JPH04371951A - Phase shift mask and production thereof - Google Patents

Phase shift mask and production thereof

Info

Publication number
JPH04371951A
JPH04371951A JP3176036A JP17603691A JPH04371951A JP H04371951 A JPH04371951 A JP H04371951A JP 3176036 A JP3176036 A JP 3176036A JP 17603691 A JP17603691 A JP 17603691A JP H04371951 A JPH04371951 A JP H04371951A
Authority
JP
Japan
Prior art keywords
light
region
layer
shielding
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3176036A
Other languages
Japanese (ja)
Other versions
JP3161474B2 (en
Inventor
Yuichi Fukushima
祐一 福島
Toshio Konishi
敏雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP17603691A priority Critical patent/JP3161474B2/en
Publication of JPH04371951A publication Critical patent/JPH04371951A/en
Application granted granted Critical
Publication of JP3161474B2 publication Critical patent/JP3161474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To provide the phase shift mask which exhibits an excellent phase shift effect to stress the contrast of pattern edges by the inversion of phases and the method for production thereof. CONSTITUTION:This mask has a light shielding region formed of a light shielding layer 4, a 1st transmission region A adjacent to the light shielding region and a 2nd transmission region B which is adjacent to the 1st transmission region A and has 180 deg. phase different of the transmitted light with the 1st transmission region A. The light shielding region and the 1st transmission region A are formed in the recessed part provided on a transparent substrate 1. The mask has otherwise the light shielding region formed of the light shielding layer 4, the 1st transmission region A adjacent to the light shielding region and the 2nd transmission region B which is adjacent to the 1st transmission region A and has 180 deg. phase difference of the transmitted light with the 1st transmission region A. The 2nd transmission region B is formed of a transparent shifter layer 13 provided on the transparent substrate 11 and further, an etching stop layer 12 is provided among the transparent substrate 11 and the transparent shifter layer 13 and the light shielding layer 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自己整合型あるいはエ
ッジ強調型と称するタイプの位相シフトマスク及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase shift mask of the so-called self-alignment type or edge enhancement type and a method of manufacturing the same.

【0002】0002

【従来の技術】従来のフォトマスクでは、接近したパタ
ーンはマスクの透過部から漏れた光が干渉し合い、解像
不良を起こすという問題が生じていた。そこで、隣接し
ているパターンを透過する投影光の位相を180度反転
し、微細パターンの解像性を向上させる位相シフト技術
を用いた位相シフトマスクが開発され注目されている。 すなわち、位相シフト層のパターンエッジ部分では、位
相が急峻に180度反転し、そのためにエッジ部分の光
のコントラストが強調され、孤立パターンなどにおいて
極めて微細なパターンを解像することができる。
2. Description of the Related Art Conventional photomasks have had the problem that when patterns are close together, light leaking from the transparent portions of the mask interferes with each other, resulting in poor resolution. Therefore, a phase shift mask using a phase shift technique that inverts the phase of projection light transmitted through adjacent patterns by 180 degrees to improve the resolution of fine patterns has been developed and is attracting attention. That is, at the pattern edge portion of the phase shift layer, the phase is sharply reversed by 180 degrees, so that the contrast of light at the edge portion is emphasized, and extremely fine patterns such as isolated patterns can be resolved.

【0003】ところで、従来の自己整合型の位相シフト
マスクは、図4(a)に示すように、透明基板21上の
遮光パターン22の上に自己整合的にシフターパターン
23を形成し、遮光パターン22のサイドエッチングを
行なってオーバーハング形状とするか、あるいは同図(
b)に示すように、シフターパターン23上に遮光パタ
ーン22を形成し、サイドエッチングを行なう方法をと
っていた。
By the way, in the conventional self-aligned phase shift mask, as shown in FIG. 4(a), a shifter pattern 23 is formed in a self-aligning manner on a light-shielding pattern 22 on a transparent substrate 21. 22 side etching to create an overhang shape, or as shown in the same figure (
As shown in b), a method was used in which a light shielding pattern 22 was formed on a shifter pattern 23 and side etching was performed.

【0004】0004

【発明が解決しようとする課題】しかしながら、従来の
構造では、ドライエッチングで切削された表面が粗いた
め、この領域の透過光が散乱を生じて光のコヒーレンシ
ーを低下させたり、光強度を弱めるという問題があった
[Problems to be Solved by the Invention] However, in conventional structures, the surface cut by dry etching is rough, and the transmitted light in this area is scattered, reducing the coherency of the light and weakening the light intensity. There was a problem.

【0005】本発明は、このような従来の問題に鑑みな
されたもので、その目的とするところは、位相の反転に
よりパターンエッジのコントラストを強調する優れた位
相シフト効果を発揮し、しかも従来のような光のコヒー
レンシーの低下や光強度の弱まりといった不都合が生じ
ない位相シフトマスク及びその製造方法を提供すること
にある。
The present invention was devised in view of these conventional problems, and its purpose is to exhibit an excellent phase shift effect that emphasizes the contrast of pattern edges by inverting the phase, and to achieve an excellent phase shift effect that emphasizes the contrast of pattern edges. It is an object of the present invention to provide a phase shift mask that does not cause such disadvantages as a decrease in light coherency and a weakening of light intensity, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の位相シフトマスクは、遮光領域と、該遮
光領域に隣接する第1の透過領域と、該第1の透過領域
に隣接し、かつ第1の透過領域との透過光の位相差が1
80度となる第2の透過領域とを有し、前記遮光領域及
び第1の透過領域が透明基板に設けた凹部に形成されて
いることを特徴とする。
Means for Solving the Problems In order to achieve the above object, a phase shift mask according to claim 1 includes a light-shielding region, a first transmission region adjacent to the light-shielding region, and a first transmission region adjacent to the light-shielding region. The phase difference of transmitted light with the adjacent first transmission region is 1
and a second transmitting region at an angle of 80 degrees, and the light shielding region and the first transmitting region are formed in a recess provided in a transparent substrate.

【0007】また、請求項2の位相シフトマスクは、遮
光領域と、該遮光領域に隣接する第1の透過領域と、該
第1の透過領域に隣接し、かつ第1の透過領域との透過
光の位相差が180度となる第2の透過領域とを有し、
該第2の透過領域は透明基板上に設けた透明シフター層
によって形成されており、さらに前記透明基板と、前記
透明シフター層及び前記遮光領域を形成する遮光層との
間にエッチング停止層を有してなることを特徴とする。
[0007] The phase shift mask of claim 2 further includes a light-shielding region, a first transmission region adjacent to the light-shielding region, and a transmission region adjacent to the first transmission region and the first transmission region. and a second transmission region where the phase difference of light is 180 degrees,
The second transmission region is formed by a transparent shifter layer provided on a transparent substrate, and further includes an etching stop layer between the transparent substrate and a light shielding layer forming the transparent shifter layer and the light shielding region. It is characterized by:

【0008】また、請求項3の位相シフトマスクの製造
方法は、リソグラフィ工程を経てエッチングにより透明
基板に凹部を形成し、次いでリフトオフによってこの凹
部に遮光パターンを形成し、更に透明基板背面からの露
光により前記遮光パターン上にレジストパターンを形成
し、前記遮光パターンのサイドエッチングを行なうこと
を特徴とする。
[0008] Furthermore, in the method of manufacturing a phase shift mask according to claim 3, a concave portion is formed in a transparent substrate by etching through a lithography process, a light-shielding pattern is formed in the concave portion by lift-off, and further, exposure is performed from the back side of the transparent substrate. The method is characterized in that a resist pattern is formed on the light-shielding pattern, and side etching of the light-shielding pattern is performed.

【0009】また、請求項4の位相シフトマスクの製造
方法は、透明基板上に少なくともエッチング停止層及び
透明シフター層をこの順に設け、リソグラフィ工程を経
てエッチングにより前記透明シフター層のパターニング
を行ない、次いで形成された透明シフター層の凹部にリ
フトオフによって遮光パターンを形成し、更に透明基板
背面からの露光により前記遮光パターン上にレジストパ
ターンを形成し、前記遮光パターンのサイドエッチング
を行なうことを特徴とする。
[0009] Furthermore, in the method of manufacturing a phase shift mask according to claim 4, at least an etching stop layer and a transparent shifter layer are provided in this order on a transparent substrate, the transparent shifter layer is patterned by etching through a lithography process, and then A light shielding pattern is formed in the recessed portion of the formed transparent shifter layer by lift-off, a resist pattern is further formed on the light shielding pattern by exposure from the back side of the transparent substrate, and side etching of the light shielding pattern is performed.

【0010】以下、添付図面を参照して本発明を更に詳
述する。
The present invention will now be described in further detail with reference to the accompanying drawings.

【0011】図1(a)は本発明の位相シフトマスクの
一実施例の構成を示す断面図、同図(b)は他の実施例
の構成を示す断面図である。
FIG. 1(a) is a sectional view showing the structure of one embodiment of the phase shift mask of the present invention, and FIG. 1(b) is a sectional view showing the structure of another embodiment.

【0012】図1(a)に示す構成においては、透明基
板1のエッチングにより設けられた凹部に遮光層4によ
る遮光領域と、この遮光領域に隣接する第1の透過領域
Aが形成されており、これに隣接するその他の領域が第
2の透過領域Bを形成している。また、同図(b)に示
す構成においては、透明基板11上にエッチング停止層
12を有し、その上にパターニングされた透明シフター
層13が設けられ、この透明シフター層13の凹部が遮
光層4による遮光領域と、これに隣接する第1の透過領
域Aを形成し、透明シフター層13が第2の透過領域B
を形成している。すなわち、(a)との違いは、シフタ
ーが透明基板のエッチングにより形成されるのではなく
、基板上に透明シフター層を設け、これをエッチングす
ることにより位相シフターが形成されることである。
In the configuration shown in FIG. 1(a), a light-shielding region by a light-shielding layer 4 and a first transmitting region A adjacent to this light-shielding region are formed in a recess formed by etching a transparent substrate 1. , and another region adjacent thereto forms a second transmission region B. In addition, in the configuration shown in FIG. 6(b), an etching stop layer 12 is provided on a transparent substrate 11, and a patterned transparent shifter layer 13 is provided on the etching stop layer 12. The transparent shifter layer 13 forms a light-shielding region A and a first transmissive region A adjacent thereto, and the transparent shifter layer 13 forms a second transmissive region B
is formed. That is, the difference from (a) is that the shifter is not formed by etching a transparent substrate, but the phase shifter is formed by providing a transparent shifter layer on the substrate and etching this.

【0013】図1(a),(b)のいずれの構成におい
ても、位相シフト効果としては、第1の透過領域Aと第
2の透過領域Bとの間に180度の透過光の位相差があ
ればよく、このようにすることによって図4に示す従来
構造と同様な位相シフトマスクとしての効果を持つ。従
来構造では、前述した様にドライエッチングによる粗面
化で光のコヒーレンシーが低下したり、光強度が弱まる
といった不都合が生じていたが、本発明では、後述の如
く第2の透過領域はエッチングされないので、このよう
な不都合は生じない。また、遮光パターンに隣接する第
1の透過領域の位相シフトにおける役割は位相の反転に
よるパターンエッジのコントラスト強調のみであり、面
の粗さによる不具合は殆ど影響しない。
In both the configurations shown in FIGS. 1(a) and 1(b), the phase shift effect is caused by a phase difference of 180 degrees between the first transmission area A and the second transmission area B. By doing so, the effect as a phase shift mask similar to that of the conventional structure shown in FIG. 4 can be obtained. In the conventional structure, as described above, the surface roughening caused by dry etching caused problems such as a decrease in light coherency and a weakening of light intensity, but in the present invention, as described later, the second transmission region is not etched. Therefore, such inconvenience does not occur. Further, the role of the first transmission region adjacent to the light-shielding pattern in the phase shift is only to emphasize the contrast of the pattern edge by reversing the phase, and defects caused by surface roughness have almost no effect.

【0014】ここで、第1の透過領域Aと第2の透過領
域Bとの間で透過光の位相差が180度となる条件は、
図1(a)では、ガラスの屈折率をn、露光光源波長を
λとし、凹部のエッチング深さをdとすると、d=λ/
{2(n−1)}となるようなエッチング深さで透明基
板1に凹部が形成されればよい。また、同図(b)では
、シフター層13の屈折率をn′、露光光源波長をλと
し、シフター層13の厚さをd′とすると、d′=λ/
{2(n′−1)}となるような厚さでシフター層13
が形成されればよい。
[0014] Here, the conditions for the phase difference of transmitted light to be 180 degrees between the first transmission area A and the second transmission area B are as follows.
In FIG. 1(a), let the refractive index of the glass be n, the exposure light source wavelength be λ, and the etching depth of the recess be d, then d=λ/
It is sufficient that the recessed portion is formed in the transparent substrate 1 with an etching depth of {2(n-1)}. In addition, in FIG. 2B, when the refractive index of the shifter layer 13 is n', the exposure light source wavelength is λ, and the thickness of the shifter layer 13 is d', d'=λ/
The shifter layer 13 has a thickness of {2(n'-1)}.
should be formed.

【0015】次に、本発明に係る位相シフトマスクの製
造方法について説明する。
Next, a method for manufacturing a phase shift mask according to the present invention will be explained.

【0016】まず、図1(a)に示す構成の位相シフト
マスクの製造方法を図2により説明すると、透明基板1
上に導電層2を公知の薄膜形成方法を用いて形成し、そ
の上に電子線レジスト3を塗設する(同図(a)参照)
。導電層2を設けることにより、電子線描画時のチャー
ジアップ現象の発生を防止できる。導電層2としては、
例えば酸化インジウム・スズ合金(ITO)、タンタル
等の薄膜が使用でき、その厚さは特に限定されるもので
はないけれども、2〜10nm程度の厚さが好ましい。 また、透明基板1は、従来からマスク基板として使用さ
れているソーダガラス、石英ガラス等の光学的に透明な
材料からなり、その厚さは本質的な制約はないが、通常
0.2〜6mm程度のものが用いられる。
First, a method for manufacturing a phase shift mask having the structure shown in FIG. 1(a) will be explained with reference to FIG.
A conductive layer 2 is formed thereon using a known thin film forming method, and an electron beam resist 3 is applied thereon (see figure (a)).
. By providing the conductive layer 2, it is possible to prevent a charge-up phenomenon from occurring during electron beam lithography. As the conductive layer 2,
For example, a thin film of indium tin oxide (ITO), tantalum, or the like can be used, and although the thickness is not particularly limited, it is preferably about 2 to 10 nm thick. The transparent substrate 1 is made of an optically transparent material such as soda glass or quartz glass, which has been conventionally used as a mask substrate, and its thickness is usually 0.2 to 6 mm, although there are no essential restrictions. A certain degree is used.

【0017】次に電子線描画によりレジストパターンを
形成し、次いで透明基板1をドライエッチングしてシフ
ターを形成する(同図(b),(c)参照)。この時の
エッチング深さは前述の如くして決定される。
Next, a resist pattern is formed by electron beam lithography, and then the transparent substrate 1 is dry etched to form a shifter (see FIGS. 3(b) and 3(c)). The etching depth at this time is determined as described above.

【0018】同図(d),(e)はリフトオフと称する
方法で、全面に遮光層4を成膜し、レジストパターン3
を溶解するとともにレジスト上の遮光層を除去して、透
明基板1の凹部に遮光パターンを形成する。遮光層4と
しては、クロム等が代表的であるが、これに酸化クロム
等を積層して低反射防止層とすることもできる。遮光性
を有するためには一定の光学濃度(一般には2.6〜3
.0程度)が必要である。遮光層4の膜厚は一定の光学
濃度をもたせるために0.02〜0.2μm程度である
FIGS. 3(d) and 3(e) show that a light shielding layer 4 is formed on the entire surface by a method called lift-off, and a resist pattern 3 is formed.
At the same time, the light-shielding layer on the resist is removed to form a light-shielding pattern in the recessed portions of the transparent substrate 1. The light shielding layer 4 is typically made of chromium or the like, but it is also possible to form a low antireflection layer by laminating chromium oxide or the like thereon. In order to have light blocking properties, a certain optical density (generally 2.6 to 3
.. (approximately 0) is required. The thickness of the light shielding layer 4 is approximately 0.02 to 0.2 μm in order to provide a constant optical density.

【0019】次に、基板表面の導電層2を除去した後、
全面にフォトレジスト5を塗布し、基板裏面より露光6
すると、遮光パターン自身をマスクとしたレジストパタ
ーンが形成される(同図(f),(g)参照)。このと
き露光量をオーバー気味にすると、遮光パターンよりも
レジストパターン寸法が小さくなる。これをエッチング
することにより、遮光パターンをサイドエッチングした
と同様なパターンが形成され位相シフトマスクが完成す
る(同図(h)参照)。このときのエッチング量は、遮
光パターン自身の寸法によって異なるが、2〜4μm幅
ならサイドエッチング量は片側0.3〜0.4μm位が
適当である。
Next, after removing the conductive layer 2 on the surface of the substrate,
Apply photoresist 5 to the entire surface and expose to light 6 from the back side of the substrate.
Then, a resist pattern is formed using the light-shielding pattern itself as a mask (see (f) and (g) in the same figure). At this time, if the exposure amount is slightly excessive, the resist pattern size becomes smaller than the light shielding pattern. By etching this, a pattern similar to that obtained by side-etching the light-shielding pattern is formed, completing the phase shift mask (see (h) in the same figure). The amount of etching at this time varies depending on the dimensions of the light shielding pattern itself, but if the width is 2 to 4 μm, the appropriate amount of side etching is about 0.3 to 0.4 μm on one side.

【0020】次に、図1(b)に示す構成の位相シフト
マスクの製造方法を図3により説明すると、まず同図(
a)に示すように、透明基板11上に、エッチング停止
層12、透明シフター層13及び導電層14をこの順に
公知の薄膜形成方法を用いて形成し、その上に電子線レ
ジスト15を塗設する。透明基板11、導電層14には
前記と同様のものが使用される。
Next, a method for manufacturing a phase shift mask having the configuration shown in FIG. 1(b) will be explained with reference to FIG.
As shown in a), an etching stop layer 12, a transparent shifter layer 13, and a conductive layer 14 are formed in this order on a transparent substrate 11 using a known thin film forming method, and an electron beam resist 15 is coated thereon. do. The transparent substrate 11 and the conductive layer 14 are the same as those described above.

【0021】また、エッチング停止層12は、文字通り
、シフター層13のドライエッチングの際に下地の基板
がエッチングされるのを防止するためのもので、当然の
ことながらシフター層13とのドライエッチング選択比
が大きく、かつ透明な材質のものが選択される。例えば
、シフター層13がSiO2で構成されるような場合に
は、エッチング停止層12としては、アルミナ(Al2
O3)、窒化シリコン(Si3N4)、ジルコニア(Z
rO2)、マグネシアスピネル(MgO・Al2O3)
等の材質が使用される。エッチング停止層12の厚さに
ついては特に限定はないが、5〜20nm程度の厚さが
望ましい。
Furthermore, the etching stop layer 12 literally serves to prevent the underlying substrate from being etched during the dry etching of the shifter layer 13, and as a matter of course, the etching stop layer 12 is used to prevent the underlying substrate from being etched during the dry etching of the shifter layer 13. A material with a large ratio and a transparent material is selected. For example, when the shifter layer 13 is made of SiO2, the etching stop layer 12 is made of alumina (Al2
O3), silicon nitride (Si3N4), zirconia (Z
rO2), magnesia spinel (MgO・Al2O3)
Materials such as The thickness of the etching stop layer 12 is not particularly limited, but a thickness of about 5 to 20 nm is desirable.

【0022】シフター層13は透明材料であればよいが
、通常はSiO2、SOG等が用いられる。シフター層
13は、透過光の位相を180度反転させるためのもの
で、シフター層13の膜厚は、透過光が基板1に対して
180度の位相差を持つようにするべく前述の如くして
設定される。例えばシフター層の屈折率nを1.47(
SiO2)、露光光源波長λを365nmとすると前述
の式にのっとり、シフター層の膜厚は390nmである
The shifter layer 13 may be made of a transparent material, but SiO2, SOG, etc. are usually used. The shifter layer 13 is for inverting the phase of transmitted light by 180 degrees, and the thickness of the shifter layer 13 is set as described above so that the transmitted light has a phase difference of 180 degrees with respect to the substrate 1. is set. For example, the refractive index n of the shifter layer is 1.47 (
SiO2), and the exposure light source wavelength λ is 365 nm, the thickness of the shifter layer is 390 nm according to the above formula.

【0023】次に電子線描画によりレジストパターンを
形成し、次いで導電層14及び透明シフター層13をド
ライエッチングしてシフターを形成する(図3(b),
(c)参照)。
Next, a resist pattern is formed by electron beam drawing, and then the conductive layer 14 and the transparent shifter layer 13 are dry-etched to form a shifter (FIG. 3(b),
(see (c)).

【0024】続いて、前述のリフトオフにより、シフタ
ー層13の凹部に遮光層16からなる遮光パターンを形
成し(同図(d),(e)参照)、次いで全面にフォト
レジスト17を塗布し、基板裏面からの露光18により
遮光パターン上にレジストパターンを形成し(同図(f
),(g)参照)、これをエッチングすることによって
同図(h)に示すような位相シフトマスクが完成する。
Next, a light-shielding pattern made of the light-shielding layer 16 is formed in the concave portion of the shifter layer 13 by the above-mentioned lift-off (see (d) and (e) in the same figure), and then a photoresist 17 is applied to the entire surface. A resist pattern is formed on the light-shielding pattern by exposure 18 from the back side of the substrate (see (f) in the same figure).
), (g)), and by etching this, a phase shift mask as shown in (h) of the same figure is completed.

【0025】[0025]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
[Examples] The present invention will be explained in more detail with reference to Examples below.

【0026】実施例−1 洗浄済の合成石英ガラス基板(厚さ2.3mm)上に、
導電層として膜厚5nmのタンタル膜をスパッタリング
法により形成し、その上にポジ型電子線レジスト(チッ
ソ(株)製,商品名PBS)を約500nmの厚さに塗
布し、所定のベーク処理後、ラスタースキャン型電子線
描画装置を使用して、加速電圧10KV、ドーズ量約2
.5μC/cm2にて所定のパターン描画を行ない、現
像処理してレジストパターンを得た。所定のベーク処理
後、上記レジストパターンをマスキングパターンとして
、ガラス基板のドライエッチングを、平行平板型リアク
ティブエッチング装置にてC2F6とH2ガスを用いて
行なった。 該ドライエッチングは異方性が高く、レジストとの選択
比が大きい条件で行なった。エッチング条件は、ガス比
C2F6:H2=10:1、パワー300W、ガス圧0
.03Torrとした。このときのエッチング深さは3
90nmとした。
Example-1 On a cleaned synthetic quartz glass substrate (thickness 2.3 mm),
A tantalum film with a thickness of 5 nm was formed as a conductive layer by sputtering, and a positive electron beam resist (manufactured by Chisso Corporation, trade name: PBS) was applied to a thickness of about 500 nm on the tantalum film, and after a prescribed baking process. , using a raster scan type electron beam lithography system, with an acceleration voltage of 10 KV and a dose of approximately 2.
.. A predetermined pattern was drawn at 5 μC/cm 2 and developed to obtain a resist pattern. After a predetermined baking process, using the resist pattern as a masking pattern, the glass substrate was dry-etched using C2F6 and H2 gas in a parallel plate reactive etching apparatus. The dry etching was performed under conditions that had high anisotropy and a high selectivity with respect to the resist. Etching conditions were gas ratio C2F6:H2=10:1, power 300W, gas pressure 0.
.. It was set to 03 Torr. The etching depth at this time is 3
It was set to 90 nm.

【0027】次に、クロム膜と酸化クロム膜とを積層し
た膜厚100nmの低反射防止遮光膜をスパッタリング
法により基板の表面側の全面に形成し、しかる後、熱濃
硫酸溶液を使用して上記レジストパターンを溶解すると
ともにレジスト上の遮光膜を除去して、遮光パターンを
得た。更に、基板表面に露出した導電層を除去した後、
基板の表面側全面にフォトレジスト(ヘキスト社製,商
品名AZ1350J)を約500nmの厚さに塗布し、
所定のベーク処理後、基板裏面側より紫外線を用いて露
光量をオーバー気味に全面露光を行ない、所定の現像処
理をして、前記遮光パターンをマスクとしたレジストパ
ターンを形成した。続いて、硫酸セリウムアンモニウム
エッチング液を用いたウェットエッチングにより、遮光
パターンのサイドエッチングを行ない、最後にレジスト
パターンを剥離して、図1(a)に示す如き構造の位相
シフトマスクを得た。
Next, a 100 nm thick low anti-reflection light shielding film consisting of a chromium film and a chromium oxide film is formed on the entire surface of the substrate by sputtering, and then a hot concentrated sulfuric acid solution is used to A light-shielding pattern was obtained by dissolving the resist pattern and removing the light-shielding film on the resist. Furthermore, after removing the conductive layer exposed on the substrate surface,
A photoresist (manufactured by Hoechst, trade name AZ1350J) was applied to a thickness of approximately 500 nm on the entire surface side of the substrate.
After a predetermined baking process, the entire surface was exposed to ultraviolet light from the back side of the substrate at a slightly overexposure dose, and a predetermined development process was performed to form a resist pattern using the light-shielding pattern as a mask. Subsequently, side etching of the light shielding pattern was performed by wet etching using a cerium ammonium sulfate etching solution, and finally the resist pattern was peeled off to obtain a phase shift mask having a structure as shown in FIG. 1(a).

【0028】実施例−2 洗浄済のガラス基板上に、エッチング停止層として膜厚
20nmのAl2O3膜をスパッタリング法により形成
し、その上に、シフター層として膜厚390nmのSi
O2層を同様にスパッタリング法により形成した。その
上に、導電層として膜厚5nmのタンタル膜をスパッタ
リング法により形成し、更にその上に実施例−1と同様
のポジ型電子線レジストを塗布し、実施例−1と同様に
して電子線描画を行なってレジストパターンを得た。次
に、該レジストパターンをマスキングパターンとしてシ
フター層のドライエッチングを行なった。エッチング条
件は実施例−1と同様にした。
Example 2 An Al2O3 film with a thickness of 20 nm was formed as an etching stop layer on a cleaned glass substrate by sputtering, and a Si film with a thickness of 390 nm was formed on top of it as a shifter layer.
An O2 layer was similarly formed by sputtering. On top of that, a tantalum film with a thickness of 5 nm was formed as a conductive layer by a sputtering method, and then a positive electron beam resist similar to that in Example-1 was applied, and the electron beam resist was applied in the same manner as in Example-1. A resist pattern was obtained by drawing. Next, the shifter layer was dry etched using the resist pattern as a masking pattern. The etching conditions were the same as in Example-1.

【0029】エッチング終了後、実施例−1と全く同様
にして、遮光膜を全面に形成し、前記レジストパターン
を除去して、遮光パターンを得、フォトレジストを全面
に塗布後、基板裏面からの全面露光により遮光パターン
上にフォトレジストパターンを形成した後、これをウェ
ットエッチングして、図1(b)に示す構造の位相シフ
トマスクを得た。
After the etching is completed, a light shielding film is formed on the entire surface in exactly the same manner as in Example 1, the resist pattern is removed to obtain a light shielding pattern, and a photoresist is applied on the entire surface. A photoresist pattern was formed on the light-shielding pattern by full-surface exposure, and then wet-etched to obtain a phase shift mask having the structure shown in FIG. 1(b).

【0030】[0030]

【発明の効果】以上詳細に説明したように、本発明によ
れば、位相の反転によりパターンエッジのコントラスト
を強調する優れた位相シフト効果を発揮せしめることが
でき、しかも本発明により製造された位相シフトマスク
は、第2の透過領域がエッチングされないので、従来の
様にドライエッチングによる粗面化で光のコヒーレンシ
ーが低下したり、光強度が弱まるといった不都合が生じ
ない。
As described in detail above, according to the present invention, it is possible to exhibit an excellent phase shift effect that emphasizes the contrast of pattern edges by reversing the phase. Since the second transmission region of the shift mask is not etched, problems such as a decrease in light coherency and a weakening of light intensity due to surface roughening caused by dry etching do not occur as in conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(a),(b)はそれぞれ本発明の位相シフト
マスクの一実施例及び他の実施例の構成を示す断面図で
ある。
FIGS. 1A and 1B are cross-sectional views showing the configurations of one embodiment and another embodiment of a phase shift mask of the present invention, respectively.

【図2】(a)〜(h)は本発明一実施例の位相シフト
マスクを製造する方法を工程順に示す断面図である。
FIGS. 2(a) to 2(h) are cross-sectional views showing, in order of steps, a method for manufacturing a phase shift mask according to an embodiment of the present invention.

【図3】(a)〜(h)は本発明の他の実施例の位相シ
フトマスクを製造する方法を工程順に示す断面図である
FIGS. 3A to 3H are cross-sectional views showing a method for manufacturing a phase shift mask according to another embodiment of the present invention in order of steps;

【図4】(a),(b)はそれぞれ従来の位相シフトマ
スクの構造を示す断面図である。
FIGS. 4(a) and 4(b) are cross-sectional views showing the structure of a conventional phase shift mask, respectively.

【符号の説明】[Explanation of symbols]

1,11  透明基板 2,14  導電層 3,15  電子線レジスト層 4,16  遮光層 5,17  フォトレジスト層 6,18  紫外線露光 12  エッチング停止層 13  透明シフター層 1,11 Transparent substrate 2,14 Conductive layer 3,15 Electron beam resist layer 4,16 Light shielding layer 5, 17 Photoresist layer 6,18 Ultraviolet exposure 12 Etching stop layer 13 Transparent shifter layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  遮光領域と、該遮光領域に隣接する第
1の透過領域と、該第1の透過領域に隣接し、かつ第1
の透過領域との透過光の位相差が180度となる第2の
透過領域とを有し、前記遮光領域及び第1の透過領域が
透明基板に設けた凹部に形成されていることを特徴とす
る位相シフトマスク。
1. A light-shielding region, a first transmissive region adjacent to the light-shielding region, and a first transmissive region adjacent to the first transmissive region.
and a second transmitting region whose transmitted light has a phase difference of 180 degrees with respect to the transmitting region, and the light shielding region and the first transmitting region are formed in a recess provided in a transparent substrate. phase shift mask.
【請求項2】  遮光領域と、該遮光領域に隣接する第
1の透過領域と、該第1の透過領域に隣接し、かつ第1
の透過領域との透過光の位相差が180度となる第2の
透過領域とを有し、該第2の透過領域は透明基板上に設
けた透明シフター層によって形成されており、さらに前
記透明基板と、前記透明シフター層及び前記遮光領域を
形成する遮光層との間にエッチング停止層を有してなる
ことを特徴とする位相シフトマスク。
2. A light-shielding region, a first transmissive region adjacent to the light-shielding region, and a first transmissive region adjacent to the first transmissive region.
and a second transmission area in which the phase difference of transmitted light is 180 degrees with respect to the transmission area, the second transmission area is formed by a transparent shifter layer provided on the transparent substrate, and A phase shift mask comprising an etching stop layer between a substrate and a light shielding layer forming the transparent shifter layer and the light shielding region.
【請求項3】  リソグラフィ工程を経てエッチングに
より透明基板に凹部を形成し、次いでリフトオフによっ
てこの凹部に遮光パターンを形成し、更に透明基板背面
からの露光により前記遮光パターン上にレジストパター
ンを形成し、前記遮光パターンのサイドエッチングを行
なうことを特徴とする位相シフトマスクの製造方法。
3. Forming a recess in a transparent substrate by etching through a lithography process, then forming a light-shielding pattern in the recess by lift-off, and further forming a resist pattern on the light-shielding pattern by exposing from the back side of the transparent substrate, A method for manufacturing a phase shift mask, comprising performing side etching of the light shielding pattern.
【請求項4】  透明基板上に少なくともエッチング停
止層及び透明シフター層をこの順に設け、リソグラフィ
工程を経てエッチングにより前記透明シフター層のパタ
ーニングを行ない、次いで形成された透明シフター層の
凹部にリフトオフによって遮光パターンを形成し、更に
透明基板背面からの露光により前記遮光パターン上にレ
ジストパターンを形成し、前記遮光パターンのサイドエ
ッチングを行なうことを特徴とする位相シフトマスクの
製造方法。
4. At least an etching stop layer and a transparent shifter layer are provided in this order on a transparent substrate, the transparent shifter layer is patterned by etching through a lithography process, and then light is shielded by lift-off into the recesses of the formed transparent shifter layer. A method for manufacturing a phase shift mask, comprising forming a pattern, further forming a resist pattern on the light-shielding pattern by exposing from the back side of a transparent substrate, and performing side etching of the light-shielding pattern.
JP17603691A 1991-06-20 1991-06-20 Phase shift mask and method of manufacturing the same Expired - Fee Related JP3161474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17603691A JP3161474B2 (en) 1991-06-20 1991-06-20 Phase shift mask and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17603691A JP3161474B2 (en) 1991-06-20 1991-06-20 Phase shift mask and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04371951A true JPH04371951A (en) 1992-12-24
JP3161474B2 JP3161474B2 (en) 2001-04-25

Family

ID=16006604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17603691A Expired - Fee Related JP3161474B2 (en) 1991-06-20 1991-06-20 Phase shift mask and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3161474B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508749C2 (en) * 1994-03-11 2003-03-20 Hyundai Electronics Ind Process for producing a phase shift mask
KR100604814B1 (en) * 2002-11-11 2006-07-28 삼성전자주식회사 Phase edge phase shift mask and method for fabricating the same
JP2007271720A (en) * 2006-03-30 2007-10-18 Hoya Corp Mask blank and photomask
DE4413821B4 (en) * 1994-03-04 2007-12-13 Goldstar Electron Co., Ltd., Cheongju Phase shift mask and method for its production
JP2017502328A (en) * 2013-12-09 2017-01-19 レイセオン カンパニー Method for forming a deposition pattern on a surface
US20190163051A1 (en) * 2017-11-29 2019-05-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming photomask and photolithography method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4413821B4 (en) * 1994-03-04 2007-12-13 Goldstar Electron Co., Ltd., Cheongju Phase shift mask and method for its production
DE19508749C2 (en) * 1994-03-11 2003-03-20 Hyundai Electronics Ind Process for producing a phase shift mask
KR100604814B1 (en) * 2002-11-11 2006-07-28 삼성전자주식회사 Phase edge phase shift mask and method for fabricating the same
JP2007271720A (en) * 2006-03-30 2007-10-18 Hoya Corp Mask blank and photomask
JP2017502328A (en) * 2013-12-09 2017-01-19 レイセオン カンパニー Method for forming a deposition pattern on a surface
US20190163051A1 (en) * 2017-11-29 2019-05-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming photomask and photolithography method
US10845699B2 (en) * 2017-11-29 2020-11-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming photomask and photolithography method
US11307492B2 (en) 2017-11-29 2022-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming photomask and photolithography method

Also Published As

Publication number Publication date
JP3161474B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
JP2862183B2 (en) Manufacturing method of mask
JP3036085B2 (en) Optical mask and its defect repair method
JPH0798493A (en) Phase shift mask and its production
JPH0690504B2 (en) Photomask manufacturing method
US5268244A (en) Self-aligned phase shifter formation
KR0183923B1 (en) A fabrication method of phase shift mask
JP3351485B2 (en) Method for manufacturing phase shift mask
JPH06289589A (en) Phase shift mask, its manufacturing method and blank used therefor
JPH08123010A (en) Phase shift mask and mask blank used for the same
JPH04371951A (en) Phase shift mask and production thereof
JP3531666B2 (en) Phase shift mask and method of manufacturing the same
JPH1115132A (en) Halftone type phase shift mask and blank for halftone type phase shift mask
US5510214A (en) Double destruction phase shift mask
JPH06250376A (en) Phase shift mask and production of phase shift mask
JP3250415B2 (en) Manufacturing method of halftone type phase shift mask
JPH10198017A (en) Phase shift photomask and blank for phase shift photomask
JPH05289305A (en) Phase-shift photomask
JPH04365044A (en) Phase shift mask blank and manufacture for phase shift mask
JPH0792655A (en) Optical mask and mask blank and their production
JP3322284B2 (en) Phase shift mask and method of manufacturing the same
JPH06180497A (en) Production of phase shift mask
JPH03242648A (en) Photomask
JPH07281414A (en) Phase shift mask blank and phase shift mask as well as its production
KR100523646B1 (en) Phase shifting mask with an assist pattern and manufacturing method thereof
JPH06347993A (en) Phase shift mask and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees