JPH0437052B2 - - Google Patents

Info

Publication number
JPH0437052B2
JPH0437052B2 JP62128054A JP12805487A JPH0437052B2 JP H0437052 B2 JPH0437052 B2 JP H0437052B2 JP 62128054 A JP62128054 A JP 62128054A JP 12805487 A JP12805487 A JP 12805487A JP H0437052 B2 JPH0437052 B2 JP H0437052B2
Authority
JP
Japan
Prior art keywords
dimethyladamantane
catalyst
reaction
perhydroacenaphthene
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62128054A
Other languages
Japanese (ja)
Other versions
JPS63295519A (en
Inventor
Katsuhiko Takagi
Yoshihiro Naruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62128054A priority Critical patent/JPS63295519A/en
Publication of JPS63295519A publication Critical patent/JPS63295519A/en
Publication of JPH0437052B2 publication Critical patent/JPH0437052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高級な機能性高分子及び医薬品等の
原料として有用である1,3−ジメチルアダマン
タンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing 1,3-dimethyladamantane, which is useful as a raw material for high-grade functional polymers and pharmaceuticals.

(従来の技術) 1,3−ジメチルアダマンタンは、医薬品をは
じめ各種のフアインケミカルの原料として、その
ジカルボン酸やジオールは、ポリエステル、ポリ
アミド等の高級な機能性高分子の原料として、そ
の有用性が期待されている。
(Prior art) 1,3-dimethyladamantane is useful as a raw material for various fine chemicals including pharmaceuticals, and its dicarboxylic acids and diols are raw materials for high-grade functional polymers such as polyester and polyamide. is expected.

従来、メチル基のないアダマンタンの製造方法
としては、1956年にシユトライヤー(Schleyer)
らによりエンド−テトラヒドロジシクロペンタジ
エンを無水塩化アルミニウム(AlCl3)触媒で異
性化する方法(J.Am.Chem.Soc.79,3292
(1957))が発見されて以来、各種の酸触媒を用い
炭素数10以上の三環式炭化水素を異性化する試み
が為されている。初期のAlCl3触媒によるエンド
−テトラヒドロジシクロペンタジエンの異性化で
得られるアダマンタン収率は15〜20%程度であ
り、かつ、極めて多くの副生物が生成し、工業的
にアダマンタンを製造する方法としては有利とは
言えなかつた。
Conventionally, the method for producing adamantane without methyl groups was developed by Schleyer in 1956.
A method for isomerizing endo-tetrahydrodicyclopentadiene using an anhydrous aluminum chloride (AlCl 3 ) catalyst (J.Am.Chem.Soc. 79 , 3292)
(1957)), attempts have been made to isomerize tricyclic hydrocarbons having 10 or more carbon atoms using various acid catalysts. The adamantane yield obtained by the isomerization of endo-tetrahydrodicyclopentadiene using an initial AlCl3 catalyst was about 15-20%, and extremely large amounts of by-products were produced, making it difficult to use as a method for industrially producing adamantane. could not be said to be advantageous.

その後、各種の改良がなされ、アダマンタン収
率が触媒をBF3−HF系にすることにより30%程
度まで向上し(USP2,937,211),AlCl3−HCl
触媒系でH2加圧下で反応させると40%程度まで
向上すると言われている。また、特公昭1−
20508号によれば、エンド−テトラヒドロジシク
ロペンタジエンをAlCl3触媒を用い、溶媒として
1,2−ジクロルエタンを用いることにより、ア
ダマンタンの収率は50%に向上するとともに、レ
ジンなどの副生物の生成も僅かになるとされてい
る。
After that, various improvements were made, and the adamantane yield was improved to about 30% by using a BF 3 -HF catalyst (USP 2, 937, 211), and AlCl 3 -HCl
It is said that the improvement is about 40% when the reaction is carried out under H 2 pressure in a catalyst system. Also, special public Sho 1-
According to No. 20508, by using endo-tetrahydrodicyclopentadiene with an AlCl 3 catalyst and 1,2-dichloroethane as a solvent, the yield of adamantane can be improved to 50%, and the production of by-products such as resin can be improved. It is said that there will be a small amount of

(発明が解決しようとする問題点) しかしながら、アダマンタン類の中でもフアイ
ンケミカル原料として特に有用な1,3−ジメチ
ルアダマンタンを高収率で選択的に製造する方法
は、現在知られていない。
(Problems to be Solved by the Invention) However, there is currently no known method for selectively producing 1,3-dimethyladamantane in high yield, which is particularly useful as a fine chemical raw material among adamantanes.

塩素処理したPt−Al2O3触媒が三環式炭化水素
類を異性化する触媒として有効であることが報告
されている。(J.Am.Chem.Soc.93,2,2798
(1971))が、触媒/原料比が7.5/1と極めて多
量の触媒を用いていること、触媒の寿命が極めて
短いことから実用に耐えるものではない。
It has been reported that a chlorinated Pt-Al 2 O 3 catalyst is effective as a catalyst for isomerizing tricyclic hydrocarbons. (J.Am.Chem.Soc. 93 , 2, 2798
(1971)), but it is not practical because it uses an extremely large amount of catalyst with a catalyst/raw material ratio of 7.5/1 and the life of the catalyst is extremely short.

また、特公昭52−12706号等には、希土類イオ
ンなどでイオン交換したY型ゼオライトに各種金
属を担持した触媒が連続異性化触媒として良いと
されているが、パーヒドロアセナフテンを原料と
した場合にも1,3−ジメチルアダマンタンの収
率は、20〜30%程度であり、工業的に使用できる
水準ではない。
In addition, in Japanese Patent Publication No. 12706/1986, etc., it is said that a catalyst in which various metals are supported on Y-type zeolite ion-exchanged with rare earth ions etc. is good as a continuous isomerization catalyst. In this case, the yield of 1,3-dimethyladamantane is about 20 to 30%, which is not at a level that can be used industrially.

本発明者らは、先に、パーヒドロアセナフテン
を異性化し、1,3−ジメチルアダマンタンを得
る触媒として、無水塩化アルミニウムと1,2−
ジクロルエタンとから生成する錯体が大変優れて
おり、高収率で1,3−ジメチルアダマンタンを
得ることができることを見出した(特願昭61−
305290号)。本発明者らは、さらに1,3−ジメ
チルアダマンタンの収率を上げるため研究を続け
た結果、パーヒドロアセナフテンに存在する4種
の異性体のうち、特定の異性体だけを原料に用い
た場合、1,3−ジメチルアダマンタンがさらに
高収率で得られることを見出した。
The present inventors first used anhydrous aluminum chloride and 1,2-
It was discovered that the complex formed with dichloroethane is very good and that 1,3-dimethyladamantane can be obtained in high yield (Patent application 1983-
No. 305290). As a result of continuing research to further increase the yield of 1,3-dimethyladamantane, the present inventors found that among the four isomers present in perhydroacenaphthene, only a specific isomer was used as a raw material. It has been found that 1,3-dimethyladamantane can be obtained in even higher yields.

(問題点を解決するための手段) 本発明の1,3−ジメチルアダマンタンの製造
方法は、パーヒドロアセナフテンの異性体のうち
トランス体を原料とし、触媒反応系として無水塩
化アルミニウムと1,2−ジクロルエタンを用い
ることを特徴とする。
(Means for Solving the Problems) The method for producing 1,3-dimethyladamantane of the present invention uses the trans isomer of perhydroacenaphthene as a raw material, and anhydrous aluminum chloride and 1,2-dimethyladamantane as a catalytic reaction system. - It is characterized by using dichloroethane.

原料のパーヒドロアセナフテンには2種のトラ
ンス体と2種のシス体があるが、これらの異性体
のうち、工業的にはトランス体を用いることが好
ましい。
The raw material perhydroacenaphthene has two types of trans isomers and two types of cis isomers, and among these isomers, it is preferable to use the trans isomer from an industrial perspective.

本発明者らは、先にアセナフテンの水素化反応
を珪藻土を担体とするニツケル触媒で行うと、2
種のトランス体のパーヒドロアセナフテンが合計
で95%の収率で得られること(特願昭61−107970
号)、さらにルテニウム系触媒及び/又はロジウ
ム系触媒を用いると2種のシス体のうち、沸点の
高いものが90%の収率で得られること(特願昭61
−107969号)を見出した。本発明で用いる原料パ
ーヒドロアセナフテンの異性体は、これらの方法
によつて得られたものを用いることができる。
The present inventors first conducted the hydrogenation reaction of acenaphthene with a nickel catalyst using diatomaceous earth as a carrier, and found that 2
Species trans-perhydroacenaphthene can be obtained with a total yield of 95% (Patent application No. 107970/1986)
(No. 1), and by using a ruthenium-based catalyst and/or a rhodium-based catalyst, one of the two types of cis isomers with a higher boiling point can be obtained with a yield of 90% (Patent Application No. 1983).
-107969). As the isomer of the raw material perhydroacenaphthene used in the present invention, those obtained by these methods can be used.

パーヒドロアセナフテンはトランス体又はシス
体の何れも用いることができるが、異性化反応経
路、活性化エネルギー等の違いから、より高い
1,3−ジメチルアダマンタン収率を得るために
は、トランス体を用いる方が良い。
Perhydroacenaphthene can be used in either the trans form or the cis form, but due to differences in isomerization reaction pathway, activation energy, etc., in order to obtain a higher yield of 1,3-dimethyladamantane, it is necessary to use the trans form. It is better to use

本発明で用いられる触媒系は、AlCl3と1,2
−ジクロルエタンとから加熱下(約45℃以上)で
生成する錯体であるため、均一系の反応に近くな
る。通常AlCl3は原料に対して重量比あるいはモ
ル比で1:1以上と多量に使用されるが、本発明
の方法によれば、AlCl3/パーヒドロアセナフテ
ン比は重量比で1/2未満、特に1/3〜1/6が好まし
い。1,2−ジクロルエタン/AlCl3の重量比は
8/1以上、好ましくは10/1〜20/1が良い。AlCl3
が多いと反応の制御が困難になるばかりでなく不
経済であり、また特にAlCl3/パーヒドロアセナ
フテン比が1/6未満では反応速度が極端に遅くな
り実際的でない。1,2−ジクロルエタンは、あ
る程度多い方が反応の面からは有利であるが、回
収・経済性の観点から上記の値が適当である。
The catalyst system used in the present invention consists of AlCl 3 and 1,2
- Since it is a complex formed from dichloroethane under heating (approximately 45°C or higher), the reaction is close to a homogeneous system. Normally, AlCl 3 is used in large amounts at a weight or molar ratio of 1:1 or more relative to the raw material, but according to the method of the present invention, the AlCl 3 /perhydroacenaphthene ratio is less than 1/2 by weight. , particularly preferably 1/3 to 1/6. The weight ratio of 1,2-dichloroethane/ AlCl3 is preferably 8/1 or more, preferably 10/1 to 20/1. AlCl3
If the AlCl 3 /perhydroacenaphthene ratio is less than 1/6, the reaction rate becomes extremely slow and is not practical. Although it is advantageous from the viewpoint of the reaction to have a certain amount of 1,2-dichloroethane, the above value is appropriate from the viewpoint of recovery and economy.

反応温度は45〜70℃、特に50〜60℃が好まし
い。45℃未満では反応速度が極めて遅く、また、
60℃を超えると反応速度は大きくなるが、反応の
制御が困難になり、副生成が増加するため好まし
くない。反応時間は、AlCl3/パーヒドロアセナ
フテン比にもよるが、1〜10時間で行われる。例
えば、AlCl3/パーヒドロアセナフテン比が1/4
の場合、5〜6時間が適当である。反応容器の雰
囲気は、窒素等に不活性気体あるいは空気の何れ
でも良い。
The reaction temperature is preferably 45-70°C, particularly 50-60°C. The reaction rate is extremely slow below 45℃, and
If the temperature exceeds 60°C, the reaction rate increases, but it becomes difficult to control the reaction and increases by-products, which is not preferable. The reaction time is 1 to 10 hours, depending on the AlCl 3 /perhydroacenaphthene ratio. For example, the AlCl 3 /perhydroacenaphthene ratio is 1/4
In this case, 5 to 6 hours is appropriate. The atmosphere in the reaction vessel may be nitrogen, an inert gas, or air.

本発明方法では適当な反応条件と触媒量を選択
することにより、高い選択率で1,3−ジメチル
アダマンタンが生成するため、得られる生成物の
分布が比較的単純であり、目的物である1,3−
ジメチルアダマンタンを減圧蒸留により、容易か
つ高純度に分離することができる。
In the method of the present invention, by selecting appropriate reaction conditions and catalyst amount, 1,3-dimethyladamantane is produced with high selectivity, so the distribution of the obtained product is relatively simple, and the target product 1 ,3-
Dimethyladamantane can be easily separated with high purity by vacuum distillation.

(実施例) 実施例 1 無水塩化アルミニウム5gを10gの1,2−ジ
クロルエタン中で粉砕・混合したものと、12.5g
の1,2−ジクロルエタンを冷却管、撹拌機、温
度計を装着した300mlの4つ口フラスコに入れて
混合し、次にフラスコを冷水に浸し冷却した。こ
れに、1,2−ジクロルエタン27.5gで希釈した
トランス体のパーヒドロアセナフテン20gをゆつ
くり加えた後、予め約50℃に加温されたオイルバ
ス中に上記フラスコを浸漬し、反応温度50℃±1
℃で5時間撹拌しながら異性化反応を行つた。反
応停止後、約200mlの水中に反応液を加え、無水
塩化アルミニウムを加水分解した後、油水分離し
た。この加水分解操作は、水層が中性になるまで
繰り返し行つた。その後、油層の一部を採取し、
ガスクロマトグラフイにて生成物の分析を行つ
た。その結果、1,3−ジメチルアダマンタンの
収率は79%であり、原料のパーヒドロアセナフテ
ンよりも高沸点の重質物の生成は殆ど見られなか
つた。この反応液から、目的生成物を分離、回収
するために、20〜30mmHgで1,2−ジクロルエ
タンを蒸発回収した後、102mmHg、126〜128℃で
減圧蒸留したころ、純度99%以上の1,3−ジメ
チルアダマンタンが得られた。
(Example) Example 1 5 g of anhydrous aluminum chloride was ground and mixed in 10 g of 1,2-dichloroethane, and 12.5 g
1,2-dichloroethane was mixed in a 300 ml four-necked flask equipped with a condenser, a stirrer, and a thermometer, and then the flask was cooled by immersing it in cold water. After slowly adding 20 g of trans perhydroacenaphthene diluted with 27.5 g of 1,2-dichloroethane, the flask was immersed in an oil bath preheated to about 50°C, and the reaction temperature was 50°C. ℃±1
The isomerization reaction was carried out while stirring at °C for 5 hours. After the reaction was stopped, the reaction solution was added to about 200 ml of water to hydrolyze anhydrous aluminum chloride, and then oil and water were separated. This hydrolysis operation was repeated until the aqueous layer became neutral. After that, a part of the oil layer was collected,
The product was analyzed by gas chromatography. As a result, the yield of 1,3-dimethyladamantane was 79%, and the production of heavy substances with a boiling point higher than that of the raw material perhydroacenaphthene was hardly observed. In order to separate and recover the desired product from this reaction solution, 1,2-dichloroethane was evaporated and recovered at 20 to 30 mmHg, and then distilled under reduced pressure at 102 mmHg and 126 to 128°C. 3-dimethyladamantane was obtained.

比較例 1 原料のパーヒドロアセナフテンとしてシス体を
用いた以外は、実施例1と同様にしてパーヒドロ
アセナフテンの異性化反応を行つた。反応停止
後、実施例1と同様にして触媒を分解した後、生
成物の分析を行つたところ、1,3−ジメチルア
ダマンタンの収率は73%であつた。
Comparative Example 1 The isomerization reaction of perhydroacenaphthene was carried out in the same manner as in Example 1 except that the cis form was used as the raw material perhydroacenaphthene. After the reaction was stopped, the catalyst was decomposed in the same manner as in Example 1, and the product was analyzed, and the yield of 1,3-dimethyladamantane was 73%.

比較例 2 原料のパーヒドロアセナフテンとして、アセナ
フテンの水素化をパラジウム系触媒で行つて得た
4種の異性体の平均的混合物を用いた以外は、実
施例1と同様にして異性化反応を行つた。触媒を
加水分解した後、生成物の分析を行つたところ、
1,3−ジメチルアダマンタンの収率は75%であ
つた。
Comparative Example 2 The isomerization reaction was carried out in the same manner as in Example 1, except that an average mixture of four isomers obtained by hydrogenating acenaphthene with a palladium catalyst was used as the raw material perhydroacenaphthene. I went. After hydrolyzing the catalyst, we analyzed the product and found that
The yield of 1,3-dimethyladamantane was 75%.

(発明の効果) 1,3−ジメチルアダマンタンは、従来工業的
に有利に製造する方法が無かつたため、非常に高
価でその誘導体の開発のネツクになつていたが、
本発明によれば、工業的に容易に且つ比較的安価
に、高純度の1,3−ジメチルアダマンタンを提
供できる。これにより、高級な機能性高分子、医
薬品、触媒をはじめ各種のフアインケミカルの原
料として、1,3−ジメチルアダマンタンを応用
することができ、その意義は大きい。
(Effects of the Invention) 1,3-Dimethyladamantane has been extremely expensive and has become a bottleneck for the development of its derivatives, as there has been no industrially advantageous manufacturing method.
According to the present invention, highly pure 1,3-dimethyladamantane can be provided industrially easily and at a relatively low cost. As a result, 1,3-dimethyladamantane can be applied as a raw material for various fine chemicals including high-grade functional polymers, pharmaceuticals, and catalysts, which is of great significance.

Claims (1)

【特許請求の範囲】[Claims] 1 パーヒドロアセナフテンの異性体のうち、ト
ランス体を原料とし、触媒反応系として無水塩化
アルミニウムと1,2−ジクロルエタンを用いる
ことを特徴とする1,3−ジメチルアダマンタン
の製造方法。
1. A method for producing 1,3-dimethyladamantane, which is characterized in that among the isomers of perhydroacenaphthene, the trans isomer is used as a raw material, and anhydrous aluminum chloride and 1,2-dichloroethane are used as a catalytic reaction system.
JP62128054A 1987-05-27 1987-05-27 Production of 1,3-dimethyladamantane Granted JPS63295519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128054A JPS63295519A (en) 1987-05-27 1987-05-27 Production of 1,3-dimethyladamantane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128054A JPS63295519A (en) 1987-05-27 1987-05-27 Production of 1,3-dimethyladamantane

Publications (2)

Publication Number Publication Date
JPS63295519A JPS63295519A (en) 1988-12-01
JPH0437052B2 true JPH0437052B2 (en) 1992-06-18

Family

ID=14975346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128054A Granted JPS63295519A (en) 1987-05-27 1987-05-27 Production of 1,3-dimethyladamantane

Country Status (1)

Country Link
JP (1) JPS63295519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063809A1 (en) 2010-11-12 2012-05-18 三菱瓦斯化学株式会社 Method for producing 1,3-dimethyladamantane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009279A1 (en) * 2006-03-01 2007-09-06 Justus-Liebig-Universität Giessen Process for the preparation of 1-formamido-3,5-dimethyladamantane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063809A1 (en) 2010-11-12 2012-05-18 三菱瓦斯化学株式会社 Method for producing 1,3-dimethyladamantane
US9085503B2 (en) 2010-11-12 2015-07-21 Mitsubishi Gas Chemical Company, Inc. Method for producing 1,3-dimethyladamantane

Also Published As

Publication number Publication date
JPS63295519A (en) 1988-12-01

Similar Documents

Publication Publication Date Title
US4777312A (en) Process for the isomerization of dimethylnaphthalenes
EP0351074A1 (en) Preparation of a dimethyltetralin
Pinke et al. Nickel-promoted methylvinylcyclopropane rearrangements. Mechanistic relevance to the cis-1, 4-hexadiene to 2-methyl-1, 3-pentadiene isomerization
US4288646A (en) Regioselective preparation of β-isopropylnaphthalene over superacidic solid or supported perfluorinated sulfonic acid catalysts
Olah et al. Chemistry in superacids. 7. Superacid-catalyzed isomerization of endo-to exo-trimethylenenorbornane (tetrahydrodicyclopentadiene) and to adamantane
JPH0437052B2 (en)
US5012024A (en) Preparation of a dimethylnaphthalene
JP2921541B2 (en) Method for isomerizing dimethylnaphthalene
US4962260A (en) Preparation of a dimethylnaphthalene
US3775498A (en) Preparation of 2,6-dimethylnaphthalene
KR960001700B1 (en) Liquid phase isomerization of iodo-aromatic compounds
JP2511573B2 (en) Method for producing 1-ethyl adamantane
JPH0413332B2 (en)
US3248443A (en) Process for alkylating aromatic hydrocarbons
US4806697A (en) Selective liquid phase disproportionation catalysts for iodoaromatics
US2481159A (en) Production of polychloro-hydrocarbons
EP0739872B1 (en) Process for converting exo-isomers of alkyl substituted cyclopentadienes to endo-isomers
US3792097A (en) Process for the preparation of dimethyldecalins
US5118892A (en) Preparation of a dimethylnaphthalene
US3894099A (en) Process for preparing 1-methyldamantane
JP2001151705A (en) Method for producing adamantane
US3775499A (en) Hydrocarbon conversion
EP0127804A1 (en) 4,4-Dihalohexahydrophthalic anhydrides and 4-fluorotetrahydrophthalic anhydride, and processes for their preparation and utilization
JPH0443890B2 (en)
JP2569155B2 (en) Method for producing alkyl adamantane