JPH04372312A - Tapered shape machining method by wire cut electric discharge machine - Google Patents

Tapered shape machining method by wire cut electric discharge machine

Info

Publication number
JPH04372312A
JPH04372312A JP15199091A JP15199091A JPH04372312A JP H04372312 A JPH04372312 A JP H04372312A JP 15199091 A JP15199091 A JP 15199091A JP 15199091 A JP15199091 A JP 15199091A JP H04372312 A JPH04372312 A JP H04372312A
Authority
JP
Japan
Prior art keywords
wire
point
planes
shape
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15199091A
Other languages
Japanese (ja)
Inventor
Jiro Hiramine
平峰 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Wasino Co Ltd
Original Assignee
Amada Wasino Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Wasino Co Ltd filed Critical Amada Wasino Co Ltd
Priority to JP15199091A priority Critical patent/JPH04372312A/en
Publication of JPH04372312A publication Critical patent/JPH04372312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To improve the accuracy and quality of a product in the taper- machining of vertically different shape performed by a wire cut electric discharge machine. CONSTITUTION:As in (a), the specified upper shape Cu and lower shape Cd are divided by the same number, and a straight line Li connecting corresponding split points mi, ni is obtained. As in (b), two adjacent planes Hi, Hi+1 including split points m1-j, mi+1 adjacent to the straight line Li and split point mi are determined to obtain parallel planes H'i, H'i+1 existing at the specified wire correcting distance from the planes Hi, Hi+1. An intersection point m'i between the intersecting line (unillustrated) of these planes H'i, H'i+1 and the plane Su to which the upper shape belongs is obtained, and this point m'i is made into a wire center correcting position in relation to the split point mi. In the same way, n'i is obtained in relation to the split point ni of the lower shape Cd, and this point n'i is made into a wire center correcting position in relation to the split point ni. The corrected wire center axis is to be a straight line Li connecting m'i, n'i. Taper-machining is performed by thus correcting the position of the center axis.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ワイヤカット放電加
工機による上側形状と下側形状の異なる(以下上下異形
状という)テーパ加工の加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of taper machining in which the upper and lower shapes are different (hereinafter referred to as upper and lower irregular shapes) using a wire-cut electric discharge machine.

【0002】0002

【従来の技術】ワイヤカット放電加工機によって、上下
異形状のテーパ加工を行なう場合、一般には、図2(a
)のように、上側形状と下側形状を同一数で分割し、分
割点mi−1 ,mi ,mi+1 又はni−1 ,
ni ,ni+1 間を直線補間して加工する。この場
合、ワイヤ径補正(放電間隙Gとワイヤ半径Rを加算し
たもの)を行なう必要があるが、この補正の一つの方法
として、図2(b)のように、上側形状と下側形状の外
側に放電間隙Gとワイヤ半径Rの和(G+R)をとって
、ワイヤ中心の上側位置mi−1 ″,mi ″,mi
+1 ″及び下側位置ni−1 ″,ni ″,ni+
1 ″を定めているものがある。この方法を以下概算方
法という。また、他の方法として、特許公報昭63−3
6524号に見られるように、上側,下側形状の各分割
点における法線ベクトルを求め、これに基づいてワイヤ
の補正位置を定めているものがある。この方法を以下法
線ベクトル方法という。
[Prior Art] When performing taper machining of upper and lower irregular shapes using a wire-cut electric discharge machine, generally the method shown in FIG.
), the upper shape and the lower shape are divided into the same number of division points mi-1 , mi , mi+1 or ni-1 ,
Processing is performed by linear interpolation between ni and ni+1. In this case, it is necessary to correct the wire diameter (the sum of the discharge gap G and the wire radius R), but one method for this correction is to adjust the upper and lower shapes as shown in Figure 2(b). Taking the sum (G+R) of the discharge gap G and wire radius R on the outside, the upper position of the wire center mi-1 ″, mi ″, mi
+1 ″ and lower position ni−1 ″, ni ″, ni+
1''.This method is hereinafter referred to as the approximate estimation method.In addition, as another method, Patent Publication No. 1983-3
As seen in No. 6524, there is a method in which the normal vector at each division point of the upper and lower shapes is determined and the corrected position of the wire is determined based on this. This method is hereinafter referred to as the normal vector method.

【0003】0003

【発明が解決しようとする課題】一般に、ワイヤ径の補
正量は、図3(a),(b)に示すように、テーパ角を
αとすると、補正量Dは、D=(G+R)Sec αに
なり、Sec αはαが大きくなると急激に増大する。 したがって、従来の概算方法では、テーパ角が大きい場
合、製品形状の寸法誤差が大きくなった。また、法線ベ
クトル方法は、テーパ角は考慮されているが、テーパ面
が外側に凹の部分では、ワイヤと隣接微小平面間で干渉
(切り込み)を生ずるという問題があった。
[Problems to be Solved by the Invention] Generally, as shown in FIGS. 3(a) and 3(b), the correction amount D for the wire diameter is calculated as D=(G+R)Sec when the taper angle is α. α, and Sec α increases rapidly as α increases. Therefore, in the conventional estimation method, when the taper angle is large, the dimensional error in the product shape becomes large. Further, although the normal vector method takes the taper angle into consideration, there is a problem in that interference (notch) occurs between the wire and the adjacent microplane in the portion where the tapered surface is outwardly concave.

【0004】この発明は、このような課題を改善するた
めに創案されたもので、テーパ角を考慮すると共に、テ
ーパ面が外側に凹の部分でも、ワイヤと隣接微小平面間
で干渉を生じない加工方法を提供することを目的とする
[0004] This invention was devised to solve these problems, and takes into account the taper angle and prevents interference between the wire and the adjacent microplane even in areas where the tapered surface is concave outward. The purpose is to provide a processing method.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
めに、この発明は、ワイヤ径の補正位置を次のようにし
て求め、加工を行なうものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention calculates the wire diameter correction position and performs processing as follows.

【0006】a.所定の上側形状及び下側形状を同一数
で分割し、対応する分割点mi ,ni を結ぶ直線L
i を求める。
[0006] a. A straight line L that divides the predetermined upper shape and lower shape into the same number of parts and connects the corresponding division points mi and ni
Find i.

【0007】b.直線Li と、上側形状の分割点mi
−1 ,mi+1 のそれぞれを含む隣接2平面Hi 
,Hi+1 を求める。
b. Straight line Li and dividing point mi of the upper shape
Two adjacent planes Hi containing each of −1 and mi+1
, Hi+1.

【0008】c.平面Hi 及びHi+1 から所定の
ワイヤ補正距離にあるそれぞれの平行平面Hi ′,H
i+1 ′を求める。
c. Respective parallel planes Hi′, H at predetermined wire correction distances from planes Hi and Hi+1
Find i+1'.

【0009】d.平面Hi ′とHi+1 ′の交線と
、上側形状の属する平面との交点mi ′を求め、この
点を上側形状の分割点mi に対するワイヤの中心の補
正位置とする。
[0009]d. The intersection point mi' between the line of intersection of the planes Hi' and Hi+1' and the plane to which the upper shape belongs is determined, and this point is set as the corrected position of the center of the wire with respect to the division point mi of the upper shape.

【0010】e.同様にして、下側形状の分割点ni 
に対応するni ′を求め、この点を下側形状の分割点
ni に対するワイヤの中心の補正位置とする。
[0010] e. Similarly, dividing point ni of the lower shape
ni' corresponding to is determined, and this point is set as the corrected position of the center of the wire with respect to the division point ni of the lower shape.

【0011】ここで、所定のワイヤ補正距離とは、放電
間隙と、ワイヤの半径を加算したものである。
[0011] Here, the predetermined wire correction distance is the sum of the discharge gap and the radius of the wire.

【0012】0012

【作用】このようにして、テーパ加工を行なうので、ワ
イヤの中心位置はそれぞれの分割点のテーパ角に対応し
て補正され、また、ワイヤ中心は上側形状及び下側形状
の隣接微小平面に平行して移動するので、上側形状又は
下側形状に、凹部があっても、切り込みを生ずることは
ない。
[Operation] Since taper processing is performed in this way, the center position of the wire is corrected according to the taper angle of each dividing point, and the wire center is parallel to the adjacent microplanes of the upper and lower shapes. Therefore, even if there is a recess in the upper or lower shape, no cut will occur.

【0013】[0013]

【実施例】次に、この発明の平行平面方法について図面
に基づいて説明する。図1(a)において、Su ,S
d ,Sr はそれぞれ工作物の上面、下面及びテーパ
面(線織面)を表わし、Cu ,Cd はそれぞれ上側
形状曲線、下側形状曲線を表わす。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the parallel plane method of the present invention will be explained based on the drawings. In Fig. 1(a), Su, S
d and Sr represent the upper surface, lower surface, and tapered surface (line-woven surface) of the workpiece, respectively, and Cu and Cd represent the upper and lower shape curves, respectively.

【0014】a.まず、図1(a)のように、上側形状
Cu 及び下側形状Cd を同一数で分割し、隣接する
3点を、それぞれmi−1 ,mi ,mi+1 及び
ni−1 ,ni ,ni+1 とし、mi とni 
を結ぶ直線Li を求める。
a. First, as shown in FIG. 1(a), the upper shape Cu and the lower shape Cd are divided into the same number of parts, and the three adjacent points are defined as mi-1, mi, mi+1 and ni-1, ni, ni+1, respectively. mi and ni
Find a straight line Li connecting the .

【0015】b.図1(b)のように、上側形状Cu 
の分割点mi−1 と直線Li を含む平面Hi を定
め、分割点mi+1 と直線Li を含む平面Hi+1
 を定める。
b. As shown in Fig. 1(b), the upper shape Cu
A plane Hi containing the dividing point mi-1 and the straight line Li is determined, and a plane Hi+1 containing the dividing point mi+1 and the straight line Li is determined.
Establish.

【0016】c.これらの平面から、それぞれ所定のワ
イヤ補正量(G+R)だけ外側に離れた平面Hi ′,
Hi+1 ′を求める。
c. From these planes, planes Hi',
Find Hi+1'.

【0017】d.平面Hi ′,Hi+1 ′の交線(
図示を省略)を求め、この交線と工作物の上面Su と
の交点mi ′を求め、この点を上側形状Cu の分割
点mi に対するワイヤの中心の補正位置とする。
d. Intersection line of planes Hi ′, Hi+1 ′ (
(not shown) is determined, and the intersection point mi' between this intersection line and the upper surface Su of the workpiece is determined, and this point is set as the corrected position of the center of the wire with respect to the dividing point mi of the upper shape Cu.

【0018】e.同様にして、下側形状Cd の分割点
ni−1 と直線Li を含む平面Ki を定め、分割
点ni+1 と直線Li を含む平面Ki+1 を定め
る。
e. Similarly, a plane Ki including the dividing point ni-1 of the lower shape Cd and the straight line Li is determined, and a plane Ki+1 including the dividing point ni+1 and the straight line Li is determined.

【0019】f.これらの平面から、それぞれ所定のワ
イヤ補正量(G+R)だけ外側に離れた平面Ki ′,
Ki+1 ′を求める。
f. From these planes, planes Ki',
Find Ki+1'.

【0020】g.平面Ki ′,Ki+1 ′の交線(
図示を省略)を求め、この交線と工作物の下面Sd と
の交点ni ′を求め、この点を下側形状Cd の分割
点ni に対するワイヤの中心の補正位置とする。
g. The intersection line of planes Ki ′ and Ki+1 ′ (
(not shown) is determined, and the intersection point ni' between this intersection line and the lower surface Sd of the workpiece is determined, and this point is determined as the corrected position of the center of the wire with respect to the dividing point ni of the lower shape Cd.

【0021】補正されたワイヤの中心軸は、mi ′と
ni ′を結ぶ直線Li ′になる。
The center axis of the corrected wire becomes a straight line Li' connecting mi' and ni'.

【0022】[0022]

【発明の効果】以上の説明から理解されるように、この
発明は特許請求の範囲に記載の構成を備えているので、
ワイヤ放電加工による上下異形状のテーパ加工において
、テーパ角が大きい場合でも、製品形状の精度が高く、
また、加工経路に凹部があっても、ワイヤの切り込み等
のない製品を提供することができる。
[Effects of the Invention] As understood from the above explanation, the present invention has the configuration described in the claims.
In taper machining of upper and lower irregular shapes using wire electrical discharge machining, even when the taper angle is large, the precision of the product shape is high.
Further, even if there is a recess in the processing path, it is possible to provide a product without wire cuts or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a)図は製品の上側形状、下側形状及びテー
パ面等の説明図。(b)図は上側形状及び下側形状の分
割点に対するワイヤの補正位置の説明図である。
FIG. 1(a) is an explanatory diagram of the upper side shape, lower side shape, tapered surface, etc. of the product. (b) is an explanatory diagram of the corrected position of the wire with respect to the division points of the upper and lower shapes.

【図2】従来のワイヤの中心の補正方法の説明図で、(
a)図は上下異形状の製品の説明図、(b)図は上側形
状及び下側形状の分割点に対するワイヤの中心の補正位
置の説明図。
FIG. 2 is an explanatory diagram of a conventional method for correcting the center of a wire.
Figure a) is an explanatory diagram of a product with a vertically irregular shape, and diagram (b) is an explanatory diagram of the corrected position of the center of the wire with respect to the dividing point of the upper and lower shapes.

【図3】テーパ加工の際のワイヤの中心の補正量の説明
図で、(a)図はテーパ角の小さいとき、(b)図はテ
ーパ角の大きいときを表わす。
FIG. 3 is an explanatory diagram of the amount of correction of the center of the wire during taper processing, where (a) shows when the taper angle is small, and (b) shows when the taper angle is large.

【符号の説明】[Explanation of symbols]

Cu   上側形状 Cd   下側形状 Sr   テーパ面(線織面) mi   上側形状の分割点 ni   下側形状の分割点 Cu Upper shape Cd Lower shape Sr Tapered surface (line woven surface) mi Upper shape division point ni Dividing point of lower shape

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ワイヤ放電加工に於いて、次のように
、ワイヤの中心位置を補正して加工を行なうことを特徴
とするワイヤカット放電加工機のテーパ形状の加工方法
。 a.所定の上側形状及び下側形状を同一数で分割し、対
応する分割点mi ,ni を結ぶ直線Li を求める
。 b.直線Li と、上側形状の分割点mi−1 ,mi
+1 のそれぞれを含む隣接2平面Hi ,Hi+1 
を定める。 c.平面Hi 及びHi+1 から所定のワイヤ補正距
離にあるそれぞれの平行平面Hi ′,Hi+1 ′を
求める。 d.平面Hi ′とHi+1 ′の交線と、上側形状の
属する平面との交点mi ′を求め、この点を上側形状
の分割点mi に対するワイヤの中心の補正位置とする
。 e.同様に直線Li と、下側形状の分割点ni−1 
,ni+1 のそれぞれを含む隣接2平面Ki ,Ki
+1 を定める。 f.平面Ki 及びKi+1 から所定のワイヤ補正距
離にあるそれぞれの平行平面Ki ′,Ki+1 ′を
求める。 g.平面Ki ′とKi+1 ′の交線と、下側形状の
属する平面との交点ni ′を求め、この点を下側形状
の分割点ni に対するワイヤの中心の補正位置とする
1. A method for machining a tapered shape in a wire-cut electrical discharge machine, which comprises performing wire electrical discharge machining by correcting the center position of the wire as follows. a. The predetermined upper shape and lower shape are divided into the same number of parts, and a straight line Li connecting the corresponding division points mi and ni is determined. b. Straight line Li and dividing points mi-1, mi of the upper shape
Two adjacent planes Hi, Hi+1 containing each of +1
Establish. c. Parallel planes Hi' and Hi+1' located at predetermined wire correction distances from the planes Hi and Hi+1 are determined. d. The intersection point mi' between the line of intersection of the planes Hi' and Hi+1' and the plane to which the upper shape belongs is determined, and this point is set as the corrected position of the center of the wire with respect to the division point mi of the upper shape. e. Similarly, the straight line Li and the dividing point ni-1 of the lower shape
, ni+1, respectively, adjacent two planes Ki and Ki
Define +1. f. Parallel planes Ki' and Ki+1' located at predetermined wire correction distances from the planes Ki and Ki+1 are determined, respectively. g. The intersection point ni' between the line of intersection of the planes Ki' and Ki+1' and the plane to which the lower shape belongs is determined, and this point is set as the corrected position of the center of the wire with respect to the dividing point ni of the lower shape.
JP15199091A 1991-06-24 1991-06-24 Tapered shape machining method by wire cut electric discharge machine Pending JPH04372312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15199091A JPH04372312A (en) 1991-06-24 1991-06-24 Tapered shape machining method by wire cut electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15199091A JPH04372312A (en) 1991-06-24 1991-06-24 Tapered shape machining method by wire cut electric discharge machine

Publications (1)

Publication Number Publication Date
JPH04372312A true JPH04372312A (en) 1992-12-25

Family

ID=15530654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15199091A Pending JPH04372312A (en) 1991-06-24 1991-06-24 Tapered shape machining method by wire cut electric discharge machine

Country Status (1)

Country Link
JP (1) JPH04372312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118153A (en) * 1994-10-25 1996-05-14 Nec Corp Wire electric discharge machining method and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118153A (en) * 1994-10-25 1996-05-14 Nec Corp Wire electric discharge machining method and device therefor

Similar Documents

Publication Publication Date Title
JP2875656B2 (en) A method for determining the tool trajectory contour in numerically controlled machines
US5465474A (en) Cylindrically machining apparatus
US20030118416A1 (en) Method for setting a machining feed rate and a machine tool using the same
JP3000219B2 (en) Information processing equipment for curved surface processing
CN110421406B (en) Dynamic self-adaptive compensation method for cutter based on eccentric difference control
US4700314A (en) Taper cutting method
JPH04372312A (en) Tapered shape machining method by wire cut electric discharge machine
US10908581B2 (en) Numerical control apparatus and numerical control method
CN106938343A (en) The processing method and parameterization macro program digital control programming method of inner circle helical teeth or skewed slot
US5107436A (en) Method for generating a tool course for a cutting tool
US5214591A (en) Method of correcting error on involute interpolation
US20020048494A1 (en) Machining method for three-dimensional connecting surfaces
JP3181434B2 (en) Vertically different shape taper processing method by wire cut electric discharge machine and upper and lower different shape taper method when wire diameter is changed
CN112835328A (en) Track optimization method for improving processing speed of leather cutting machine
CN113600879B (en) Machining method for manufacturing titanium alloy impeller through fuse wire additive manufacturing
JP2003223208A (en) Numerical control system
JP2002132315A (en) Method and device for processing path generation and recording medium
JP3215541B2 (en) Wire electric discharge machining method
CN111015365B (en) System and method for adjusting machining tool, machine table, detector and readable medium
JPH0825145A (en) Machining method in wire cut electric discharge machine
JP2002328709A (en) Tool path preparing method
CN114625069B (en) Method for generating contour track of cutter
JPH10171514A (en) Method for preparing contour offset tool route for cam
CN115157656B (en) Rolling shaping corner compensation algorithm for large-scale 3D printing
JPH1173213A (en) Tool path data generating method