉄心間はCTの各合成静電容量で構成され、
同各静電容量CR,CS,CTは接地線2を介して大地
に接地されることになる。なお、図4における接地線電
流iGはCRに流れる電流iRとCSに流れる電流iS
とCTに流れる電流iTの合成電流で、地絡事故がない
ときは零である。しかし地絡事故が発生すると零相電圧
に応じたレベルの接地線電流が流れるが、同接地線電流
の位相は零相電圧より90度進んだものとなるが、図4
に示す構成は図5に示す従来例の零相電圧検出器方式の
原理に基づく働きを持つ。ただし図5に示す従来例の零
相電圧検出器方式は零相電圧を直接検出するようにした
ものであるのに対して、本発明の手段では三相変圧器の
接地線電流を検出するため、大地間インピーダンスを低
くする必要があることから、接地線電流iGを変流器3
を介して検出して、その検出出力を零相電圧V0に対応
するものとして、地絡方向継電器5において、零相変流
器4の零相電流i0と位相比較および前記各電流レベル
の検出によって、地絡事故判定と地絡事故方向を判定す
るようにしたものである。このような構成によって、地
絡事故方向の判定は、接地線電流iG位相が零相電圧V
0より90度進んでいるため、接地線電流iGに対して
零相電流i0位相が±90度の範囲にある場合が負荷側
、それ以外の場合は電源側の地絡事故として判定するも
のである。
In the above configuration, when the high voltage side winding of the three-phase transformer 1 is Y-connected, the ground wire current of the three-phase transformer 1 flows through the three-phase high voltage distribution line as shown in the equivalent circuit shown in FIG. R,S
, T, between the transformer primary high voltage winding and the iron core, L1,
Inductive reactance of L2, L3 and C1, C2, C3
, C4. On the other hand, if the high voltage side winding is Δ-connected, as shown in the equivalent circuit shown in Fig. 3,
For three-phase high-voltage distribution lines R, S, and T, it consists of inductive reactance of L4, L5, and L6 and distributed capacitance of C5, C6, C7, and C8 between the primary high-voltage winding of the transformer and the iron core. be done. However, since the impedance of each inductive reactance is small for each distributed capacitance, if each inductive reactance is ignored, the equivalent circuits shown in FIGS. 2 and 3 can be expressed as the equivalent circuit shown in FIG. 4. . In other words, CR between the R phase and the iron core, and C between the S phase and the iron core.
Between the S and T phases and the iron core is composed of each composite capacitance of CT,
Each of the capacitances CR, CS, and CT is grounded to the earth via a grounding line 2. Note that the ground line current iG in FIG. 4 is the current iR flowing through CR and the current iS flowing through CS.
It is a composite current of the current iT flowing through the CT and the current iT flowing through the CT, and is zero when there is no ground fault. However, when a ground fault occurs, a grounding line current flows at a level corresponding to the zero-sequence voltage, but the phase of this grounding line current is 90 degrees ahead of the zero-sequence voltage.
The configuration shown in FIG. 5 functions based on the principle of the conventional zero-phase voltage detector system shown in FIG. However, whereas the conventional zero-phase voltage detector system shown in FIG. , since it is necessary to lower the impedance between ground, the ground wire current iG is transferred to the current transformer 3.
The detected output is detected through the ground fault direction relay 5 as the one corresponding to the zero-sequence voltage V0, and the phase is compared with the zero-sequence current i0 of the zero-sequence current transformer 4, and the detection of each current level is performed. , the ground fault fault determination and the ground fault fault direction are determined. With this configuration, the direction of a ground fault fault can be determined if the ground line current iG phase is zero-sequence voltage V
Since it is 90 degrees ahead of zero, if the zero-phase current i0 phase is within ±90 degrees with respect to the ground wire current iG, it is determined as a ground fault on the load side, otherwise it is determined as a ground fault on the power supply side. be.

【0009】[0009]

【発明の効果】以上の説明から明らかなように、本発明
によれば下記の効果を得ることができる。
[Effects of the Invention] As is clear from the above description, according to the present invention, the following effects can be obtained.

【0010】(1)高圧配電線路に零相電圧検出器を設
置することなく、一般の三相変圧器の接地線電流を検出
することにより、零相電圧に相当する出力が検出でき、
簡単な構成による地絡方向継電装置を実現することがで
きる。
(1) By detecting the ground wire current of a general three-phase transformer without installing a zero-phase voltage detector on the high-voltage distribution line, an output corresponding to the zero-phase voltage can be detected;
A ground fault direction relay device with a simple configuration can be realized.

【0011】(2)高圧配電線路に零相電圧検出器等の
高圧機器が不要であり、多数設置しても配電線路の信頼
性を低下させることがない。
(2) There is no need for high-voltage equipment such as zero-phase voltage detectors on the high-voltage distribution line, and even if a large number of them are installed, the reliability of the distribution line will not deteriorate.

【0012】(3)簡単な構成のためコスト的に低廉な
地絡方向継電装置が得られる。
(3) Due to the simple configuration, a low-cost earth fault direction relay device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の地絡方向継電装置の一実施例の回路図
[Fig. 1] A circuit diagram of an embodiment of the ground fault directional relay device of the present invention.

【図2】同地絡方向継電装置の三相変圧器の一次側がY
結線の場合の一次側の等価回路図
[Figure 2] The primary side of the three-phase transformer of the same ground fault directional relay device is
Equivalent circuit diagram of the primary side in case of wiring

【図3】同三相変圧器の一次側がΔ結線の場合の一次側
の等価回路図
[Figure 3] Equivalent circuit diagram of the primary side of the same three-phase transformer when the primary side is Δ connection

【図4】同三相変圧器の一次側がY結線またはΔ結線の
場合の一次側の誘導リアクタンスを無視した一次側の等
価回路図
[Figure 4] Equivalent circuit diagram of the primary side when the primary side of the same three-phase transformer is Y-connection or Δ-connection, ignoring the inductive reactance on the primary side.

【図5】従来の地絡方向継電装置の回路図[Figure 5] Circuit diagram of conventional ground fault directional relay device

【符号の説明】[Explanation of symbols]

1    三相変圧器 3    変流器 4    零相変流器 5    地絡方向継電器 1 Three-phase transformer 3 Current transformer 4 Zero-phase current transformer 5 Ground fault direction relay

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  非接地系三相高圧配電線路に結線され
た三相変圧器の接地線電流を変流器で検出する第1の検
出手段と、三相高圧配電線路の零相電流を検出する零相
変流器または各相負荷電流を合成して三相合成零相電流
成分を求めるための各相負荷電流を検出する各相に設け
た変流器である第2の検出手段と、上記2つの検出手段
の出力から接地事故方向を判定する地絡方向継電器とで
構成した地絡方向継電装置。
Claim 1: A first detection means for detecting the grounding line current of a three-phase transformer connected to an ungrounded three-phase high-voltage distribution line using a current transformer, and detecting a zero-sequence current of the three-phase high-voltage distribution line. a second detection means, which is a zero-phase current transformer or a current transformer provided in each phase that detects each phase load current for synthesizing each phase load current to obtain a three-phase composite zero-sequence current component; A ground fault direction relay device comprising a ground fault direction relay that determines the direction of a ground fault from the outputs of the two detection means.
JP15137391A 1991-06-24 1991-06-24 Ground directional relay Pending JPH04372520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15137391A JPH04372520A (en) 1991-06-24 1991-06-24 Ground directional relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15137391A JPH04372520A (en) 1991-06-24 1991-06-24 Ground directional relay

Publications (1)

Publication Number Publication Date
JPH04372520A true JPH04372520A (en) 1992-12-25

Family

ID=15517145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15137391A Pending JPH04372520A (en) 1991-06-24 1991-06-24 Ground directional relay

Country Status (1)

Country Link
JP (1) JPH04372520A (en)

Similar Documents

Publication Publication Date Title
Owen The historical development of neutral grounding practices
JPH04372520A (en) Ground directional relay
JPH07311231A (en) Insulation monitoring system by superimposing high frequency in high-voltage distribution equipment
JP4420259B2 (en) Detection method of ground fault in two parallel underground transmission lines
JPH0746753A (en) Earth leakage breaker
WO2020255440A1 (en) General-purpose leakage detection device
KR20010000555A (en) Ground relay of engine driven generator
JPH03270633A (en) Ground relay device
JP2705219B2 (en) Ground fault detection protection device
JPH1118278A (en) Bipolar direct current transmission system
JP2997525B2 (en) Disconnection / open phase detection device
JPH0626037Y2 (en) Ground fault protection device
JPH0235539B2 (en) ITSUSENCHIRAKUKENSHUTSUKEIDENKI
JP2705198B2 (en) Ground fault detector
JP2967362B2 (en) High voltage ground fault relay method
KR20230016736A (en) Open phase fault protection device and method in grid-connected transformer for ess
JPH0426765B2 (en)
KR200217022Y1 (en) Ground relay of engine driven generator
JPH023371B2 (en)
JPH08271566A (en) Ground fault detector for leakage transformer
JPH0424455Y2 (en)
JPH03167485A (en) Method for detecting ground fault of gas insulated switchgear
JPH01114324A (en) Selective ground-fault relay
JPS58180478U (en) Low-voltage line-to-ground capacitance compensator
JPH0638690B2 (en) Ground fault relay