JPH0437116A - Simulating method for shape - Google Patents
Simulating method for shapeInfo
- Publication number
- JPH0437116A JPH0437116A JP14480290A JP14480290A JPH0437116A JP H0437116 A JPH0437116 A JP H0437116A JP 14480290 A JP14480290 A JP 14480290A JP 14480290 A JP14480290 A JP 14480290A JP H0437116 A JPH0437116 A JP H0437116A
- Authority
- JP
- Japan
- Prior art keywords
- point
- angle
- segments
- points
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 17
- 238000004088 simulation Methods 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 10
- 238000005530 etching Methods 0.000 abstract description 5
- 238000001459 lithography Methods 0.000 abstract description 5
- 238000004090 dissolution Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 235000010044 Hernandia moerenhoutiana Nutrition 0.000 description 1
- 244000084296 Hernandia moerenhoutiana Species 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、リソグラフィー工程、及び、エツチング工程
におけるシミュレーション方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a simulation method in a lithography process and an etching process.
従来の技術
従来この種の形状シミュレーション方法としては、アイ
・イー・イー・イー・トランザクション・オン−エレク
トロン・デバイシス(IEEE Transactio
non Electron−devices)誌、第E
D−26巻、第4号、4月、1979年、第717頁−
第722頁に開示されているSAMPLEが広く用いら
れている。この種のプログラムでは、リソグラフィー工
程でのレジストの現像、及び、エツチング工程での被シ
ミユレーシヨン対象の形状の時間変化の追跡には、スト
リングモデル(string model >が用いら
れてきた。2. Description of the Related Art Conventionally, this type of shape simulation method is based on the IEEE Transaction on Electron Devices (IEEE Transaction on Electron Devices)
Non-Electron-devices) Magazine, No. E
D-Volume 26, No. 4, April, 1979, Page 717-
SAMPLE disclosed on page 722 is widely used. In this type of program, a string model has been used to develop a resist in a lithography process and to track changes in the shape of a simulated object over time in an etching process.
第2図を用いてストリングモデルを解説する。The string model will be explained using Figure 2.
第2図は現像途中のレジスト形状のシミュレーションの
模式図で右方向をX方向、下方向を2方向とする。第2
図において、ある時間tでの被シミユレーシヨン対象表
面の断面形状は被シミユレーシヨン対象の表面に適度な
間隔で配置された点P 1(t)の集合と隣合う点を結
ぶ線分の集合で近似される。第2図で、1,2はそれぞ
れ前記点Pi(1)の一つと、前記線分の一つを示す。FIG. 2 is a schematic diagram of a simulation of the resist shape during development, with the right direction being the X direction and the downward direction being the two directions. Second
In the figure, the cross-sectional shape of the surface to be simulated at a certain time t is approximated by a set of points P1(t) placed at appropriate intervals on the surface to be simulated and a set of line segments connecting adjacent points. Ru. In FIG. 2, 1 and 2 indicate one of the points Pi(1) and one of the line segments, respectively.
以降の説明では、点PiのX、Z平面での位置を(xi
。In the following explanation, the position of point Pi on the X, Z plane is expressed as (xi
.
zi)とする。第2図で、折れ線よりも下の斜線部は、
未除去の物質を表わす。ここで、物質の除去速度は単位
時間当りの表面の後退距離として、予め、X、Zの関数
R(x、z)として与えられている。ストリングモデル
では、ある時間間隔Δを毎に各点P 1(t)をR(x
i、zi)とΔtの積の距離だけ移動させて、時刻を十
Δtにおける点Pi(t+Δt)を求める。このとき、
各点P 1(t)の移動方向3は、両端の点(i=1.
N)を除き、線分P i 1(t)P 1(t)と線
分P 1(t)P i + 1(1)がなす角の2等分
線の方向と定める。両端の点の移動方向は、種々の決定
方法がある。例えば、線分の法線方向と定める。zi). In Figure 2, the shaded area below the broken line is
Represents unremoved substances. Here, the removal rate of the substance is given in advance as a receding distance of the surface per unit time as a function R(x,z) of X and Z. In the string model, each point P1(t) is expressed as R(x
i, zi) and Δt to find a point Pi(t+Δt) at a time of 10Δt. At this time,
The moving direction 3 of each point P1(t) is the point at both ends (i=1.
N) is determined as the direction of the bisector of the angle formed by the line segment P i 1(t)P 1(t) and the line segment P 1(t)P i + 1(1). There are various methods of determining the moving direction of the points at both ends. For example, it is defined as the normal direction of a line segment.
発明が解決しようとする課題
従来のストリングモデルでは、表面上に設けた各点の移
動方向を、両端を除き、隣合う線分の2等分線の方向と
定めている。そのために、曲率半径が小さい部分、つま
り、隣合う線分のなす角度が小さい部分での計算誤差が
大きくなる。第3図を用いてこれを説明する。Problems to be Solved by the Invention In the conventional string model, the direction of movement of each point provided on the surface, excluding both ends, is determined to be the direction of the bisector of adjacent line segments. Therefore, calculation errors become large in portions where the radius of curvature is small, that is, in portions where the angle between adjacent line segments is small. This will be explained using FIG.
第3図で実線よりも左の部分が、未除去の物質とする。In FIG. 3, the part to the left of the solid line is the unremoved substance.
このような、鋭角的な形状は、フォトリソグラフィーの
シミュレーションにおいて、レジスト側壁に現われる定
在波などに相当する。点6から10は時間tでの表面を
表わす点であり、簡単のために、点6.7.10と点8
.9.10はそれぞれ半直線2.m上に並んでいるとす
る。さらに、第3図は、小さい部分を拡大したもので、
溶解速度R(x、z)は、6から10の各点で近似的に
一定値Rと考える。Such an acute-angled shape corresponds to a standing wave that appears on the resist sidewall in a photolithography simulation. Points 6 to 10 represent the surface at time t, and for simplicity, points 6.7.10 and 8.
.. 9.10 are half straight lines 2. Suppose that they are lined up on m. Furthermore, Figure 3 is an enlarged view of a small part.
The dissolution rate R (x, z) is considered to be approximately a constant value R at each point from 6 to 10.
ここで時間Δを後には、点6,7は半直線eの法線方向
下向きにRΔt、点8,9は半直線mの法線方向上向き
にRΔt、点10は、半直線e。After time Δ, points 6 and 7 are RΔt downward in the normal direction of half-line e, points 8 and 9 are RΔt upward in the normal direction of half-line m, and point 10 is RΔt upward in the normal direction of half-line m.
mの2等分角の方向左向きにRΔtの距離移動し、それ
ぞれ、点11から15に移動する。しかし、現実にレジ
ストなどの溶解は、表面を表わす2半直線e、m上のす
べての点に対して法線方向に進む。そのために、実際に
は、Aで示す直線上の部分、つまり、点10をはさむ半
直線e2mの2等分線Cから半直線e1mにおろした垂
線k。Move a distance RΔt to the left in the direction of the bisector of m, and move from point 11 to point 15, respectively. However, in reality, the dissolution of resist and the like proceeds in the direction normal to all points on the two-half straight lines e and m representing the surface. For this purpose, in reality, a perpendicular k is drawn from the part on the straight line indicated by A, that is, the bisector C of the half line e2m that sandwiches the point 10, to the half line e1m.
jの距離pが、p<=RΔtとなる部分は溶解する。し
かし、従来のモデルを用いた時、点10は、2等分線C
に沿って距離RΔtのみ移動し、点15に移る。しかし
、第3図においてAで示す部分は時刻t+Δtには溶解
している。そのために、第3図のような形状を従来のモ
デルでシミュレーションした場合には、曲率半径の小さ
い部分が実際よりも遅く溶解し、得られた形状が実際の
形状と大きく異なる。実際に、従来のストリングモデル
を用いて、フォトリソグラフィーのシミュレーションを
行なった場合は、定在波によるレジスト側壁の突起が、
実際よりも大きく現われて、精度よいシミュレーション
が行えない。この問題は表面形状を有限個の点で表現す
ることによって生じる本質的な問題であり、溶解速度R
(x、z)が定数でなく、また、各点が、直線上に配置
されていない場合にも、ある隣合う線分のなす角度が小
さいとき、顕著に現われる問題である。この現象を小さ
くするには、点Piの個数を増やして、間隔を狭くする
などが考えられるが、計算時間の増大と計算に要する記
憶容量の増大をともない実用的ではない。A portion where the distance p of j satisfies p<=RΔt is dissolved. However, when using the conventional model, point 10 is located on the bisector C
It moves along distance RΔt and moves to point 15. However, the portion indicated by A in FIG. 3 is dissolved at time t+Δt. For this reason, when a shape like that shown in FIG. 3 is simulated using a conventional model, the portion with a small radius of curvature melts more slowly than in reality, and the resulting shape differs greatly from the actual shape. In fact, when photolithography is simulated using a conventional string model, protrusions on the resist sidewall due to standing waves are
It appears larger than it actually is, making it impossible to perform accurate simulations. This problem is an essential problem caused by expressing the surface shape with a finite number of points, and the dissolution rate R
Even when (x, z) is not a constant and each point is not arranged on a straight line, this problem becomes noticeable when the angle between certain adjacent line segments is small. In order to reduce this phenomenon, it is possible to increase the number of points Pi and narrow the interval, but this is not practical as it increases calculation time and storage capacity required for calculation.
従来のモデルには、以上のような問題がある。The conventional model has the above-mentioned problems.
課題を解決するための手段
以上のような問題点を解決するためにに本発明では、被
除去物質の除去速度を位置の関数として与える手段と、
被除去物質の表面の断面形状を有限個の点で近似して表
現する手段と、表面の断面形状を表現する各点とそれに
隣接する2点を結ぶ2線分間の角度を求める手段と、あ
る点を挟む2線分間の角度がある与えられた角度より小
さい場合に、前記点の計算刻み時間後の位置を前記2線
分を法線方向にその位置での除去速度と計算刻み時間の
積の距離動かし、移動後の各々の線分を通る2M線の交
点として求める手段と、ある点を挟む2線分間の角度が
ある与えられた角度より大きい場合に、前記点の計算刻
み時間後の位置を、前記2線分のなす角の2等分線の方
向にその位置での除去速度と計算刻み時間の積の距離動
かした位置として求める手段を用いて、リソグラフィー
工程、及び、エツチング工程の形状シミュレーションを
行なう。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides means for providing a removal rate of a substance to be removed as a function of position;
A means for expressing the cross-sectional shape of the surface of the substance to be removed by approximating it with a finite number of points, and a means for determining the angle between two lines connecting each point expressing the cross-sectional shape of the surface and two points adjacent thereto. When the angle between two line segments that sandwich a point is smaller than a given angle, the position of the point after the calculated step time is calculated as the product of the removal speed at that position and the calculated step time in the direction normal to the two line segments. means to move the distance and obtain the intersection point of the 2M line passing through each line segment after the movement, and if the angle between two line segments that sandwich a certain point is larger than a given angle, the calculation step time after the point is calculated. The lithography process and the etching process are performed using means for determining the position as a position moved in the direction of the bisector of the angle formed by the two line segments by a distance equal to the product of the removal rate at that position and the calculated step time. Perform shape simulation.
作用
隣合う線分のなす角度が小さい点Pi(t)において、
それら線分を通る直線を溶解速度と時間間隔Δtの積の
距離を法線方向に移動させ、その交点を新たな点Pi(
t+Δt)とすることは、近似的にその部分の点Piの
間隔を無限に小さく設定してシミュレーションを行なう
ことに相当する。At a point Pi(t) where the angle between adjacent line segments is small,
A straight line passing through these line segments is moved in the normal direction by a distance equal to the product of dissolution rate and time interval Δt, and the intersection point is moved to a new point Pi (
t+Δt) approximately corresponds to performing a simulation by setting the interval between points Pi in that part infinitely small.
これにより、被シミユレーシヨン対象の形状を有限個の
点で近似したために、周率半径の小さい部分、つまり、
隣合う線分の角度が比較的小さい部分で生じた物質表面
を表わす点の進行の遅れを防ぐことかできる。また、隣
合う線分のなす角度が大きい点P 1(t)において、
隣合う線分のなす角の2等分線の方向に前記点P 1(
t)の移動方向を設定することで、全ての点において2
直線の交点を求める必要がなく、計算時間を短くするこ
とができる。As a result, since the shape of the simulated object is approximated by a finite number of points, the part with a small circumference radius, that is,
It is possible to prevent delays in the progress of points representing the material surface that occur where the angle between adjacent line segments is relatively small. Also, at a point P1(t) where the angle between adjacent line segments is large,
The point P1 (
By setting the moving direction of t), 2 at all points
There is no need to find the intersection of straight lines, and calculation time can be reduced.
実施例
第1図に、本発明を用いたストリングモデルによる形状
シミュレーションのフローチャートの一例を示す。Embodiment FIG. 1 shows an example of a flowchart of shape simulation using a string model using the present invention.
第1図において、溶解速度の計算手段17で示すルーチ
ンで除去(溶解)速度をx、zの開数R(x、z)とし
て求める。In FIG. 1, the removal (dissolution) rate is determined by the routine shown by the dissolution rate calculation means 17 as a multiplier R(x, z) of x and z.
初期設定の手段18で示すルーチンで、被シミユレーシ
ヨン対象の初期形状にもとづいて、点Piの初期位置を
決定する。ここでは、点Piの個数をN個とする。In a routine indicated by initial setting means 18, the initial position of point Pi is determined based on the initial shape of the object to be simulated. Here, the number of points Pi is assumed to be N.
時刻変数を初期化する手段19、変数iを初期化する手
段20で、時刻変数tと、点の番号の変数iを初期化す
る。A time variable initializing means 19 and a variable i initializing means 20 initialize the time variable t and the point number variable i.
点Piの位置を判断する手段21において、点Piが端
の点(i−1orN)かどうか判断する。The means 21 for determining the position of point Pi determines whether point Pi is an end point (i-1orN).
端の点であれば、点の進行方向を場合分けして移動させ
る必要があるので、端点処理手段22において点Piを
時刻t+Δtの位置に移動させる。If it is an end point, it is necessary to move the point depending on the direction of movement, so the end point processing means 22 moves the point Pi to the position of time t+Δt.
線分のなす角度を判断する手段23において、点Piを
はさむ線分の角度が、あらかじめパラメータとして与え
る角度θ0以下かどうか判断する。The means 23 for determining the angle formed by a line segment determines whether the angle between the line segments sandwiching the point Pi is less than or equal to the angle θ0 given as a parameter in advance.
角度がθ0以下の時は、線分を移動する手段24におい
て本発明による方法で、点Piをt十Δtの位置に移動
する。ここでは、直線PiPi1の移動距離は、点Pi
での除去速度R(xi。When the angle is less than θ0, the line segment moving means 24 moves the point Pi to a position of t+Δt using the method according to the present invention. Here, the moving distance of the straight line PiPi1 is the point Pi
Removal rate R(xi.
zi)とそれに隣接する点Pi−1での除去速度R(x
i−1,zi−1)の単純平均と時間間隔Δtの積とす
る。直線PiPi+1の移動距離についても同様に点P
iでの除去速度R(xi、zi)とそれに隣接する点P
i+1での除去速度R(xi+1.zi+1)での単純
平均とΔtの積とする。zi) and the removal rate R(x
i-1, zi-1) and the time interval Δt. Similarly, regarding the moving distance of straight line PiPi+1, point P
Removal rate R(xi, zi) at i and its adjacent point P
Let it be the product of the simple average of the removal rate R(xi+1.zi+1) at i+1 and Δt.
角度がθ0を越える場合は、線分のなす角度の2等分角
上を移動する手段25において点Piをその点を挟む線
分の2等分線の方向にR(xi。If the angle exceeds θ0, the means 25 for moving on the bisector of the angle formed by the line segment moves the point Pi in the direction of the bisector of the line segment that sandwiches the point by R(xi).
zi)Δtの距離移動する。zi) Move a distance of Δt.
変数iをカウントする手段26でiをインクリメントす
る。処理終了を判断する手段27でi〉Nかどうか判断
する。i>Nなら、その時刻の計算は完了なので時刻を
カウントする手段28へ進む。i>Nでなければ、次の
点を計算するために、点Piの位置を判断する手段21
へ戻る。A means 26 for counting variable i increments i. A means 27 for determining the end of processing determines whether i>N. If i>N, the time calculation is complete, and the process proceeds to the time counting means 28. If i>N, means 21 for determining the position of point Pi in order to calculate the next point
Return to
時刻をカウントする手段28でtをΔtインクリメント
する。t〉終了時刻であれば、計算を終了する手段30
へ進む。t〉終了時刻でなければ、変数iを初期化する
手段20へ戻る。A time counting means 28 increments t by Δt. t> end time, means 30 for ending the calculation
Proceed to. t> If it is not the end time, the process returns to the means 20 for initializing the variable i.
なお、角度θ0はフィッティングパラメータであり、こ
れを実験結果にもとづいて最適化する。Note that the angle θ0 is a fitting parameter, and is optimized based on experimental results.
発明の効果
本発明により リソグラフィー工程、及び、エツチング
工程での形状シミュレーションを従来よりも精度よく行
なうことができる。特に、フォトリソゲラフイーのシミ
ュレーションにおいて、定在波によるレジストパターン
側壁の凹凸を実際のレジストパターンにおける凹凸に近
づけることができる。これにより、シミュレーションに
よるプロセスの予測、評価をより精度よく行えるので、
プロセス開発の能率が向上する。Effects of the Invention According to the present invention, shape simulation in the lithography process and the etching process can be performed more accurately than before. In particular, in photolithography simulation, it is possible to make the unevenness of the side wall of the resist pattern caused by standing waves close to the unevenness of the actual resist pattern. This allows for more accurate process prediction and evaluation through simulation.
Improved efficiency in process development.
第1図は本発明の一実施例である形状シミュレーション
のフローチャート、第2図は従来のストリングモデルを
説明するための図、第3図は従来のストリングモデルに
おける課題を説明するための図である。
17・・・・・・溶解速度の計算手段、18・・・・・
・初期設定の手段、19・・・・・・時刻変数を初期化
する手段、20・・・・・・変数iを初期化する手段、
21・・・・・・点Piの位置を判断する手段、22・
・・・・・端点処理手段、23・・・・・・線分のなす
角度を判断する手段、24・・・・・・線分を移動する
手段、25・・・・・・線分のなす角度の2等分角上を
移動する手段、26・・・・・・変数1をカウントする
手段、27・・・・・・処理終了を判断する手段、28
・・・・・・時刻をカウントする手段、29・・・・・
・時刻が終了か判断する手段、30・・・・・・終了す
る手段。
代理人の氏名 弁理士 粟野重孝 ほか1名第1図
第2図
I。
第3図FIG. 1 is a flowchart of a shape simulation that is an embodiment of the present invention, FIG. 2 is a diagram for explaining a conventional string model, and FIG. 3 is a diagram for explaining problems in the conventional string model. . 17... Means for calculating dissolution rate, 18...
・Initialization means, 19...means for initializing the time variable, 20...means for initializing the variable i,
21... Means for determining the position of point Pi, 22.
... End point processing means, 23 ... Means for determining the angle formed by a line segment, 24 ... Means for moving a line segment, 25 ... Means for moving a line segment Means for moving on the bisecting angle of the formed angle, 26... Means for counting variable 1, 27... Means for determining the end of processing, 28
...Means for counting time, 29...
・Means for determining whether the time has ended, 30... Means for ending. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1 Figure 2 Figure I. Figure 3
Claims (1)
と、前記被除去物質の表面の断面形状を有限個の点で近
似して表現する手段と、前記被除去物質の表面の断面形
状を表現する各点とそれに隣接する2点を結ぶ2線分間
の角度を求める手段と、ある点を挟む2線分間の角度が
ある与えられた角度より小さい場合に、前記点の計算刻
み時間後の位置を前記2線分を法線方向にその位置での
除去速度と計算刻み時間の積の距離動かし、移動後の各
々の線分を通る2直線の交点として求める手段と、ある
点を挟む2線分間の角度がある与えられた角度より大き
い場合に、前記点の計算刻み時間後の位置を、前記2線
分のなす角の2等分線の方向にその位置での除去速度と
計算刻み時間の積の距離動かした位置として求める手段
を有することを特徴とする形状シミュレーション方法。means for giving a removal speed of the substance to be removed as a function of position; means for expressing the cross-sectional shape of the surface of the substance to be removed by approximating it with a finite number of points; and expressing the cross-sectional shape of the surface of the substance to be removed. A means for determining the angle between two lines connecting each point and two adjacent points, and a means for determining the position of the point after a calculation step time when the angle between the two lines sandwiching a certain point is smaller than a given angle. Means for moving the two line segments in the normal direction by a distance equal to the product of the removal speed at that position and the calculated step time, and obtaining the intersection of two straight lines passing through each line segment after the movement, and the two line segments sandwiching a certain point. If the angle is larger than a given angle, the position of the point after the calculation step time is calculated by the removal speed at that position and the calculation step time in the direction of the bisector of the angle formed by the two line segments. A shape simulation method characterized by comprising means for determining a position moved by a distance of the product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14480290A JPH0437116A (en) | 1990-06-01 | 1990-06-01 | Simulating method for shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14480290A JPH0437116A (en) | 1990-06-01 | 1990-06-01 | Simulating method for shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0437116A true JPH0437116A (en) | 1992-02-07 |
Family
ID=15370806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14480290A Pending JPH0437116A (en) | 1990-06-01 | 1990-06-01 | Simulating method for shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0437116A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5574658A (en) * | 1993-06-25 | 1996-11-12 | Fujitsu Limited | Method of designing optimum skeleton and plate structures |
JP2006265641A (en) * | 2005-03-24 | 2006-10-05 | Furukawa Electric Co Ltd:The | Etching simulation method and etching simulation device |
JP2009049111A (en) * | 2007-08-16 | 2009-03-05 | Toshiba Corp | Simulation method and simulation program |
US11261030B2 (en) | 2019-08-12 | 2022-03-01 | Clean Conveyor Belt BVBA | Conveyor belt with upright ribs |
-
1990
- 1990-06-01 JP JP14480290A patent/JPH0437116A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5574658A (en) * | 1993-06-25 | 1996-11-12 | Fujitsu Limited | Method of designing optimum skeleton and plate structures |
JP2006265641A (en) * | 2005-03-24 | 2006-10-05 | Furukawa Electric Co Ltd:The | Etching simulation method and etching simulation device |
JP4570494B2 (en) * | 2005-03-24 | 2010-10-27 | 古河電気工業株式会社 | Etching simulation method and etching simulation apparatus |
JP2009049111A (en) * | 2007-08-16 | 2009-03-05 | Toshiba Corp | Simulation method and simulation program |
US11261030B2 (en) | 2019-08-12 | 2022-03-01 | Clean Conveyor Belt BVBA | Conveyor belt with upright ribs |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6504541B1 (en) | Warping geometric objects | |
Shyue | A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions | |
CN101944144B (en) | Meshless cloth-based simulation method | |
JP7320941B2 (en) | Method for designing tie bars surrounding multiple concrete reinforcing bars | |
CN104715114A (en) | Method and device for conducting collision detection on steel truss arch bridge through BIM | |
Scheurer et al. | Lost in parameter space? | |
EP1242978B1 (en) | Mesh generator for and method of generating meshes in an extrusion process | |
Chentanez et al. | Fast grid-free surface tracking | |
JPH0437116A (en) | Simulating method for shape | |
KR910012848A (en) | Simulation method of sequence control program | |
Magnoux et al. | Real‐time visual and physical cutting of a meshless model deformed on a background grid | |
US20190370422A1 (en) | Method and system for simulating deformation of a thin-shell material | |
JP5320806B2 (en) | Rotating body simulation method | |
Duysak et al. | Fast simulation of deformable objects | |
Aguillon et al. | Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics | |
CN103761744B (en) | Universal two-dimensional points cloud group technology | |
CN113343505A (en) | Simulation method and device of etching process | |
JP2000331193A (en) | Method for changing shape of finite element mesh model | |
Lottati et al. | A second-order Godunov scheme on a spatial adapted triangular grid | |
JP6806321B2 (en) | Surface shape determination device, surface shape determination method, and surface shape determination program | |
JPH08212240A (en) | Mesh correction method for fem analysis model | |
CN112242959A (en) | Micro-service current-limiting control method, device, equipment and computer storage medium | |
JP2000113229A (en) | Method for re-dividing element of finite element analytic model | |
US20220388794A1 (en) | Processing method, processing device, and non-transitory storage medium | |
JPH0239271A (en) | Lsi form simulating method |