JPH04371136A - Magnetostatic field generating device for mri device - Google Patents

Magnetostatic field generating device for mri device

Info

Publication number
JPH04371136A
JPH04371136A JP3173376A JP17337691A JPH04371136A JP H04371136 A JPH04371136 A JP H04371136A JP 3173376 A JP3173376 A JP 3173376A JP 17337691 A JP17337691 A JP 17337691A JP H04371136 A JPH04371136 A JP H04371136A
Authority
JP
Japan
Prior art keywords
magnetic field
permanent magnet
static magnetic
uniformity
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3173376A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshino
仁志 吉野
Hiroyuki Takeuchi
博之 竹内
Masahiro Iizuka
正弘 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP3173376A priority Critical patent/JPH04371136A/en
Publication of JPH04371136A publication Critical patent/JPH04371136A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the S/N ratio of images by making variable the distance between the pole pieces of a magnetostatic field generating device. CONSTITUTION:In an MRI device having means for generating magnetostatic and gradient magnetic fields, high-frequency applying and receiving coils, and an image reconfiguring means, the magnetostatic field generating means is provided with a hydraulic cylinder 17 which moves a yoke 3b supported to a column 4, a linear bearing 30 which guides the yoke 3b in the direction of its movement, a microswitch 31 which detects the shift position of the yoke, and a striker 32. Further, a shim coil 60 is provided for adjusting magnetic field uniformity. Thereby the distance between pole pieces can be varied with the size of a subject and so optimum magnetic field intensity can be given at each part of the subject while the S/N ratio of images can be enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、核磁気共鳴イメ−ジン
グ装置の静磁場発生装置に係り、特に磁場強度を被検体
撮影部位に応じて可変できる静磁場発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static magnetic field generating device for a nuclear magnetic resonance imaging system, and more particularly to a static magnetic field generating device that can vary the magnetic field strength depending on the region to be imaged of a subject.

【0002】0002

【従来の技術】従来の装置を図7及び図8により説明す
る。第7図及び第8図は静磁場の発生に永久磁石を用い
磁気回路を構成する静磁場発生装置を示す図である。一
対の鉄製ヨ−ク3a,3bで永久磁石2a,2b及び磁
極片1a,1bを各々支持し、ヨ−ク3a,3bを4本
のカラム4で所定の距離だけ隔てて対向保持して構成さ
れている。この静磁場発生装置において対向する永久磁
石2a、2bは互いに極性を異ならせており、磁気回路
は永久磁石2a、磁極片1a、磁極片1b、永久磁石2
b、ヨ−ク3b、カラム4、ヨ−ク3a、永久磁石2a
を通り構成される。これらの構成部品のうち、磁極片1
a,1bは被検体6が入る空間、つまり磁極片1a,1
bの間の中央の磁場均一度をより均一にするためにある
。(均一度=ある空間の磁場変化量÷中心磁場強度×1
06≒10ppm)
2. Description of the Related Art A conventional apparatus will be explained with reference to FIGS. 7 and 8. FIGS. 7 and 8 are diagrams showing a static magnetic field generating device that uses permanent magnets to generate a static magnetic field and constitutes a magnetic circuit. A pair of iron yokes 3a, 3b support permanent magnets 2a, 2b and magnetic pole pieces 1a, 1b, respectively, and four columns 4 hold the yokes 3a, 3b facing each other at a predetermined distance apart. has been done. In this static magnetic field generator, the opposing permanent magnets 2a and 2b have different polarities, and the magnetic circuit includes the permanent magnet 2a, the magnetic pole piece 1a, the magnetic pole piece 1b, and the permanent magnet 2.
b, yoke 3b, column 4, yoke 3a, permanent magnet 2a
It is configured through. Among these components, pole piece 1
a, 1b are spaces into which the subject 6 enters, that is, magnetic pole pieces 1a, 1
This is to make the magnetic field uniformity in the center between b. (Homogeneity = amount of change in magnetic field in a certain space ÷ central magnetic field strength x 1
06≒10ppm)

【0003】一般に高い均一度を得るために、磁極片間
距離Lと磁極片1a,1bの直径D0はD0≧2×Lの
関係にある。さらに対向する磁極片1a,1bの周縁部
は上下とも同一形状の環状突起部7を有する。この環状
突起部7は、周辺への磁束の漏れを抑え内部空間の均一
度改善のためのものである。(詳細は、特開昭60−8
8407参照)。
Generally, in order to obtain high uniformity, the distance L between the magnetic pole pieces and the diameter D0 of the magnetic pole pieces 1a, 1b have a relationship of D0≧2×L. Furthermore, the peripheral edges of the opposing magnetic pole pieces 1a and 1b have annular protrusions 7 of the same shape on both the upper and lower sides. This annular protrusion 7 is for suppressing leakage of magnetic flux to the periphery and improving the uniformity of the internal space. (For details, see Japanese Unexamined Patent Publication No. 60-8
8407).

【0004】従って、被検体6が入りうる有効ギャップ
は磁極片1a,1bの突端部間距離Lgとなる。この突
端部間距離Lg内には被検体6のほか、イメ−ジングに
必要な傾斜磁場コイル8a,8bと、RF照射コイル(
図示省略)及びRF受信コイル(図示省略)を配置する
Therefore, the effective gap into which the subject 6 can enter is the distance Lg between the tip ends of the magnetic pole pieces 1a and 1b. In addition to the subject 6, gradient magnetic field coils 8a and 8b necessary for imaging and an RF irradiation coil (
(not shown) and an RF receiving coil (not shown) are arranged.

【0005】以上のような静磁場発生装置において、イ
メ−ジングに必要な磁場均一度は環境により変化するた
め、据付の段階で上ヨ−ク3bまたは上ヨ−ク3bと上
永久磁石2bの中央に嵌合された移動部材9を上下させ
ることで磁場均一度の調整を行う。しかし、この調整は
据付、保守点検の時のみであり、通常の使用時では突端
部間距離Lgは固定状態のままである。
In the static magnetic field generator as described above, since the magnetic field uniformity required for imaging changes depending on the environment, the upper yoke 3b or the upper yoke 3b and the upper permanent magnet 2b are adjusted at the installation stage. The magnetic field uniformity is adjusted by moving the moving member 9 fitted in the center up and down. However, this adjustment is only made during installation, maintenance and inspection, and during normal use, the distance Lg between the projecting ends remains fixed.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は、静磁
場発生装置の磁場強度を変化させることについて検討さ
れておらず、被検体の頭部の撮影でも腹部の撮影用に調
整された突端部間距離で撮影していた。しかし、頭部撮
影時は腹部撮影時より突端部間距離が狭い方が良い画像
が得られるので、突端部間距離を狭くできれば静磁場強
度を上げることができ画像のS/N比の向上、撮影時間
の短縮ができる。
[Problems to be Solved by the Invention] The above-mentioned prior art does not consider changing the magnetic field strength of the static magnetic field generating device. I was shooting at a distance. However, when photographing the head, a better image can be obtained if the distance between the tips is narrower than when photographing the abdomen, so if the distance between the tips can be narrowed, the static magnetic field strength can be increased, improving the S/N ratio of the image, Shooting time can be shortened.

【0007】本発明の目的は画像のS/N比の向上等を
目的にした静磁場発生装置の磁極片対向間距離の可変を
実現させるため、可変機構、距離可変に伴う磁場均一度
変化を補償する手段を提供することにある。
The purpose of the present invention is to realize a variable distance between opposing magnetic pole pieces of a static magnetic field generator for the purpose of improving the S/N ratio of images, etc., by providing a variable mechanism and a change in magnetic field uniformity due to variable distance. The purpose is to provide a means of compensation.

【0008】[0008]

【課題を解決するための手段】静磁場、傾斜磁場の各磁
場発生手段と、検査対象に電磁波を照射する高周波照射
コイルと、検査対象からの磁気共鳴信号を検出する高周
波受信コイルと、前記検出信号を使って対象物体の物理
的性質をあらわす画像を得る画像再構成手段とを備えた
MRI装置用の静磁場発生装置において、被検体を収容
し得る空隙を挾んで対向し、かつ前記空隙側の面に静磁
場の均一性を確保する磁極片が各々設けられた一対の永
久磁石装置と、前記永久磁石装置の各々を対向位置決め
すると共に前記空隙を除いた空間領域において前記一対
の永久磁石装置を磁気結合させる永久磁石配設手段と、
前記一対の永久磁石装置の対向間隔を可変設定する磁場
強度可変設定手段と、一対の永久磁石装置の対向間隔を
変化させたときに生ずる静磁場の均一度を補正する磁場
均一度補正手段を備える。
[Means for Solving the Problems] Magnetic field generating means for a static magnetic field and a gradient magnetic field, a high-frequency irradiation coil that irradiates an electromagnetic wave to an object to be examined, a high-frequency receiver coil that detects a magnetic resonance signal from the object to be examined, and the detection In a static magnetic field generator for an MRI apparatus, the static magnetic field generating device includes an image reconstruction means for obtaining an image representing the physical properties of a target object using signals, and the magnetic field generating device is provided with a static magnetic field generating device for an MRI apparatus, which is opposite to each other across a gap capable of accommodating a subject, and is arranged on the side of the gap. a pair of permanent magnet devices, each of which is provided with a magnetic pole piece for ensuring uniformity of a static magnetic field on a surface of the permanent magnet device; permanent magnet arrangement means for magnetically coupling the
A magnetic field intensity variable setting means for variably setting the facing distance between the pair of permanent magnet devices, and a magnetic field uniformity correction means for correcting the uniformity of the static magnetic field that occurs when the facing distance between the pair of permanent magnet devices is changed. .

【0009】[0009]

【作用】一対のヨ−ク間に油圧シリンダを接続し、かつ
カラムと上ヨ−クの移動方向にガイドを設け、上ヨ−ク
を均等に移動させ磁場強度を変える。また、移動位置を
検出する検出機構は、移動に伴う各項の磁場不均一を調
整するためのシミング用コイル(以下、シムコイルと称
する)に流す電流量を決める。さらに静磁場発生装置に
シムコイルを設け、移動に伴う磁場均一度変化を補正す
る。
[Operation] A hydraulic cylinder is connected between a pair of yokes, and a guide is provided in the direction of movement of the column and the upper yoke to uniformly move the upper yoke to change the magnetic field strength. Further, the detection mechanism that detects the movement position determines the amount of current to be passed through a shimming coil (hereinafter referred to as shim coil) for adjusting magnetic field non-uniformity of each term due to movement. Furthermore, a shim coil is installed in the static magnetic field generator to correct changes in magnetic field uniformity due to movement.

【0010】0010

【実施例】以下本発明の実施例を図1乃至図6に基づい
て詳細に説明する。図1は本発明に係る磁気共鳴イメ−
ジング装置の全体構成を示すブロック図である。図1に
おいてこの磁気共鳴イメ−ジング装置は、磁気共鳴(N
MR)現象を利用して被検体6の断層画像を得るもので
、そのために、必要な充分大きなボア径をもった静磁場
発生磁石110と、中央処理装置(以下、CPUと称す
る)111と、シ−ケンサ112と、送信系113と、
傾斜磁場系114と、受信系115と信号処理系116
とからなる。上記静磁場発生磁石110は、被検体6の
周りにその体軸方向または体軸と直角方向に均一な磁束
を発生するもので、上記被検体6の周りのある広がりを
もった空間に永久磁石方式の磁場発生手段が配置されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in detail below with reference to FIGS. 1 to 6. Figure 1 shows a magnetic resonance image according to the present invention.
1 is a block diagram illustrating the overall configuration of a processing device; FIG. In FIG. 1, this magnetic resonance imaging apparatus is a magnetic resonance (N
MR) phenomenon is used to obtain a tomographic image of the subject 6, and for this purpose, a static magnetic field generating magnet 110 having a necessary sufficiently large bore diameter, a central processing unit (hereinafter referred to as CPU) 111, A sequencer 112, a transmission system 113,
Gradient magnetic field system 114, receiving system 115, and signal processing system 116
It consists of. The static magnetic field generating magnet 110 generates a uniform magnetic flux around the subject 6 in the body axis direction or in a direction perpendicular to the body axis. A type of magnetic field generating means is arranged.

【0011】上記シ−ケンサ112は、CPU111の
制御で動作し、被検体6の断層画像のデ−タ収集に必要
な種々の命令を送信系113及び傾斜磁場系14並びに
受信系15に送るものである。上記送信系113は、高
周波発信器117と、変調器118と、高周波増幅器1
19と、送信側高周波コイル120aとからなり、上記
高周波発信器117から出力された高周波パルスをシ−
ケンサ112の命令に従って変調器118で振幅変調し
、この振幅変調された高周波パルスを高周波増幅器11
9で増幅した後に被検体6に近接して配置された高周波
コイル120aに供給する。これにより、電磁波が上記
被検体6に照射されるようになっている。
The sequencer 112 operates under the control of the CPU 111 and sends various commands necessary for data collection of tomographic images of the subject 6 to the transmission system 113, gradient magnetic field system 14, and reception system 15. It is. The transmission system 113 includes a high frequency oscillator 117, a modulator 118, and a high frequency amplifier 1.
19 and a transmission-side high-frequency coil 120a, which receives high-frequency pulses output from the high-frequency oscillator 117.
The modulator 118 modulates the amplitude according to the command from the controller 112, and the amplitude-modulated high-frequency pulse is sent to the high-frequency amplifier 11.
After being amplified in step 9, the signal is supplied to a high frequency coil 120a placed close to the subject 6. Thereby, the subject 6 is irradiated with electromagnetic waves.

【0012】上記傾斜磁場系14はX,Y,Zの3方向
に巻かれた傾斜磁場コイル8a,8bと、それぞれのコ
イルを駆動する傾斜磁場電源122とからなり、上記シ
−ケンサ112からの命令に従ってそれぞれのコイルの
傾斜磁場電源122を駆動することにより、X,Y,Z
の3方向の傾斜磁場Gx,Gy,Gzを被検体6に印加
するようになっている。この傾斜磁場の加え方を変える
ことにより、被検体6に対するスライス面を設定するこ
とができる。上記受信系115は、受信側高周波コイル
120bと、増幅器23と、直交位相検波器124と、
A/D変換器125とからなり、上記送信側の高周波コ
イル120aから照射された電磁波による被検体の応答
の電磁波(NMR信号)は被検体1に近接して配置され
た高周波コイル120bで検出される。
The gradient magnetic field system 14 consists of gradient magnetic field coils 8a, 8b wound in three directions of X, Y, and Z, and a gradient magnetic field power supply 122 for driving each coil. By driving the gradient magnetic field power supply 122 of each coil according to the command,
Gradient magnetic fields Gx, Gy, and Gz in three directions are applied to the subject 6. By changing the way this gradient magnetic field is applied, a slice plane for the subject 6 can be set. The receiving system 115 includes a receiving side high frequency coil 120b, an amplifier 23, a quadrature phase detector 124,
The electromagnetic wave (NMR signal) in response to the electromagnetic wave irradiated from the transmitting side high-frequency coil 120a of the subject is detected by the high-frequency coil 120b placed close to the subject 1. Ru.

【0013】さらに増幅器123及び直交位相検波器1
24を介してA/D変換器125に入力してデジタル量
に変換され、シ−ケンサ112からの命令によるタイミ
ングで直交位相検波器124によりサンプリングされた
二系列の収集デ−タとされ、この信号が信号処理系11
6に送られるようになっている。この信号処理系116
は、CPU111と、磁気ディスク126及び磁気テ−
プ127等の記録装置と、CRT等のディスプレイ12
8とからなり、上記CPU111でフ−リエ変換、補正
係数計算値像再構成等の処理を行ない、任意断面の信号
強度分布あるいは複数の信号に適当な演算を行なって得
られた分布を画像化してディスプレイ128に表示する
ようになっている。また、静磁場発生磁石110の磁極
片間距離を位置検出器132で検出し、その信号を制御
回路131に取り込み、そのデ−タに応じてシムコイル
電源130から複数のシムコイル60(磁場均一度の各
項を補正するために補正項の数だけのコイル)に流す電
流値を決めている。図1において、送信側及び受信側の
高周波コイル120a,120bと、傾斜磁場コイル8
a,8bは、被検体6の周りの空間に配置された静磁場
発生磁石110の磁場空間内に配置されている。
Furthermore, an amplifier 123 and a quadrature phase detector 1
24 to the A/D converter 125, where it is converted into a digital quantity, and is sampled by the quadrature phase detector 124 at the timing according to the command from the sequencer 112, resulting in two series of collected data. Signal processing system 11
It is set to be sent to 6. This signal processing system 116
The CPU 111, the magnetic disk 126 and the magnetic tape
A recording device such as a printer 127 and a display 12 such as a CRT.
The CPU 111 performs processing such as Fourier transform and correction coefficient calculation value image reconstruction, and images the signal intensity distribution of an arbitrary cross section or the distribution obtained by performing appropriate calculations on a plurality of signals. is displayed on the display 128. Further, the distance between the magnetic pole pieces of the static magnetic field generating magnet 110 is detected by the position detector 132, the signal is taken into the control circuit 131, and the shim coil power supply 130 outputs a plurality of shim coils 60 (magnetic field uniformity) according to the data. In order to correct each term, the current value to be passed through as many coils as the number of correction terms is determined. In FIG. 1, high frequency coils 120a and 120b on the transmitting side and receiving side, and a gradient magnetic field coil 8
a and 8b are arranged in the magnetic field space of the static magnetic field generating magnet 110 arranged in the space around the subject 6.

【0014】図2に本発明の実施例の斜視図を示す。図
3は図2におけるB−B矢視断面図で、シムコイル60
を取り付けたものである。下ヨ−ク10aにコの字型の
金具18が固定されており、油圧シリンダ17の下端の
穴に回転可能にピン20が嵌合され、このピン20の両
端に嵌合する穴を有する軸受19を金具18に取り付け
る。また、油圧シリンダ17の上端の穴には回転可能に
ピン22を嵌合し、この両端に嵌合した穴を有する軸受
21は上ヨ−ク10bに取り付けられている。
FIG. 2 shows a perspective view of an embodiment of the present invention. 3 is a sectional view taken along the line B-B in FIG. 2, and shows the shim coil 60.
is attached. A U-shaped metal fitting 18 is fixed to the lower yoke 10a, a pin 20 is rotatably fitted into a hole at the lower end of the hydraulic cylinder 17, and a bearing has holes that fit into both ends of the pin 20. 19 to the metal fitting 18. A pin 22 is rotatably fitted into a hole at the upper end of the hydraulic cylinder 17, and bearings 21 having fitting holes at both ends are attached to the upper yoke 10b.

【0015】図4は油圧シリンダ17の構造を示す図で
ある。油圧シリンダ17の内部には作動油23が抽入さ
れており、この作動油23によりロッド17aが移動す
る。油圧ポンプで発生する圧力は25〜35kg/mm
2以上である。また、上ヨ−ク10b、上永久磁石2b
、上磁極片1bの総重量は約4tであるため、この重量
を油圧シリンダ17で支持するための1本当たりのシリ
ンダ内径dは、d=4000kg/4本/25kg/m
m2=40mm2以上必要である。
FIG. 4 is a diagram showing the structure of the hydraulic cylinder 17. Hydraulic oil 23 is drawn into the interior of the hydraulic cylinder 17, and the rod 17a is moved by this hydraulic oil 23. The pressure generated by the hydraulic pump is 25 to 35 kg/mm
It is 2 or more. In addition, the upper yoke 10b and the upper permanent magnet 2b
Since the total weight of the upper magnetic pole piece 1b is approximately 4 tons, the inner diameter d of each cylinder to support this weight with the hydraulic cylinder 17 is d = 4000 kg/4 pieces/25 kg/m
m2=40mm2 or more is required.

【0016】つぎに油圧シリンダ17の回路を図5で説
明する。油圧装置は4本の油圧シリンダ17と、4個の
電磁弁41と、2個の絞り弁42と、逆止弁43と、リ
リ−フ弁44と、フィルタ45と、モ−タポンプ46及
びオイルタンク47からなる。磁極片間距離を広げる場
合の油圧装置の動作は、モ−タポンプ46でオイルタン
ク47からくみ上げられた油は矢印48の様な流れをす
る。つまり、油はフィルタ45でゴミを取り除かれ、油
圧シリンダ17が停止した時の逆戻り防止用逆止弁43
を通り、電気的に弁を開閉する電磁弁41を通る。油圧
シリンダ17が伸びている場合はCの電磁弁は閉じてい
る。その後、油圧シリンダ17に入り、ロッド17aが
伸び上ヨ−ク10bを上昇させる。油圧シリンダ17上
部の油は電磁弁41を通りオイルタンク47に戻る、磁
極片間距離を狭くする場合は油の流れは逆となる。また
、リリ−フ弁44は上ヨ−ク10bの移動に異常が生じ
た場合(軸受が異常)に、ある圧力以上かからない様に
油をオイルタンク47に戻す役目をする。
Next, the circuit of the hydraulic cylinder 17 will be explained with reference to FIG. The hydraulic system includes four hydraulic cylinders 17, four electromagnetic valves 41, two throttle valves 42, a check valve 43, a relief valve 44, a filter 45, a motor pump 46, and oil. It consists of 47 tanks. In the operation of the hydraulic system when increasing the distance between the magnetic pole pieces, the oil pumped up from the oil tank 47 by the motor pump 46 flows as shown by the arrow 48. In other words, the oil is filtered of dirt by the filter 45, and the check valve 43 is used to prevent backflow when the hydraulic cylinder 17 is stopped.
and passes through a solenoid valve 41 that electrically opens and closes the valve. When the hydraulic cylinder 17 is extended, the solenoid valve C is closed. Thereafter, it enters the hydraulic cylinder 17, and the rod 17a extends to raise the yoke 10b. The oil in the upper part of the hydraulic cylinder 17 passes through the solenoid valve 41 and returns to the oil tank 47. When the distance between the magnetic pole pieces is narrowed, the flow of oil is reversed. Further, the relief valve 44 serves to return oil to the oil tank 47 so that the pressure does not exceed a certain level when an abnormality occurs in the movement of the upper yoke 10b (an abnormality in the bearing).

【0017】次にガイド機構、位置検出について図3で
説明する。基本的にはカラム4と上ヨ−ク10bに固定
したリニア軸受30との嵌合がガイドになる。下ヨ−ク
10aに下端を固定したカラム4の上端は、上ヨ−クの
固定したリニア軸受30の内径を勘合するような寸法で
仕上げ加工されており、油圧シリンダ17の駆動力で上
ヨ−ク10b(上永久磁石2b、上磁極片1b)が移動
できるようになっている。また、カラム4の中央部に取
り付けられたマイクロスイッチ31a,31b、および
上ヨ−ク10bの取り付けられたストライカ32で位置
検出部を構成しており、ストライカ32がどちらのマイ
クロスイッチ31a,31bを押しているかによりシム
コイル電流を決定する。また、マイクロスイッチ31a
,31bは油圧シリンダ17の駆動の停止位置を示して
いる。
Next, the guide mechanism and position detection will be explained with reference to FIG. Basically, the fitting between the column 4 and the linear bearing 30 fixed to the upper yoke 10b serves as a guide. The upper end of the column 4, whose lower end is fixed to the lower yoke 10a, is finished to a dimension that fits the inner diameter of the linear bearing 30 fixed to the upper yoke. - The magnet 10b (upper permanent magnet 2b, upper magnetic pole piece 1b) is movable. Further, the microswitches 31a, 31b attached to the center of the column 4 and the striker 32 attached to the upper yoke 10b constitute a position detection section, and the striker 32 detects which microswitch 31a, 31b The shim coil current is determined depending on whether it is pressed. In addition, the micro switch 31a
, 31b indicate the drive stop position of the hydraulic cylinder 17.

【0018】シムコイル60について説明する。シムコ
イル60は各磁場不均一項を補正するパタ−ンを有し、
このパターンには例えば特公昭40−26368に提案
ののものをプリント基板にエッチングをして製作し、同
一のものを上下に配置し所望の補正を得る。油圧シリン
ダ17の伸縮にともなって上ヨ−ク10bが移動し、磁
場均一度達成のための磁極片1a,1b間が変化するが
その変化量をシムコイル60で補正するもので、上記マ
イクロスイッチ31a,31bのオン、オフで上ヨ−ク
10bの位置を検出しそれに応じてシムコイル60に流
す電流値を決定している。
The shim coil 60 will be explained. The shim coil 60 has a pattern for correcting each magnetic field inhomogeneity term,
This pattern is produced by etching the pattern proposed in Japanese Patent Publication No. 40-26368, for example, onto a printed circuit board, and the same pattern is placed one above the other to obtain the desired correction. As the hydraulic cylinder 17 expands and contracts, the upper yoke 10b moves, and the distance between the magnetic pole pieces 1a and 1b changes to achieve magnetic field uniformity, but the amount of change is corrected by the shim coil 60. , 31b are turned on and off to detect the position of the upper yoke 10b, and the value of the current to be passed through the shim coil 60 is determined accordingly.

【0019】次に、カバ−について図6で説明する。磁
極片間距離を変化させると、静磁場発生装置全体のカバ
−に問題を生ずるが、そのことについて図6で説明する
。カバ−前面、後面(図示省略)、側面52、上面53
をカラム4上部からフレ−ムをだしそのフレ−ムに上記
カバ−を固定することで間隔が変化しても影響がないよ
うにしている。つぎに開口カバ−54について説明する
。開口カバ−54は上下2分割で構成され、上側のカバ
−高さ、幅は、下側より大きくなっており、かつ、上、
下のカバ−とも磁極片1a,1bに固定されている。横
方向に抑え55を設け、カバ−が開くことを防止してい
る。これで磁極片間距離が変化してもそれに追従して開
口が変化するようにしている。
Next, the cover will be explained with reference to FIG. If the distance between the magnetic pole pieces is changed, a problem arises in covering the entire static magnetic field generator, which will be explained with reference to FIG. Cover - front surface, rear surface (not shown), side surface 52, top surface 53
A frame is taken out from the top of the column 4, and the cover is fixed to the frame so that there is no effect even if the spacing changes. Next, the opening cover 54 will be explained. The opening cover 54 is divided into upper and lower halves, and the upper cover height and width are larger than the lower side.
Both the lower covers are fixed to the magnetic pole pieces 1a and 1b. A restraint 55 is provided in the lateral direction to prevent the cover from opening. With this, even if the distance between the magnetic pole pieces changes, the aperture changes accordingly.

【0020】[0020]

【発明の効果】本発明によれば、被検体の大きさに応じ
て磁極片間距離を変えることができるので頭部撮影時に
は距離が狭く、磁場強度を高くできるので画像のS/N
比の向上、撮影時間の短縮等の効果がある。
According to the present invention, since the distance between the magnetic pole pieces can be changed according to the size of the subject, the distance is narrow when photographing the head, and the magnetic field strength can be increased, so the S/N of the image can be improved.
This has the effect of improving the ratio and shortening the shooting time.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の磁気共鳴イメ−ジング装置の全体構成
[Fig. 1] Overall configuration diagram of the magnetic resonance imaging apparatus of the present invention

【図2】本発明の静磁場発生装置の斜視図[Fig. 2] A perspective view of the static magnetic field generator of the present invention.

【図3】本発
明の静磁場発生装置の断面図
[Fig. 3] Cross-sectional view of the static magnetic field generator of the present invention

【図4】油圧シリンダの断
面図
[Figure 4] Cross-sectional view of hydraulic cylinder

【図5】油圧回路図[Figure 5] Hydraulic circuit diagram

【図6】本発明に係るカバ−断面図[Fig. 6] Cover according to the present invention - sectional view

【図7】従来装置の平面図[Figure 7] Plan view of conventional device

【図8】従来装置の立体図[Figure 8] Three-dimensional view of conventional device

【符号の説明】[Explanation of symbols]

1a    磁極片 1b    磁極片 2a    永久磁石 2b    永久磁石 3      ヨ−ク 4      カラム 5      空隙 6      被検体 7      環状突起部 8a    傾斜磁場コイル 8b    傾斜磁場コイル 9      移動部材 10a  ヨーク 10b  ヨーク 17    油圧シリンダ 17a  ロッド 30    リニア軸受 31a  マイクロスイッチ 31b  マイクロスイッチ 32    ストライカ 60    シムコイル 1a Magnetic pole piece 1b Magnetic pole piece 2a Permanent magnet 2b Permanent magnet 3 York 4 Column 5 Voids 6 Subject 7 Annular protrusion 8a Gradient magnetic field coil 8b Gradient magnetic field coil 9 Moving parts 10a York 10b York 17 Hydraulic cylinder 17a Rod 30 Linear bearing 31a Micro switch 31b Micro switch 32 Striker 60 Shim coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】静磁場、傾斜磁場の各磁場発生手段と、検
査対象に電磁波を照射する高周波照射コイルと、検査対
象からの磁気共鳴信号を検出する高周波受信コイルと、
前記検出信号を使って対象物体の物理的性質をあらわす
画像を得る画像再構成手段とを備えたMRI装置用の静
磁場発生装置において、被検体を収容し得る空隙を挾ん
で対向し、かつ前記空隙側の面に静磁場の均一性を確保
する磁極片が各々設けられた一対の永久磁石装置と、前
記永久磁石装置の各々を対向位置決めすると共に前記空
隙を除いた空間領域において前記一対の永久磁石装置を
磁気結合させる永久磁石配設手段と、前記一対の永久磁
石装置の対向間隔を可変設定する磁場強度可変設定手段
と、一対の永久磁石装置の対向間隔を変化させたときに
生ずる静磁場の均一度を補正する磁場均一度補正手段を
備えたことを特徴とするMRI装置用静磁場発生装置。
1. Magnetic field generating means for a static magnetic field and a gradient magnetic field, a high-frequency irradiation coil that irradiates an electromagnetic wave to an object to be examined, and a high-frequency receiver coil that detects a magnetic resonance signal from the object to be examined;
A static magnetic field generator for an MRI apparatus, comprising: an image reconstruction means for obtaining an image representing the physical properties of the target object using the detection signal; A pair of permanent magnet devices each having a magnetic pole piece for ensuring uniformity of a static magnetic field on a surface on the air gap side, and a pair of permanent magnet devices that are positioned facing each other and that are arranged in a spatial region excluding the air gap. permanent magnet arrangement means for magnetically coupling the magnet devices; magnetic field strength variable setting means for variably setting the facing distance between the pair of permanent magnet devices; and a static magnetic field generated when changing the facing distance between the pair of permanent magnet devices. 1. A static magnetic field generator for an MRI apparatus, comprising a magnetic field uniformity correction means for correcting the uniformity of the magnetic field.
JP3173376A 1991-06-19 1991-06-19 Magnetostatic field generating device for mri device Pending JPH04371136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173376A JPH04371136A (en) 1991-06-19 1991-06-19 Magnetostatic field generating device for mri device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173376A JPH04371136A (en) 1991-06-19 1991-06-19 Magnetostatic field generating device for mri device

Publications (1)

Publication Number Publication Date
JPH04371136A true JPH04371136A (en) 1992-12-24

Family

ID=15959248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173376A Pending JPH04371136A (en) 1991-06-19 1991-06-19 Magnetostatic field generating device for mri device

Country Status (1)

Country Link
JP (1) JPH04371136A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918229A2 (en) * 1997-11-18 1999-05-26 Picker International, Inc. Magnet system
EP0943929A2 (en) * 1998-03-19 1999-09-22 Picker International, Inc. Magnetic resonance apparatus
EP0978727A2 (en) * 1998-08-06 2000-02-09 Sumitomo Special Metals Company Limited Magnetic field generator for MRI, method for assembling the same and method for assembling a magnet unit for the same
WO2004069052A1 (en) * 2003-02-10 2004-08-19 Neomax Co., Ltd. Magnetic field-producing device
JP2005103266A (en) * 2003-09-29 2005-04-21 General Electric Co <Ge> Permanent magnet assembly with movable permanent body for adjusting main magnetic field

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918229A3 (en) * 1997-11-18 2000-04-19 Picker International, Inc. Magnet system
EP0918229A2 (en) * 1997-11-18 1999-05-26 Picker International, Inc. Magnet system
EP0943929A2 (en) * 1998-03-19 1999-09-22 Picker International, Inc. Magnetic resonance apparatus
EP0943929A3 (en) * 1998-03-19 2000-04-19 Picker International, Inc. Magnetic resonance apparatus
US6336989B1 (en) 1998-08-06 2002-01-08 Sumitomo Special Metals Co., Ltd. Magnetic field generator for MRI, method for assembling the same, and method for assembling a magnet unit for the same
EP0978727A3 (en) * 1998-08-06 2001-05-02 Sumitomo Special Metals Company Limited Magnetic field generator for MRI, method for assembling the same and method for assembling a magnet unit for the same
EP0978727A2 (en) * 1998-08-06 2000-02-09 Sumitomo Special Metals Company Limited Magnetic field generator for MRI, method for assembling the same and method for assembling a magnet unit for the same
US6650214B2 (en) 1998-08-06 2003-11-18 Sumitomo Special Metals Co., Ltd. Magnetic field generator for MRI, method for assembling the same, and method for assembling a magnet unit for the same
EP1557684A2 (en) * 1998-08-06 2005-07-27 Neomax Co., Ltd. Method for assembling a magnetic field generator for MRI
EP1557684A3 (en) * 1998-08-06 2005-08-10 Neomax Co., Ltd. Method for assembling a magnetic field generator for MRI
US7065860B2 (en) 1998-08-06 2006-06-27 Neomax Co., Ltd. Method for assembling a magnetic field generator for MRI
WO2004069052A1 (en) * 2003-02-10 2004-08-19 Neomax Co., Ltd. Magnetic field-producing device
JP2005103266A (en) * 2003-09-29 2005-04-21 General Electric Co <Ge> Permanent magnet assembly with movable permanent body for adjusting main magnetic field

Similar Documents

Publication Publication Date Title
JP5203682B2 (en) MRI apparatus, NMR analyzer, and static magnetic field generator
JP4037272B2 (en) Magnetic resonance imaging apparatus and static magnetic field generator used therefor
US4590452A (en) Magnetic device of apparatus in nuclear spin tomography with a shielding device
US7541812B2 (en) MRI apparatus, NMR analyzer, and gantry
US6507190B1 (en) Method and apparatus for compensating polarizing fields in magnetic resonance imaging
JP2000107151A (en) Magnetic resonance imaging apparatus
US20130278262A1 (en) Passive b1 field shimming
JPH03236829A (en) Magnetic resonance imaging device
US9903927B2 (en) Apparatus and method for canceling magnetic fields
JP4104328B2 (en) RF shielding method and apparatus for open MRI system
US6218838B1 (en) MRI magnet with high homogeneity, patient access, and low forces on the driver coils
JPH09192117A (en) Mri system
KR101424552B1 (en) Magnetic resonance imaging device and manufacturing method thereof
CN107847181B (en) Active coil for shifting a homogeneous magnetic field space
JPH04371136A (en) Magnetostatic field generating device for mri device
US20040263170A1 (en) Magnetic gradient field projection
KR100413904B1 (en) Selective excitation method and apparatus, and magnetic resonance imaging method and apparatus
US5675256A (en) Magnetic resonance methods and apparatus
KR101771220B1 (en) Magnetic resonance imaging system
JPH0268036A (en) Nuclear magnetic resonance imaging device
JP2006518242A (en) Compensation of magnetic field disturbance due to vibration of MRI system
JP4392941B2 (en) Magnetic resonance imaging system
JP3612657B2 (en) Irradiation coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus
JP2860682B2 (en) Method for stabilizing static magnetic field uniformity of magnetic resonance imaging apparatus
JPH10262947A (en) Magnetic resonance examination system