JPH04371515A - Heat treatment method - Google Patents

Heat treatment method

Info

Publication number
JPH04371515A
JPH04371515A JP17072591A JP17072591A JPH04371515A JP H04371515 A JPH04371515 A JP H04371515A JP 17072591 A JP17072591 A JP 17072591A JP 17072591 A JP17072591 A JP 17072591A JP H04371515 A JPH04371515 A JP H04371515A
Authority
JP
Japan
Prior art keywords
quenching
carbon steel
hardened
heat treatment
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17072591A
Other languages
Japanese (ja)
Inventor
Hikoharu Aoki
彦治 青木
Tatsuya Hagi
萩 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP17072591A priority Critical patent/JPH04371515A/en
Publication of JPH04371515A publication Critical patent/JPH04371515A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a carbon steel product having excellent wear resistance by developing a deep quench-hardened layer having uniform hardness at the time of quenching a surface by using high energy beam. CONSTITUTION:As a heat treatment method before quenching the carbon steel, after quenching the carbon steel, by tempering the steel at high temp., the structure of the carbon steel is changed into sorbitic structure dispersing fine and uniform carbide. At the time of quenching the carbon steel with the high energy beam starting from the above condition, the carbide is easily broken to carbon. As the broken carbon atoms are uniformly diffused on the surrounding, the crystal structure of the quenched part is changed into the structure hard and stable in energy with phase transformation. As a result, the wear resistance of surface of the carbon steel is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、材質が炭素を含有する
鋼、すなわち炭素鋼を高エネルギービームで良好に焼き
入れるための熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for properly hardening steel containing carbon, that is, carbon steel, using a high-energy beam.

【0002】0002

【従来の技術】レーザービーム或は電子ビームなどのよ
うな高エネルギービームで焼き入れされる鋼材は炭素濃
度0.4〜0.6%含有した炭素鋼である。鋼材は需要
家から特に指定が無い限り、特に熱処理はされず熱間圧
延されたままの状態で納入される。そのような状態で機
械切削加工が行われると後で変形したり、焼き入れなど
の熱処理を行なっても硬さが上がらなかったり、ばらつ
いたりすることがあるので、適切な前熱処理が必要とな
る場合が多い。
2. Description of the Related Art Steel materials that are hardened with a high-energy beam such as a laser beam or an electron beam are carbon steels containing a carbon concentration of 0.4 to 0.6%. Unless otherwise specified by the customer, steel materials are delivered in a hot-rolled state without any particular heat treatment. If mechanical cutting is performed under such conditions, the material may become deformed later, and even after heat treatment such as quenching, the hardness may not increase or may vary, so appropriate pre-heat treatment is required. There are many cases.

【0003】従来、高エネルギービームにより炭素鋼を
焼き入れる場合は、前熱処理なしでそのまま焼き入れさ
れるか、もしくは前熱処理として焼きならしが行なわれ
ていた。焼きならしとは結晶粒を微細整粒化したり、ま
た炭化物の分布の不均一性を除去する目的で行なわれる
ものであり、一般的には、鋼材をA1変態点、またはA
cm変態点上40〜60℃の温度に1〜3時間加熱保持
した後、靜かな大気中で冷却する操作をいう。
Conventionally, when carbon steel is hardened using a high-energy beam, the steel is hardened as is without any preheat treatment, or normalization is performed as a preheat treatment. Normalizing is carried out for the purpose of fine-graining the crystal grains and removing non-uniformity in the distribution of carbides, and is generally carried out to bring the steel material to the A1 transformation point or A1 transformation point.
It refers to the operation of heating and holding at a temperature of 40 to 60°C above the cm transformation point for 1 to 3 hours, and then cooling in a quiet atmosphere.

【0004】ここで従来方法として前熱処理を行なわず
、代表的な高エネルギービームである炭酸ガスレーザー
ビームで材質が炭素鋼の被加工物としてボールねじ軸を
焼き入れたときの実施例を説明する。このときのレーザ
ービーム出力は1000W、移動速度は0.5m/mi
nで実施した。ボールねじ軸表面部の焼き入れ硬化層断
面の顕微鏡組織写真を図8に示す。焼き入れ部と母材部
の境界線が明瞭になっている。母材部は硬さが柔らかく
焼き入れされないフェライト組織と焼き入れされるパー
ライト組織の混合組織で成り立っているが、各組織の大
きさは不揃いで混合具合いは不均一である。また、焼き
入れ部はマルテンサイト組織であるが、所々フェライト
組織が認められる。この硬化層断面の硬さ分布曲線を図
9に示す。焼き入れ部の硬さはHv540〜615で、
平均値はHv575であった。
[0004] Here, an example will be described in which a ball screw shaft is hardened as a workpiece made of carbon steel using a carbon dioxide gas laser beam, which is a typical high-energy beam, without performing preheat treatment as a conventional method. . The laser beam output at this time was 1000W, and the moving speed was 0.5m/mi.
It was carried out at n. FIG. 8 shows a microscopic microstructure photograph of a cross section of the quenched hardened layer on the surface of the ball screw shaft. The boundary line between the hardened part and the base metal part is clear. The base material is composed of a mixed structure of a ferrite structure that is soft and is not hardened, and a pearlite structure that is hardened, but the sizes of each structure are uneven and the degree of mixing is uneven. Furthermore, although the hardened portion has a martensitic structure, a ferrite structure is observed in some places. The hardness distribution curve of this hardened layer cross section is shown in FIG. The hardness of the hardened part is Hv540-615,
The average value was Hv575.

【0005】つぎに従来の焼き入れ前熱処理方法として
焼きならしを行なった後、上記と同じ条件で炭酸ガスレ
ーザービームで焼き入れを行なったときの実施例を説明
する。図10は焼き入れ硬化層断面の顕微鏡組織写真で
ある。前熱処理をしなかった図8と比較すれば母材部に
おけるフェライト組織とパーライト組織はそれぞれ細か
く、均一に分布している。しかし焼き入れ部ではマルテ
ンサイト組織中にはまだフェライト組織が残っている。 そのため図11の硬さ分布曲線に示す通り、焼き入れ部
の硬さはHv520〜635で平均値はHv580であ
った。
[0005] Next, an example will be described in which, as a conventional pre-hardening heat treatment method, normalizing is performed and then hardening is performed using a carbon dioxide gas laser beam under the same conditions as above. FIG. 10 is a microscopic structure photograph of a cross section of the quenched hardened layer. Compared to FIG. 8 in which no preheat treatment was performed, the ferrite structure and pearlite structure in the base material are fine and uniformly distributed. However, in the hardened part, ferrite structure still remains in the martensite structure. Therefore, as shown in the hardness distribution curve of FIG. 11, the hardness of the hardened portion was Hv520-635, with an average value of Hv580.

【0006】[0006]

【発明が解決しようとする課題】従来、一般に鋼材は需
要家から製鋼メーカーに対して前熱処理指定が無ければ
、鋼材は溶解後インゴット形状から熱間圧延加工を繰り
返され様々な形状、サイズに製造後出荷される。このよ
うな鋼材の断面金属組織は顕微鏡で観察するとフェライ
ト相とパーライト相から構成される。鋼材の内部と外部
はもちろん、表面部でフェライト相とパーライト相の大
きさは異なり、粗密がある。なおフェライト相は硬さH
v200で、パーライト相はHv250〜300である
。焼き入れに寄与するのは炭化物を含有するパーライト
相である。パーライト相は焼き入れると、Hv900程
度まで硬化するが、フェライト相は硬化しない。良好に
焼き入れをするにはフェライト相とパーライト相は細か
く分布していたほうが良く、パーライト相が細かければ
、その中に含まれる炭化物が高エネルギービームで炭素
に加熱分解され、炭素は周囲のフェライト相まで容易に
均一に拡散される。そのため、フェライト相も硬化する
ので焼き入れ硬化層の硬さは均一で硬くなる。
[Problems to be Solved by the Invention] Conventionally, unless a customer specifies pre-heat treatment to a steel manufacturer, steel products are manufactured into various shapes and sizes by being repeatedly hot-rolled from an ingot shape after melting. After being shipped. When observed under a microscope, the cross-sectional metal structure of such a steel material consists of a ferrite phase and a pearlite phase. The size of the ferrite phase and pearlite phase differs not only inside and outside the steel material, but also on the surface, and there is density and density. The hardness of the ferrite phase is H
V200, and the pearlite phase is Hv250-300. It is the pearlite phase containing carbides that contributes to hardening. When the pearlite phase is quenched, it hardens to about Hv900, but the ferrite phase does not harden. For good hardening, it is better for the ferrite and pearlite phases to be finely distributed. If the pearlite phase is fine, the carbides contained therein will be thermally decomposed into carbon by a high-energy beam, and the carbon will be dispersed in the surrounding area. It is easily and uniformly diffused into the ferrite phase. Therefore, since the ferrite phase is also hardened, the hardness of the hardened layer becomes uniform and hard.

【0007】ところが、前記の従来方法として、前熱処
理指定が無く、前熱処理をしない場合は、フェライト相
とパーライト相のサイズは大きいので高エネルギービー
ム焼き入れのように短時間照射では炭化物は炭素に分解
されず、炭素はフェライト相まで拡散しきれない。その
ためフェライト相はほとんど硬くならないので焼き入れ
硬化層は硬化パーライト相だけになる。従って、硬さに
ばらつきが多くその値も低い。
However, in the conventional method described above, if there is no preheat treatment specified and no preheat treatment is performed, the size of the ferrite phase and pearlite phase is large, so when irradiated for a short time like high energy beam hardening, the carbide becomes carbon. It is not decomposed and the carbon cannot fully diffuse into the ferrite phase. Therefore, since the ferrite phase hardly becomes hard, the quench-hardened layer consists of only the hardened pearlite phase. Therefore, the hardness varies widely and its value is low.

【0008】また、従来方法の前熱処理として焼きなら
しをした場合、ミクロ的に観察するとフェライト相とパ
ーライト相から成る金属組織は幾分微細化される。パー
ライト相は炭化物を多く含み、高エネルギービーム加熱
により炭化物中の炭素がパーライト相内で周囲に拡散し
、高エネルギービーム加熱を止めると自己冷却作用によ
り相変態し硬化する。硬化したパーライト相はHv90
0ぐらいになる。また加熱時にパーライト相内の炭化物
中の一部の炭素はパーライト相を突き抜け隣接するフェ
ライト相まで拡散する。そのため、パーライト近傍のフ
ェライト相内の炭素濃度は上がり、若干焼き入れ硬化す
る。しかし元来フェライト相の硬さはHv200程度で
高エネルギービームが照射されてもほとんど硬化しない
。このようなフェライト相とパーライト相を総合したも
のが焼き入れ硬化層となるため、硬さにばらつきがあっ
たり、不十分だったりする問題点がある。
Furthermore, when normalizing is performed as a preheat treatment in the conventional method, the metal structure consisting of ferrite phase and pearlite phase becomes somewhat finer when observed microscopically. The pearlite phase contains a large amount of carbide, and carbon in the carbide diffuses into the surroundings within the pearlite phase due to high-energy beam heating, and when the high-energy beam heating is stopped, it undergoes a phase transformation and hardens due to self-cooling. Hardened pearlite phase has Hv90
It will be about 0. Further, during heating, some carbon in the carbide within the pearlite phase penetrates through the pearlite phase and diffuses into the adjacent ferrite phase. Therefore, the carbon concentration in the ferrite phase near the pearlite increases, and the ferrite phase is slightly quenched and hardened. However, the hardness of the ferrite phase is originally about Hv200, and it hardly hardens even when irradiated with a high-energy beam. Since the combination of such ferrite phase and pearlite phase becomes the quench-hardened layer, there is a problem that the hardness varies or is insufficient.

【0009】本発明はこのような問題点を解決するため
になされたものであり、炭素鋼を高エネルギービームを
用いて焼き入れする際、硬さと深さが均一な焼き入れ硬
化層を得ることができる熱処理方法を提供することを目
的とする。
The present invention was made to solve these problems, and it is an object of the present invention to obtain a hardened layer with uniform hardness and depth when hardening carbon steel using a high-energy beam. The purpose of the present invention is to provide a heat treatment method that enables the following.

【0010】0010

【課題を解決するための手段】この目的を達成するため
に本発明の熱処理方法は、炭素鋼を高エネルギービーム
を用いて焼き入れする前に、あらかじめ焼き入れ高温焼
き戻し処理することを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the heat treatment method of the present invention is characterized by subjecting carbon steel to quenching and high-temperature tempering treatment before quenching it using a high-energy beam. do.

【0011】[0011]

【作用】上記のような本発明の熱処理方法によれば、炭
素鋼は高エネルギービームで焼き入れされると、炭化物
が容易に炭素に分解され、均一に拡散されるので炭素鋼
の表面硬化層の硬さは均一になり、高められる。
[Operation] According to the heat treatment method of the present invention as described above, when carbon steel is hardened with a high-energy beam, carbides are easily decomposed into carbon and uniformly diffused, so that the surface hardening layer of carbon steel is hardened. The hardness of is evened out and increased.

【0012】0012

【実施例】以下、本発明の熱処理方法を具体化した一実
施例を図面を参照して説明する。
[Embodiment] An embodiment embodying the heat treatment method of the present invention will be described below with reference to the drawings.

【0013】炭素鋼には一例としてJIS規格のSCM
440を用い、精密機械部品のボールねじ軸に加工した
。ボールねじ軸は最終仕上げサイズよりやや大きめに荒
加工されたあと、加熱炉中で焼き入れ行程と高温焼き戻
し行程からなる熱処理が行なわれる。
[0013] For example, SCM of JIS standard is used for carbon steel.
440 was used to process the ball screw shaft of precision mechanical parts. After the ball screw shaft is roughly machined to a size slightly larger than the final finished size, it is subjected to heat treatment in a heating furnace, which consists of a hardening process and a high-temperature tempering process.

【0014】図1に本発明で使用した焼き入れ装置1の
概略を示す。焼き入れ装置1は内部に加熱用ヒーター2
があり、内部の雰囲気温度を制御する。窒素ガスやアル
ゴンガスといった不活性ガス3を装置内に取入れる場合
には雰囲気攪拌ファン4によって均一濃度になるよう攪
拌される。被加工物であるボールねじ軸素材5はコンベ
ア6上に置かれ、ヒーター2で昇温する。ある一定温度
に加熱保持された後、コンベア6上を移動し、焼き入れ
槽7に落下、焼き入れされる。焼き入れ槽7は焼き入れ
用油8で満たされる。また、焼き入れ用油8の温度はヒ
ーター9によって制御され、油攪拌装置10で温度が均
一になるように攪拌される。ボールねじ軸素材5は焼き
入れ槽7内部に沈めてあるバスケット11に受けとめら
れる。ボールねじ軸素材5は装出口よりバスケット11
ごと取り出される。
FIG. 1 schematically shows a hardening apparatus 1 used in the present invention. The quenching device 1 has a heating heater 2 inside.
to control the internal atmospheric temperature. When an inert gas 3 such as nitrogen gas or argon gas is introduced into the apparatus, it is stirred by an atmosphere stirring fan 4 to obtain a uniform concentration. A ball screw shaft material 5, which is a workpiece, is placed on a conveyor 6 and heated by a heater 2. After being heated and maintained at a certain temperature, it moves on a conveyor 6, falls into a quenching tank 7, and is quenched. The quenching tank 7 is filled with quenching oil 8. Further, the temperature of the quenching oil 8 is controlled by a heater 9, and is stirred by an oil stirring device 10 so that the temperature is uniform. The ball screw shaft material 5 is received in a basket 11 submerged inside the quenching tank 7. The ball screw shaft material 5 is inserted into the basket 11 from the loading port.
The whole thing is taken out.

【0015】図2には本発明の高温焼き戻し装置20の
概略が示される。焼き入れ装置1によって焼き入れされ
たボールねじ軸素材5は装入口より入れられ、真空状態
にしてからヒーター21で昇温する。装置内部の温度は
焼き戻し温度に達したら一定時間保持する。続いて、ガ
ス流入パイプ22より窒素ガスやアルゴンガスといった
不活性ガス23を流し冷却する。ボールねじ軸素材5は
十分冷えたら装出口より取り出される。
FIG. 2 schematically shows a high temperature tempering apparatus 20 of the present invention. The ball screw shaft material 5 hardened by the hardening device 1 is introduced through the charging port, brought into a vacuum state, and then heated by the heater 21. Once the temperature inside the device reaches the tempering temperature, it is maintained for a certain period of time. Subsequently, an inert gas 23 such as nitrogen gas or argon gas is flowed through the gas inlet pipe 22 to cool it. Once the ball screw shaft material 5 has cooled down sufficiently, it is taken out from the loading port.

【0016】次に具体的な熱処理を図3を用いて説明す
る。本発明の焼き入れ前熱処理として第1段階の焼き入
れ行程は次の通りである。すなわち、被加工物であるボ
ールねじ軸素材5は焼き入れ装置1中で組織を完全に均
一なオーステナイト状態にするために、酸化防止のため
焼き入れ装置1中を真空雰囲気または窒素雰囲気にして
A3変態点上30℃〜50℃、すなわち820℃〜84
0℃まで加熱する。約90分間保持後80℃の油中8に
浸積し焼き入れ、マルテンサイト硬化させる。次に第2
段階の高温焼き戻し行程は、高温焼き戻し装置20に焼
き入れたボールねじ軸素材5を入れる。真空状態にした
後、ボールねじ軸素材5は300℃〜650℃の範囲の
高温焼き戻し温度で約120分程加熱保持後、冷却用の
窒素またはアルゴンといった不活性ガス23が高圧で吹
き付けられ冷却される。このとき焼き戻し温度が低いと
ボールねじ軸素材5の硬さは高く、逆に高いとボールね
じ軸素材5の硬さは低くなる。図4に焼き戻し温度とボ
ールねじ軸素材硬さとの関係を示す。これによりボール
ねじ軸素材5のフェライト相とパーライト相はそれぞれ
前熱処理を全くしない場合や単に焼きならしのみをした
場合よりも非常に微細化され、かつパーライト中に含ま
れる炭化物が微細分布したソルバイト組織に変わる。こ
れにより、その後高エネルギービーム焼き入れを行なう
と炭化物は容易に均一破壊されるため硬さが均一で深い
硬化層が得られる。
Next, specific heat treatment will be explained using FIG. 3. The first quenching process as the pre-quenching heat treatment of the present invention is as follows. That is, in order to make the structure of the ball screw shaft material 5, which is a workpiece, into a completely uniform austenite state in the hardening device 1, the hardening device 1 is heated in a vacuum atmosphere or a nitrogen atmosphere to prevent oxidation. 30°C to 50°C above the transformation point, i.e. 820°C to 84°C
Heat to 0°C. After holding for about 90 minutes, it is immersed in oil at 80°C and quenched to harden martensite. Then the second
In the high-temperature tempering step, the hardened ball screw shaft material 5 is put into the high-temperature tempering device 20. After creating a vacuum state, the ball screw shaft material 5 is heated and maintained at a high temperature tempering temperature in the range of 300°C to 650°C for about 120 minutes, and then cooled by being blown with a high pressure inert gas 23 such as nitrogen or argon for cooling. be done. At this time, when the tempering temperature is low, the hardness of the ball screw shaft material 5 is high, and conversely, when the tempering temperature is high, the hardness of the ball screw shaft material 5 is low. FIG. 4 shows the relationship between tempering temperature and ball screw shaft material hardness. As a result, the ferrite phase and pearlite phase of the ball screw shaft material 5 are made much finer than when no preheat treatment is performed or when only normalization is performed, and the carbides contained in pearlite are finely distributed in sorbite. Change into an organization. As a result, when high-energy beam hardening is performed thereafter, the carbide is easily and uniformly destroyed, so that a deep hardened layer with uniform hardness can be obtained.

【0017】ここで、本発明の焼き入れ前熱処理の高温
焼き戻し行程で480℃で焼き戻した後、従来の焼きな
らしの場合と同じ条件、すなわち、ビーム出力1000
W、ビーム移動速度0.5m/minの条件でレーザー
焼き入れを行なった場合を説明する。ボールねじ軸5表
面部のレーザー焼き入れ硬化層断面の顕微鏡組織写真を
図5に示す。母材部のフェライト組織とパーライト組織
はともに細かく分断され、非常に微細なパーライト組織
であるソルバイト組織に変わっている。また、焼き入れ
部は微細なマルテンサイト組織を示している。焼き入れ
硬化深さは0.5mmであった。図6の硬さ分布曲線か
ら焼き入れ部の硬さはHv680〜700で、平均でH
v685であった。
Here, after tempering at 480° C. in the high-temperature tempering step of the pre-quenching heat treatment of the present invention, the same conditions as in the conventional normalizing, that is, a beam output of 1000
A case will be described in which laser hardening is performed under the conditions of W and a beam moving speed of 0.5 m/min. FIG. 5 shows a microscopic structure photograph of a cross section of the laser-hardened layer on the surface of the ball screw shaft 5. The ferrite structure and pearlite structure in the base metal are both finely divided and changed to a sorbite structure, which is a very fine pearlite structure. Furthermore, the hardened portion shows a fine martensitic structure. The hardening depth was 0.5 mm. From the hardness distribution curve in Figure 6, the hardness of the hardened part is Hv680-700, with an average of Hv680-700.
It was v685.

【0018】また、炭酸ガスレーザービームで焼き入れ
されたボールねじ軸5の耐摩耗性を評価するため、この
ボールねじ軸5を実際に組み込まれる工作機械に取り付
けて200時間連続耐久試験を実施した。図7に示すよ
うに、前熱処理として焼きならしをしたものでは摩耗深
さは10〜15μm、本発明の焼き入れ高温焼き戻し処
理を行った場合では3〜5μmであった。
[0018] In addition, in order to evaluate the wear resistance of the ball screw shaft 5 hardened with a carbon dioxide laser beam, this ball screw shaft 5 was attached to the machine tool in which it was actually installed and a 200-hour continuous durability test was conducted. . As shown in FIG. 7, the wear depth was 10 to 15 μm when normalized as a preheat treatment, and 3 to 5 μm when the hardening and high temperature tempering treatment of the present invention was performed.

【0019】本発明の焼き入れ高温焼き戻し処理を実施
後、レーザー焼き入れしたボールねじ軸5は、従来の焼
き入れ前熱処理を省いた場合及び焼き入れ前熱処理とし
て単に焼きならしのみをした場合と比べると、焼き入れ
部において約Hv100、母材部ではHv30〜70程
度硬さが向上した。また焼き入れ硬化深さについても、
0.2〜0.3mm深くなった。さらに耐摩耗性では約
3倍も向上した。
After performing the hardening and high-temperature tempering treatment of the present invention, the laser-hardened ball screw shaft 5 can be used in cases where the conventional pre-hardening heat treatment is omitted or when only normalizing is performed as the pre-hardening heat treatment. Compared to the above, the hardness improved by about Hv100 in the hardened part and by about Hv30-70 in the base metal part. Also, regarding the quench hardening depth,
It became deeper by 0.2 to 0.3 mm. Furthermore, the wear resistance was improved by about 3 times.

【0020】[0020]

【発明の効果】以上説明したことから明かなように、本
発明による熱処理方法は、炭素鋼を高エネルギービーム
を使って焼き入れする前に、あらかじめ焼き入れ高温焼
き戻し処理を行なうものである。その結果、炭素鋼のフ
ェライト組織およびパーライト組織の混合組織は細かく
分断され、非常に細かいパーライト組織、すなわちソル
バイト組織に変わる。ソルバイト組織は炭化物が均一に
細かく分布した組織で、焼き入れ時にこの炭化物は破壊
され炭素が均一に拡散しやすいため、ソルバイト組織が
マルテンサイト相変態しやすくなる。そのため焼き入れ
硬化層は均一に硬く、深さも大きくなり、耐摩耗性が著
しく向上するという優れた効果がある。従って、耐久性
に富み、且つ寿命の長い炭素鋼製品を製造することがで
きる。
As is clear from the above explanation, in the heat treatment method of the present invention, carbon steel is subjected to quenching and high-temperature tempering before being quenched using a high-energy beam. As a result, the mixed structure of the ferrite structure and pearlite structure of the carbon steel is finely divided and turns into a very fine pearlite structure, that is, a sorbite structure. The sorbite structure is a structure in which carbides are uniformly and finely distributed, and during quenching, these carbides are destroyed and carbon tends to diffuse uniformly, making it easier for the sorbite structure to transform into a martensitic phase. Therefore, the quench-hardened layer is uniformly hard and has a large depth, which has the excellent effect of significantly improving wear resistance. Therefore, carbon steel products that are highly durable and have a long life can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本実施例の熱処理方法で用いる焼き入れ装置を
示す図である。
FIG. 1 is a diagram showing a hardening apparatus used in the heat treatment method of this embodiment.

【図2】本実施例の熱処理方法で用いる高温焼き戻し装
置を示す図である。
FIG. 2 is a diagram showing a high-temperature tempering apparatus used in the heat treatment method of this example.

【図3】本実施例の熱処理の各行程を示す図である。FIG. 3 is a diagram showing each step of heat treatment in this example.

【図4】焼き戻し温度とボールねじ軸素材硬さとの関係
を示す図である。
FIG. 4 is a diagram showing the relationship between tempering temperature and ball screw shaft material hardness.

【図5】本実施例の熱処理を行なってから高エネルギー
ビームで焼き入れされたボールねじ軸表面部の断面の金
属組織を示す顕微鏡写真である。
FIG. 5 is a micrograph showing the metal structure of a cross section of the ball screw shaft surface portion hardened with a high-energy beam after the heat treatment of this example.

【図6】本実施例の熱処理を行なってから高エネルギー
ビームで焼き入れされたボールねじ軸表面部の断面硬さ
分布を示す図である。
FIG. 6 is a diagram showing the cross-sectional hardness distribution of the ball screw shaft surface portion hardened with a high-energy beam after the heat treatment of this example.

【図7】本実施例を実施して得られたボールねじ軸の連
続耐久試験結果を示す図である。
FIG. 7 is a diagram showing the results of a continuous durability test of the ball screw shaft obtained by carrying out this example.

【図8】従来法で焼き入れされたボールねじ軸表面部の
断面の金属組織を示す顕微鏡写真である。
FIG. 8 is a micrograph showing the metal structure of a cross section of the surface of a ball screw shaft hardened by a conventional method.

【図9】従来法で焼き入れされたボールねじ軸表面部の
断面硬さ分布を示す図である。
FIG. 9 is a diagram showing the cross-sectional hardness distribution of a ball screw shaft surface portion hardened by a conventional method.

【図10】従来法で焼き入れされたボールねじ軸表面部
の断面の金属組織を示す顕微鏡写真である。
FIG. 10 is a micrograph showing the metal structure of a cross section of the surface of a ball screw shaft hardened by a conventional method.

【図11】従来法で焼き入れされたボールねじ軸表面部
の断面硬さ分布を示す図である。
FIG. 11 is a diagram showing the cross-sectional hardness distribution of a ball screw shaft surface portion hardened by a conventional method.

【符号の説明】[Explanation of symbols]

1    焼き入れ装置 4    雰囲気攪拌ファン 5    ボールねじ軸 7    焼き入れ層 10  油攪拌装置 20  高温焼き戻し装置 22  ガス流入パイプ 23  不活性ガス 1. Quenching equipment 4 Atmosphere stirring fan 5 Ball screw shaft 7 Hardened layer 10 Oil stirring device 20 High temperature tempering equipment 22 Gas inflow pipe 23 Inert gas

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  炭素鋼を高エネルギービームを用いて
焼き入れする前に、予め焼き入れ高温焼き戻し処理する
ことを特徴とする熱処理方法。
1. A heat treatment method characterized by subjecting carbon steel to quenching and high-temperature tempering before quenching it using a high-energy beam.
JP17072591A 1991-06-14 1991-06-14 Heat treatment method Pending JPH04371515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17072591A JPH04371515A (en) 1991-06-14 1991-06-14 Heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17072591A JPH04371515A (en) 1991-06-14 1991-06-14 Heat treatment method

Publications (1)

Publication Number Publication Date
JPH04371515A true JPH04371515A (en) 1992-12-24

Family

ID=15910237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17072591A Pending JPH04371515A (en) 1991-06-14 1991-06-14 Heat treatment method

Country Status (1)

Country Link
JP (1) JPH04371515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256423A (en) * 2010-06-08 2011-12-22 Iai:Kk Heat treatment method and apparatus for rolling surface of rolling element
JP2020012165A (en) * 2018-07-19 2020-01-23 國友熱工株式会社 Production method of work made of hydrogen embrittlement prevention steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256423A (en) * 2010-06-08 2011-12-22 Iai:Kk Heat treatment method and apparatus for rolling surface of rolling element
JP2020012165A (en) * 2018-07-19 2020-01-23 國友熱工株式会社 Production method of work made of hydrogen embrittlement prevention steel

Similar Documents

Publication Publication Date Title
US4021272A (en) Method of isothermal annealing of band steels for tools and razor blades
Maharjan et al. Direct laser hardening of AISI 1020 steel under controlled gas atmosphere
Stickels Carbide refining heat treatments for 52100 bearing steel
US8394212B2 (en) High frequency induction heating treatment equipment and method and induction heated and thus treated product
JP2015052150A (en) Surface hardening treatment method for steel member and surface hardening treatment device
JP2007238969A (en) Nitriding method
JP3699773B2 (en) Induction hardening method
JP2009179869A (en) Method for manufacturing bush
KR101959985B1 (en) Method of heat treatment of metal parts
JPH04371515A (en) Heat treatment method
US2142139A (en) Hardening process for high speed steel tools and other articles
KR101738503B1 (en) Method for heat treatment for reducing deformation of cold-work articles
JP2001020016A (en) Heat treatment method of metallic member
JP3289949B2 (en) Closed circulation gas quenching device and gas quenching method
Grum Overview of residual stresses after induction surface hardening
KR100592757B1 (en) Method of gas carburizing
US3795551A (en) Case hardening steel
JP2897946B2 (en) Method and apparatus for quenching steel
Dossett Introduction to cast iron heat treatment
JPS613878A (en) Carburizing method and carburization hardening method of surface layer of member
CN105803161A (en) Heat treatment method for steel material
RU2004613C1 (en) Process of nitriding parts manufactured from alloyed steel
JPH09235620A (en) Induction hardening method
JPH09310123A (en) Manufacture of low-cost gear
KR950004774B1 (en) Quenching method of cr steel