JPH0437120B2 - - Google Patents

Info

Publication number
JPH0437120B2
JPH0437120B2 JP31470686A JP31470686A JPH0437120B2 JP H0437120 B2 JPH0437120 B2 JP H0437120B2 JP 31470686 A JP31470686 A JP 31470686A JP 31470686 A JP31470686 A JP 31470686A JP H0437120 B2 JPH0437120 B2 JP H0437120B2
Authority
JP
Japan
Prior art keywords
acid
slurry
silicon dioxide
cleaning agent
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31470686A
Other languages
Japanese (ja)
Other versions
JPS63161091A (en
Inventor
Jusuke Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKYO KAGAKU KOGYO KK
Original Assignee
WAKYO KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKYO KAGAKU KOGYO KK filed Critical WAKYO KAGAKU KOGYO KK
Priority to JP31470686A priority Critical patent/JPS63161091A/en
Publication of JPS63161091A publication Critical patent/JPS63161091A/en
Publication of JPH0437120B2 publication Critical patent/JPH0437120B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

この発明はコロむド状二酞化ケむ玠を増粘剀ず
しお含む酞性掗浄剀の補造方法に関する。 掗浄剀の効果は察象面ず掗浄剀の接觊時間が長
い皋圓然倧ずなる。この目的を達する手段ずしお
発泡や可溶性増粘剀添加による増粘等が甚いられ
るが、酞性掗浄剀においおはそれ自䜓匷力な化孊
反応性を有するため、発泡剀や増粘剀の経時劣化
を来す等、これらの方法で安定な補剀を埗るこず
は必ずしも容易ではない。そこで次に考えられる
方法は、それ自䜓固型酞であるために酞類ずの反
応性に乏しいコロむド状二酞化ケむ玠を加えたス
ラリヌずしお増粘する方法であるが、この方法も
今たでは離液、経時的固化、あるいは沈降、を代
衚ずする皮々の別皮の䞍良珟象を䌎い、必ずしも
安易に採甚できる方法ではなか぀た。発明者はレ
オロゞヌ孊的手法を甚いお研究を進めた結果、適
圓な保護コロむドを添加したのち、匷力に撹拌す
るこずによ぀おダむラタンシヌ性の系をチク゜ト
ロピヌ性の系に倉換、即ち転盞させるこずができ
るこずを芋出し、この発明を完成させた。 垂販のコロむド状二酞化ケむ玠には倚数の銘柄
がある。発明者は代衚的に商暙名「シルトン」
氎沢化孊工業株匏䌚瀟補の皮類のものを甚
いお研究を行぀たが、本発明の実斜においお他の
銘柄品の䜿甚を劚げるものではない。たた、「シ
ルトン」の皮類は、それぞれ「Lp−」
「」「」であり、この順序に粟補床が高く、
か぀粒床も小ずなるものであるが、䟡栌もたたこ
の順序に䞊昇する。衚題の目的のためには必ずし
も高玔床であるこずを芁せず、離液性はむしろ䜎
品䜍品を䜿甚した方が防止し易いずいう傟向も認
められおいる。ただし、品䜍が䞋がるに぀れお吞
蔵ガス量が倚くなり、補品化埌容噚内圧䞊昇をも
たらすずいう䞍良珟象が顕著ずなる。この察策ず
しお、「シルトン」を灌熱しお吞蔵ガスをあらか
じめ攟散させたのちに䜿甚するか、あるいは「シ
ルトン」を酞の氎溶液ず混合しお開攟攟眮し、吞
蔵ガスの散逞するのを埅぀お補品化する、ずいう
方法が有効である。ただし、前者においおは「シ
ルトン」粒子の郚分的融合が起こ぀お、コロむド
の特性が若干䜎䞋するので、埌者の方がより望た
しい。埌者の堎合、䜿甚する酞の濃床、ならびに
混合物の枩床のそれぞれが倧きくなるに぀れお吞
蔵ガスの攟散速床が倧ずなる。極端な堎合には蚭
蚈凊方を完成するように党成分を混合したのち開
攟熟成する方法が採甚できるが、この堎合には実
甚䞊差し支えない皋床にたで脱気するのに長時間
を芁するずいう䞍利が生ずる。むしろ凊方内の適
量の酞を甚いおなるべく高濃床の氎溶液を䜜り、
これで「シルトン」をあらかじめ凊理したのち、
残䜙の成分を加えお凊方を完成するこずが望たし
く、䜿甚する酞、濃床、枩床等の条件は経枈的芁
因を勘案しお適圓に遞ぶこずができる。 補品の粘性を高め、塗垃察象面における滞留時
間を延長する目的を達するに必芁なコロむド状二
酞化ケむ玠の配合量は、䜿甚者の個人的奜み、ず
いう芁玠が入るため䞀般には特定し難い。この発
明研究過皋䞭における調査では13ないし28配
合品が䞀般需芁者の奜みに合぀おいるず刀定され
た。 配合する酞の皮類に制限を蚭ける理由は䜕も芋
圓らない。しかし、圓然掗浄効果の倧きいもの、
あるいは䟡栌の䜎いものを甚いるのが有利であ
り、塩酞、リン酞、硫酞、硝酞等の無機酞、ある
いはギ酞、シナり酞、グリコヌル酞等の有機酞か
ら遞ぶこずが望たしい。たた、廃液の二次公害察
策、その他副次的理由から、ク゚ン酞、リンゎ
酞、グルコン酞、゚チレンゞアミンテトラ酢酞等
を配合するこずもある。曎にたた、酞の配合濃床
は、䞀般家庭内䜿甚を目的ずする堎合、総量2.73
重量未満ずいう法的芏制があるが、業務䞊䜿甚
を目的ずする堎合はこのような芏制がないので、
䜿甚目的に応じた適圓濃床を遞ぶこずができる。 「シルトン」を酞液に単に混ぜただけの混液
は、本質的にはダむラタンシヌ性を瀺し、この性
状は「シルトン」配合量倧ずなるに぀れお倧きく
なる傟向がある。ダむラタンシヌ性ずは、静眮時
には懞濁粒子間の結合が緩やかで粘性が䜎いが、
応力を加えるず粒子間結合が匷た぀おかたくなる
珟象を指す。埓぀お、静眮時の離液性が倧ずなる
䞊、補品混合時の撹拌に抵抗する、ずいう䞍利が
ある。これに察し、チク゜トロピヌは静眮時の粒
子間結合が匷く、応力をかけるずこの結合が緩む
ものであり、䞊蚘の堎合ずは逆に静眮時にかた
く、応力をかけるず軟匱ずなる珟象である。静止
時にかたく、か぀粒子間の結合が匷くお網状構造
を圢成し易いずころから、圓然静眮時の離液性が
小ずなる。 ダむラタンシヌ、チク゜トロビヌのいずれも、
コロむド状懞濁液に特異の珟象であり、コロむド
粒子間の結合床の応力による倉化を指すものであ
る。たた、粒子間の結合床は、垯電床その他の粒
子衚面状態により巊右される。埓぀お、個々の粒
子を別物質の単分子膜で被芆しお衚面状態を倉化
させれば、この぀の粘匟性的特性に倉化を生ず
るのは圓然である。このような目的で䜿甚する堎
合、これら別物質を保護コロむドず称するが、そ
の添加量はコロむド性粒子の衚面を単分子膜ずし
お過䞍足なく被芆するに足る量が理論䞊の至適点
である。倧過剰添加の堎合には懞濁粒子の䞊に幟
局にも重な぀お懞濁粒子間の結合を阻害するので
奜たしくない。しかしながら、実甚䞊は保護コロ
むドの分散の良吊、懞濁粒子の衚面積のばら぀き
等の因子が加わるため、保護コロむドの配合量を
せたい範囲に特定するこずは困難であり、実隓的
に蚱容し埗るある皋床の巟をもたせるこずが必芁
である。 垯甚される保護コロむドは被膜圢成性を芁求さ
れるずころから高分子物質が倚く、蛋癜、セルロ
ヌズ誘導䜓、アルギン酞、ベクチン等の重合酞
類、ラテツクス、合成高分子物質などがある。し
かし、酞性掗浄剀は反応性に富み、これら高分子
物質を解重合させる傟向を有するため、この酞の
䜜甚に察する抵抗力のなるべく倧きいものを遞ん
で甚いる必芁がある。この発明においおは、耐酞
性重合䜓の䞀぀ずしお高分子ポリオキシ゚チレン
を甚いた。平均重合床1600040000ならびに
85000の䞉銘柄を比范したが、衚題の目的に関す
る有甚性ずしおは前蚘䞉重合床間に優劣の差を認
め難く、これら皮類䞭に含たれる玠原料の重合
床の党範囲にわた぀お䜿甚し埗るもの、ず刀断さ
れる。 これらポリオキシ゚チレンを氎に分散させる堎
合、実甚䞊の難問はいわゆる「たたこ」の生成で
ある。即ち氎ず混合する際、いち早く溶けたポリ
オキシ゚チレンが粉塊䞊に濃厚溶液ずしお被膜を
圢成し、その埌の氎の滲入を劚害するため、分散
あるいは溶解が阻害される、ずいう珟象である。
この難問を解決する方法の䞀぀ずしお、ポリオキ
シ゚チレン粒子を、これを溶かさず、か぀氎ず容
易にたざる媒䜓䞭にあらかじめ分散させおおき、
この混合物を氎ず混合する、ずいう方法が慣甚さ
れ、この媒䜓ずしおは、アルコヌル類、界面掻性
剀、塩類等が甚いられる。この発明の研究におい
おは、耐酞性が比范的倧きい、ずいう理由でポリ
オキシ゚チレンノニルプニル゚ヌテルを遞び甚
いたが、その他の媒䜓の䜿甚を制限するものでは
ない。たた、その䜿甚量にも制玄はない。 酞の氎溶液にコロむド状二酞化ケむ玠のみを添
加しお撹拌混合する時、分散進行ず共に粘床が増
倧する。混合枈み詊料を䞀日静眮したのち、型
回転粘床蚈を甚いお粘床枬定を詊みるに、粘床蚈
の回転時間延長ず共に枬定瀺床が増倧し、詊料が
ダむラタンシヌ性であるこずが瀺された。この凊
方にあらかじめポリオキシ゚チレンノニルプニ
ル゚ヌテルず緎り合わせおおいたポリオキシ゚チ
レン混液の適量を加えお再び緎り合わせるず、混
合物の粘床はこの混液添加前よりも曎に増倧する
が、曎に緎り合わせを続けるず、ある時点を境ず
しお急激に粘床が䞋がり、矎麗な倖芳の均䞀なス
ラリヌずなる。この最終詊料を日静眮したの
ち、型回転粘床蚈を甚いお枬定するず、回転時
間延長ず共に枬定瀺床が枛少し、詊料がチク゜ト
ロピヌ性であるこずが瀺された。即ち、保護コロ
むドを添加しお匷力に撹拌するこずにより二酞化
ケむ玠粒子が埐々に保護コロむドで被芆され、そ
の衚面状態を改倉し、この被芆がある皋床たで進
行するず二酞化ケむ玠粒子間の結合が緩んで、ダ
むラタンシヌからチク゜トロピヌぞの反転が起こ
るもの、ず解釈される。このようにしお盞反転を
完了した詊料は非垞に安定であ぀お、長期にわた
぀おダむラタンシヌ性ぞの逆反転の兆しを瀺さな
い。たた、経時的離液床もチク゜トロピヌ性ずな
぀たものの方がはるかに小さく、補品の品質は飛
躍的に向䞊する。 因みに、このような非ニナヌトン性流䜓の枬定
粘床倀は、枬定時にかかる応力の倧小のみなら
ず、詊料の応力履歎の総和の倧小によ぀おも著し
く倉化するので単䞀条件での枬定のみでその詊料
の本来の粘床を特定するこずは䞍可胜である。回
転粘床蚈を甚うる堎合は粘床蚈の回転時間ず回転
速床が枬定倀に圱響を䞎える。この発明の研究に
圓た぀おは、回転䜓の回転によ぀お刻々を倉化す
る粘床倀を正確に枬定し、粘床倀の察数が経過時
間に比䟋する経隓則を利甚しおこれらの察数倀を
時間に倖挿しお埗られる粘床倀を動粘床ずする
こずにより、先ず枬定時間の圱響を消去し、次い
で耇数の回転速床を甚いお求めた動粘床の察数の
察数が回転速床に比䟋するずいう経隓則を利甚し
お回転速床に圓たる粘床倀を算出するこずによ
り回転匷床の圱響を消去し、この蚈算倀を静止粘
床ず衚珟しお異なる詊料間の本来の粘床を盞互比
范するものずした。 以䞋に実斜䟋に぀いお説明する。ただし、蚘茉
簡略化のため、以䞋ポリオキシ゚チレンを
「PEO」、ポリオキシ゚チレンノニルプニル゚
ヌテルを「PEO−NP」ず略称するものずする。
たた、詊隓倀のうち、䞊局離液率ずは、詊料に経
時的に発生する䞊郚柄明局の長さの党局長に察す
る比率であるが、実斜䟋では宀枩に72時間
静眮した時の倀を代衚ずしお瀺した。曎にたた、
ガス発生量は、詊料80gを粟密に量぀お内容積
100mlのガラス瓶に入れ、氎䜍衚瀺甚の氎を入れ
た字管を貫通したゎム栓を甚いお密栓したのち
宀枩に24時間静眮埌、字管内の氎䜍差を枬定
し、氎䜍差の堎合の詊料偎空間内容積、字管
内断面積ならびに開始時および24時間埌枬定時の
宀枩を甚いお宀枩25℃の状態に換算した詊料偎空
間内容積の増量を求め、これを80で割぀た数倀ず
しお瀺した。即ち、25℃においお詊料1gより24
時間内に攟出されたガス量である。 実斜䟋  衚−に瀺す成分を、かきたぜ぀぀衚蚘茉の順
序に添加し、党成分添加完了埌曎に時間撹拌し
た。ただし、PEOPEO−NPならびに青色404
号はあらかじめ緎り合わせお加えた。
The present invention relates to a method for producing an acidic detergent containing colloidal silicon dioxide as a thickener. Naturally, the effect of the cleaning agent increases as the contact time between the target surface and the cleaning agent increases. Foaming and thickening by adding soluble thickeners are used as a means to achieve this goal, but acidic detergents themselves have strong chemical reactivity, so foaming agents and thickeners deteriorate over time. It is not always easy to obtain stable preparations using these methods. Therefore, the next possible method is to thicken the slurry by adding colloidal silicon dioxide, which itself is a solid acid and has poor reactivity with acids. This method was not necessarily easy to adopt, as it was accompanied by various other types of defective phenomena, typified by solidification or sedimentation over time. As a result of research using rheological methods, the inventor discovered that by adding an appropriate protective colloid and stirring vigorously, the dilatancy system was converted into a thixotropic system, that is, the phase was inverted. He discovered that this could be done and completed this invention. There are many brands of colloidal silicon dioxide commercially available. The inventor typically uses the trade name "Shilton"
(manufactured by Mizusawa Chemical Industry Co., Ltd.) in the research, but this does not preclude the use of other brand products in the practice of the present invention. In addition, the three types of "Shilton" are "Lp-1", "Lp-1",
"A", "R", the degree of purification is higher in this order,
In addition, the particle size becomes smaller, but the price also increases in this order. For the purpose of the title, high purity is not necessarily required, and there is a tendency that it is easier to prevent liquid syneresis by using a low-grade product. However, as the quality decreases, the amount of occluded gas increases, and the defective phenomenon of causing an increase in the internal pressure of the container after commercialization becomes noticeable. As a countermeasure for this, you can use "Silton" after burning it to dissipate the stored gas, or you can mix "Silton" with an acid aqueous solution and leave it open and wait for the stored gas to dissipate before using it. An effective method is to create However, the latter is more desirable because in the former, partial fusion of the "silton" particles occurs and the properties of the colloid are slightly degraded. In the latter case, the rate of release of the stored gas increases as the concentration of the acid used and the temperature of the mixture increase. In extreme cases, a method can be adopted in which all ingredients are mixed to complete the designed recipe and then subjected to open aging, but this has the disadvantage that it takes a long time to degas to a level that is acceptable for practical use. arise. Rather, use the appropriate amount of acid in the recipe to make an aqueous solution as highly concentrated as possible.
After processing "Shilton" in advance with this,
It is desirable to complete the formulation by adding the remaining ingredients, and conditions such as the acid used, concentration, temperature, etc. can be appropriately selected in consideration of economic factors. The amount of colloidal silicon dioxide necessary to increase the viscosity of the product and extend its residence time on the surface to which it is applied is generally difficult to determine, as it depends on the personal preference of the user. A survey conducted during this invention research process determined that products containing 13% to 28% were more in line with the preferences of general consumers. There is no reason to limit the type of acid to be added. However, of course, it has a great cleaning effect,
Alternatively, it is advantageous to use an inexpensive one, and it is desirable to select from inorganic acids such as hydrochloric acid, phosphoric acid, sulfuric acid, and nitric acid, and organic acids such as formic acid, oxalic acid, and glycolic acid. In addition, citric acid, malic acid, gluconic acid, ethylenediaminetetraacetic acid, etc. may be added to prevent secondary pollution of waste liquid and other secondary reasons. Furthermore, the combined concentration of acids is 2.73 in total for general household use.
There is a legal regulation that the weight must be less than N, but there is no such regulation when it is intended for commercial use.
An appropriate concentration can be selected depending on the purpose of use. A mixture of "Silton" simply mixed with an acid solution essentially exhibits dilatancy, and this property tends to increase as the amount of "Silton" added increases. Dilatancy means that the bonds between suspended particles are loose and the viscosity is low when left still.
This refers to the phenomenon in which the bonds between particles become stronger and harder when stress is applied. Therefore, there are disadvantages in that the liquid syneresis is large when left still, and it also resists stirring when mixing the product. On the other hand, thixotropy is a phenomenon in which the bonds between particles are strong when they are left still, and when stress is applied, these bonds loosen.Contrary to the above case, it is a phenomenon that becomes hard when left still and becomes soft when stress is applied. . Since it is hard when standing still and the bonds between the particles are strong and it is easy to form a network structure, the liquid syneresis property when standing still is naturally low. Both dilatancy and thixotropy
This is a phenomenon unique to colloidal suspensions, and refers to changes in the degree of bonding between colloidal particles due to stress. Furthermore, the degree of bonding between particles is influenced by the degree of charge and other particle surface conditions. Therefore, if individual particles are coated with a monomolecular film of a different substance to change the surface condition, it is natural that these two viscoelastic properties will change. When used for this purpose, these different substances are called protective colloids, and the theoretical optimum amount is enough to cover the surface of the colloidal particles as a monomolecular film. . If it is added in large excess, it is not preferable because it forms multiple layers on top of the suspended particles and inhibits the bonding between the suspended particles. However, in practice, factors such as the quality of the dispersion of the protective colloid and variations in the surface area of suspended particles are added, so it is difficult to specify the amount of the protective colloid in a narrow range, and it is difficult to specify the amount of the protective colloid within a narrow range. It is necessary to have the width of Many of the protective colloids used are polymeric substances because they require film-forming properties, and include proteins, cellulose derivatives, alginic acid, polymeric acids such as vectin, latex, and synthetic polymeric substances. However, since acidic detergents are highly reactive and tend to depolymerize these polymeric substances, it is necessary to select and use a detergent that has as high resistance to the action of this acid as possible. In this invention, high molecular weight polyoxyethylene was used as one of the acid-resistant polymers. Average degree of polymerization 16000, 40000 and
We compared the three brands of 85000, but in terms of usefulness for the purpose of the title, it was difficult to discern any difference in the degree of polymerization among the three types, and it can be used over the entire range of degrees of polymerization of the raw materials contained in these three types. It is judged as a thing. When dispersing these polyoxyethylenes in water, a practical difficulty is the formation of so-called "mamako". That is, when mixed with water, the polyoxyethylene that dissolves quickly forms a film as a concentrated solution on the powder mass, which obstructs subsequent seepage of water, thereby inhibiting dispersion or dissolution.
One way to solve this difficult problem is to pre-disperse polyoxyethylene particles in a medium that does not dissolve them and does not easily mix with water.
A method of mixing this mixture with water is commonly used, and alcohols, surfactants, salts, etc. are used as the medium. In the research for this invention, polyoxyethylene nonyl phenyl ether was selected and used because of its relatively high acid resistance, but this does not limit the use of other media. Furthermore, there is no restriction on the amount of use. When only colloidal silicon dioxide is added to an aqueous acid solution and mixed with stirring, the viscosity increases as the dispersion progresses. After the mixed sample was allowed to stand for a day, an attempt was made to measure the viscosity using an H-type rotational viscometer. As the rotation time of the viscometer increased, the measurement reading increased, indicating that the sample had dilatancy. . When an appropriate amount of the polyoxyethylene mixture previously kneaded with polyoxyethylene nonyl phenyl ether is added to this formulation and the mixture is kneaded again, the viscosity of the mixture increases even more than before the addition of this mixture, but if kneading is continued further, After a certain point, the viscosity decreases rapidly, resulting in a uniform slurry with a beautiful appearance. This final sample was allowed to stand for one day and then measured using an H-type rotational viscometer. As the rotation time increased, the measurement reading decreased, indicating that the sample was thixotropic. That is, by adding a protective colloid and stirring strongly, the silicon dioxide particles are gradually coated with the protective colloid, changing the surface condition, and when this coating progresses to a certain extent, the bonds between the silicon dioxide particles are loosened. It is interpreted as a reversal from dilatancy to thixotropy. A sample that has completed phase inversion in this manner is very stable and shows no signs of reversal to dilatancy over a long period of time. In addition, the degree of syneresis over time is much smaller in those that have become thixotropic, and the quality of the product is dramatically improved. Incidentally, the measured viscosity value of such non-Newtonian fluids varies significantly depending not only on the magnitude of the stress applied during measurement, but also on the magnitude of the total stress history of the sample, so it cannot be determined by measuring only under a single condition. It is not possible to determine the original viscosity of the sample. When using a rotational viscometer, the rotation time and rotation speed of the viscometer will affect the measured value. In researching this invention, we accurately measured the viscosity value, which changes moment by moment due to the rotation of a rotating body, and calculated these logarithms using the empirical rule that the logarithm of the viscosity value is proportional to the elapsed time. By using the viscosity value obtained by extrapolating to time 0 as the kinematic viscosity, we first eliminate the influence of the measurement time, and then we can say that the logarithm of the logarithm of the kinematic viscosity obtained using multiple rotational speeds is proportional to the rotational speed. By calculating the viscosity value corresponding to the rotational speed of 0 using empirical rules, the influence of rotational strength is eliminated, and this calculated value is expressed as the static viscosity to mutually compare the original viscosity between different samples. Examples will be described below. However, to simplify the description, hereinafter polyoxyethylene will be abbreviated as "PEO" and polyoxyethylene nonyl phenyl ether will be abbreviated as "PEO-NP".
In addition, among the test values, the upper layer syneresis rate is the ratio (%) of the length of the upper clear layer that occurs in the sample over time to the total layer length. The values shown here are representative. Furthermore,
The amount of gas generated is determined by accurately weighing 80g of the sample and determining the internal volume.
Pour water into a 100ml glass bottle, seal it with a rubber stopper that passes through a U-shaped tube containing water for water level display, and leave it at room temperature for 24 hours. Measure the water level difference in the U-shaped tube and find out that the water level difference is 0. Calculate the increase in the volume of the sample side space converted to a room temperature of 25°C using the sample side space volume, U-shaped tube internal cross-sectional area, and room temperature at the start and 24 hours later measurement, and divide this by 80. It is shown as a numerical value. That is, from 1 g of sample at 25°C, 24
It is the amount of gas released in time. Example 1 The ingredients shown in Table 1 were added in the order listed in the table while stirring, and after the addition of all ingredients was completed, the mixture was further stirred for 2 hours. However, PEO, PEO-NP and blue 404
The numbers were kneaded in advance and added.

【衚】【table】

【衚】 実斜䟋− è¡š に瀺す成分を実斜䟋−ず同様に混合撹
拌しお詊料ずした。ただし、PEOの各銘柄はそ
れぞれ次の劂き重合床分垃を瀺すものを甚いた。
[Table] Example-2 The components shown in Table 2 were mixed and stirred in the same manner as in Example-1 to prepare a sample. However, each PEO brand used had the following polymerization degree distribution.

【衚】【table】

【衚】【table】

【衚】 即ち、仕䞊がり各詊料の物性はほが同等であ
り、PEOの耇合床による差は認められない。 実斜䟋  衚−に瀺す劂くPEO以倖の成分の配合濃床
を等しくし、PEOの配合量のみを倉化させ、実
斜䟋−ず同様に混合、撹拌しお詊料ずした。
[Table] In other words, the physical properties of each finished sample are almost the same, and no difference is observed due to the degree of compositeness of PEO. Example 3 As shown in Table 3, the blended concentrations of components other than PEO were made the same, only the blended amount of PEO was changed, and samples were prepared by mixing and stirring in the same manner as in Example 1.

【衚】 煩雑化をさけるため衚−にはPEOの代衚的
配合濃床䟋のみを掲げたが、PEO配合濃床0.05
ないし2.5では各詊料の物性倀に本質的差はな
く、3.0配合でわずかに過剰配合の兆しをあら
わしおいる。 実斜䟋  衚−に瀺す劂く、PEO−NPの濃床のみを倉
化させ、他の成分の配合濃床を等しくしお実斜䟋
−ず同様に混合、撹拌しお詊料ずした。
[Table] To avoid complication, Table 3 lists only typical blended concentrations of PEO, but the PEO blended concentration is 0.05%.
At 2.5% to 2.5%, there is no essential difference in the physical property values of each sample, and at 3.0%, there are signs of slight excessive blending. Example 4 As shown in Table 4, samples were prepared by mixing and stirring in the same manner as in Example 1, changing only the concentration of PEO-NP and making the blended concentrations of other components the same.

【衚】【table】

【衚】 PEO−NPの配合濃床は各詊料の物性倀に本質
的圱響を䞎えないが、増量ず共に静止粘床が䞋が
り、䞊局離液床が䞊がる傟向があるので、過剰配
合は奜たしくない。 実斜䟋  氎分含量9.8110℃時間の「シルトン
Lp−」を蒞発皿に入れお玄500℃で恒量ずな
るたで灌熱したずころ、熱灌枛量17.1であ぀
た。熱灌残分はやや固い塊状に固結しおいる。こ
れを乳鉢で磚砕し、枛量分を氎で補填し、衚−
の凊方を甚いお実斜䟋−ず同様に混合、撹拌し
お詊料ずした。
[Table] The blending concentration of PEO-NP does not essentially affect the physical properties of each sample, but as the amount increases, the static viscosity tends to decrease and the degree of syneresis in the upper layer tends to increase, so excessive blending is not preferable. Example 5 “Silton” with a moisture content of 9.8% (110°C, 3 hours)
When ``Lp-1'' was placed in an evaporating dish and heated at approximately 500°C until it reached a constant weight, the weight loss on burning was 17.1%. The burnt residue is solidified into a slightly hard lump. Grind this in a mortar and replace the lost amount with water, Table 5
A sample was prepared by mixing and stirring in the same manner as in Example-1 using the following recipe.

【衚】【table】

【衚】 「シルトン」は無芖し埗ない量のガスを吞蔵し
おいる。このガスは灌熱しお攟散し埗るが、灌熱
凊理「シルトン」を甚いさお補した詊料は充分䜿
甚に耐えるずは蚀うものの、静止粘床ならびに䞊
局離液床においお若干物性が劣化する。 実斜䟋  硫酞の垌釈熱を利甚し、「シルトン Lp−」
を熱硫酞液で凊理し、吞蔵ガスの远い出しの促進
を詊みた。第衚に瀺す劂く、蟛うじお緎合でき
るずころたで枛量し、か぀加枩した氎を甚いお
「シルトン Lp−」を緎り合わせ、この䞊に95
硫酞を泚入しお混合物の枩床を曎に䞊昇させた
状態で時間緎り合わせたのち、埗量をはかり、
揮散枛量を算出する。次に衚の䞋欄に瀺す順序に
かきたぜながらその他の成分、ならびに予凊理工
皋で生じた揮散枛量に盞圓する補填氎を加えお凊
方を完成したのち、曎に時間撹拌を続けお詊料
ずした。
[Table] "Silton" stores a non-negligible amount of gas. Although this gas can be scorched and dissipated, samples prepared using the sintering treatment "Silton" are said to be sufficiently usable, but their physical properties are slightly deteriorated in static viscosity and upper layer syneresis. Example 6 Using the dilution heat of sulfuric acid, "Silton Lp-1"
was treated with a hot sulfuric acid solution in an attempt to expel the occluded gas. As shown in Table 6, "Silton Lp-1" is kneaded with water that has been reduced to the point where it can barely be kneaded and heated, and 95%
% sulfuric acid was injected to further raise the temperature of the mixture, and after kneading for 2 hours, the amount obtained was measured.
Calculate the volatilization loss. Next, while stirring in the order shown in the lower column of the table, other ingredients and supplementary water corresponding to the volatilization loss generated in the pretreatment process were added to complete the formulation, and stirring was continued for an additional 2 hours to prepare samples.

【衚】 枩硫酞溶液を甚いお「シルトン Lp−」凊
理する方法は吞蔵ガス攟出の手段ずしお有効であ
るが、この方法のみにより、盎ちに完党な攟出を
するには無理がある。 実斜䟋  実斜䟋No.6Aに準じお調補せる予凊理「シルト
ン」・硫酞ペヌストを宀枩に開攟攟眮し、即日、
日埌、日埌ならびに日埌に算出埗量分、即
ち59.0郚を分取し、撹拌し぀぀氎24.5郚、35塩
酾11.4郚、シナり酞氎物4.0郚、ならびにPEO
− 0.1郚、PEO−NP 1.0郚、青色404号
0.004郚の混液1.104郚を順次加えお時間緎り合
わし、詊料ずする時、衚−に瀺す詊隓倀を埗
た。
[Table] The method of treating "Silton Lp-1" using a warm sulfuric acid solution is effective as a means of releasing occluded gas, but it is impossible to immediately and completely release it using only this method. Example 7 The pre-treated "Silton" sulfuric acid paste prepared according to Example No. 6A was left open at room temperature, and on the same day,
After 1 day, 2 days, and 3 days, the calculated amount, i.e., 59.0 parts, was collected and mixed with 24.5 parts of water, 11.4 parts of 35% hydrochloric acid, 4.0 parts of oxalic acid dihydrate, and PEO while stirring.
-B 0.1 part, PEO-NP 1.0 part, Blue No. 404
1.104 parts of the mixed solution of 0.004 parts were successively added and kneaded for 2 hours to prepare a sample, and the test values shown in Table 7 were obtained.

【衚】【table】

【衚】 「シルトン」に吞蔵されおいるガスは酞性条件
で攟散されるので、酞ず混和しお攟眮するだけで
脱気が起こり、攟散の方法ずしおは加熱ず共に有
甚である。しかし、攟散速床は比范的小さく、実
斜䟋−の条件䞋ほが日を経お攟散が完了す
る。 実斜䟋  酞の皮類が物性に圱響するか吊を怜する目的で
衚−に瀺す成分を衚に蚘茉した順に添加し、
時間緎り合わせお詊料ずした。ただし、予凊眮
「シルトン」硫酞混液は実斜䟋No.6Aに準じお凊眮
したのち、宀枩に日間攟眮したものを甚い、た
た、PEOPEO−NP、青色404号はあらかじめ
混緎りしお添加した。たた、各酞の配合濃床はそ
の総和が、ブロヌムチモヌルブルヌを指瀺薬ずし
お滎定する時、玄2.8NKgずなる劂く振り分け
た。
[Table] Since the gas stored in "Silton" is released under acidic conditions, degassing occurs simply by mixing it with acid and leaving it to stand, making it a useful method for release along with heating. However, the diffusion rate was relatively low, and the diffusion was completed after approximately two days under the conditions of Example-7. Example 8 For the purpose of examining whether the type of acid affects physical properties, the components shown in Table 8 were added in the order listed in the table, and 2
The mixture was kneaded for several hours and used as a sample. However, the pre-treatment "Silton" sulfuric acid mixture was treated according to Example No. 6A and then left at room temperature for 7 days, and PEO, PEO-NP, and Blue No. 404 were kneaded beforehand and added. did. In addition, the combined concentration of each acid was distributed so that the total concentration would be approximately 2.8 N/Kg when titrated using bromothymol blue as an indicator.

【衚】【table】

【衚】 䞊蚘したずおり、この発明の方法で補造された
スラリヌ型酞性掗浄剀は、離液率が極めお䜎く氎
ず分離するこずなく埓぀お沈柱固化せず、チクト
ロピヌ性であるため撹拌により容易に軟化し、䜿
甚しやすく、塗垃埌速やかに撹拌前の粘床に戻ろ
うずする性質があるため付着力が匷い酞性掗浄剀
を埗るこずができる極めお有効な発明である。
[Table] As mentioned above, the slurry-type acidic cleaning agent produced by the method of the present invention has an extremely low syneresis rate, does not separate from water, does not precipitate and solidify, and is tictropic, so it can be easily stirred. This is an extremely effective invention that can provide an acidic cleaning agent that is softened, easy to use, and has a property of quickly returning to its viscosity before stirring after application, and thus has strong adhesion.

Claims (1)

【特蚱請求の範囲】  コロむド状二酞化ケむ玠を増粘剀ずしお含む
酞性掗浄剀においお、原料二酞化ケむ玠を灌熱す
るかあるいは高濃床の酞で凊理しお二酞化ケむ玠
に吞蔵されおいる酞性ガス類を脱気攟散させたの
ち、凊方量の酞類、保護コロむド、分散剀、着色
剀およびその他の性状改善剀ならびに凊方を完成
するに足る氎を加え、転盞が完結するたで撹拌す
るこずを特城ずする、静止粘床2000ないし
30000cpsのスラリヌ型酞性掗浄剀の補造方法。  補品の酞含有量が1.2ないし12.0NKgである
こずを特城ずする特蚱請求の範囲第項に蚘茉し
たスラリヌ型酞性掗浄剀の補造方法。  酞がギ酞、塩酞、リン酞、硫酞、シナり酞、
硝酞、グリコヌル類、ク゚ン酞およびグルコン酞
のうちの皮たたは耇数皮から成る特蚱請求の範
囲第項に蚘茉のスラリヌ型酞性掗浄剀の補造方
法。  コロむド状二酞化ケむ玠の配合量が吞蔵ガス
攟散前の重量に換算しお10ないし30重量である
特蚱請求の範囲第項に蚘茉されたスラリヌ型酞
性掗浄剀の補造方法。  保護コロむドが重合床10000ないし100000の
ポリオキシ゚チレンであり、その配合量が0.01な
いし3.0である特蚱請求の範囲第項に蚘茉さ
れたスラリヌ型酞性掗浄剀の補造方法。
[Claims] 1. In an acidic cleaning agent containing colloidal silicon dioxide as a thickener, the raw silicon dioxide is heated or treated with a highly concentrated acid to remove acidic gases occluded in the silicon dioxide. After air dissipation, a prescribed amount of acids, protective colloids, dispersants, colorants and other property improving agents, as well as water sufficient to complete the formulation, are added and stirred until phase inversion is completed. Static viscosity 2000 or more
Manufacturing method of 30000cps slurry type acidic cleaning agent. 2. The method for producing a slurry-type acidic detergent according to claim 1, wherein the acid content of the product is 1.2 to 12.0 N/Kg. 3 Acids are formic acid, hydrochloric acid, phosphoric acid, sulfuric acid, oxalic acid,
The method for producing a slurry-type acidic cleaning agent according to claim 1, which comprises one or more of nitric acid, glycols, citric acid, and gluconic acid. 4. The method for producing a slurry-type acidic cleaning agent according to claim 1, wherein the amount of colloidal silicon dioxide is 10 to 30% by weight in terms of the weight before the storage gas is released. 5. The method for producing a slurry-type acidic detergent according to claim 1, wherein the protective colloid is polyoxyethylene with a degree of polymerization of 10,000 to 100,000, and its content is 0.01 to 3.0%.
JP31470686A 1986-12-25 1986-12-25 Production of slurry type acidic detergent Granted JPS63161091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31470686A JPS63161091A (en) 1986-12-25 1986-12-25 Production of slurry type acidic detergent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31470686A JPS63161091A (en) 1986-12-25 1986-12-25 Production of slurry type acidic detergent

Publications (2)

Publication Number Publication Date
JPS63161091A JPS63161091A (en) 1988-07-04
JPH0437120B2 true JPH0437120B2 (en) 1992-06-18

Family

ID=18056573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31470686A Granted JPS63161091A (en) 1986-12-25 1986-12-25 Production of slurry type acidic detergent

Country Status (1)

Country Link
JP (1) JPS63161091A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525604C2 (en) * 1995-07-16 1998-09-03 Yankee Polish Lueth Gmbh & Co Liquid cleaner and its use
US6132637A (en) * 1996-09-27 2000-10-17 Rodel Holdings, Inc. Composition and method for polishing a composite of silica and silicon nitride
JP6019674B2 (en) * 2012-03-30 2016-11-02 栗田工業株匏䌚瀟 How to clean the filter press
JP6078982B2 (en) * 2012-05-22 2017-02-15 栗田工業株匏䌚瀟 How to clean the filter press

Also Published As

Publication number Publication date
JPS63161091A (en) 1988-07-04

Similar Documents

Publication Publication Date Title
Yahia et al. Analytical models for estimating yield stress of high-performance pseudoplastic grout
EP0454057B1 (en) A suspending medium for water soluble polymer
JPS58216728A (en) Dispersant for pearl brightener
JPH07506328A (en) Method for producing bentonite slurry with high solids content
JPH0437120B2 (en)
Degen et al. Surfactant‐mediated formation of alginate layers at the water‐air interface
JPS5835213B2 (en) Kayousei Alginsan Enkendakuso Saibutsu Oyobi Sono Seihou
JP2010121083A (en) Production method of consolidating material for grouting
JPS6148546B2 (en)
CN103356390A (en) Methods for adjusting the usage properties of polymerizable dental composites and dental composites optimized according to said methods
Shouche et al. Effect of particulate solids on the rheology of a lyotropic gel medium
EP0178986B1 (en) Rapidly hydrating sodium tripolyphosphate, process for its production and its use in detergent compositions
Eichner et al. Investigation concerning the solubility of dental cements
SU1611719A1 (en) Method of producing abrasive tool
US2204913A (en) Molded product
US2851369A (en) Polishing composition
JPH02145158A (en) Glue solution
KR19980038406A (en) Solidifying Agent for Solid Granular Fertilizer
CN109320221A (en) A kind of moltening mold castings investment precoat and preparation method thereof
JPS5949827A (en) Dispersing and mixing method of powder to high viscosity liquid
SU1348357A1 (en) Antiadhesive composition for lubricating moulds to obtain plastic articles
JPH10332644A (en) Thick magnetic-particle dispersion liquid for wet magnetic-particle testing
JP7355358B2 (en) Consolidation material for ground injection and its manufacturing method
Murthy et al. The association behavior of β‐lactamases in polyethylene glycol solution
CA2383874A1 (en) Method for emulsifying heat-sensitive silicone emulsion without grinding