JPH04370126A - Rubber composition - Google Patents

Rubber composition

Info

Publication number
JPH04370126A
JPH04370126A JP17312991A JP17312991A JPH04370126A JP H04370126 A JPH04370126 A JP H04370126A JP 17312991 A JP17312991 A JP 17312991A JP 17312991 A JP17312991 A JP 17312991A JP H04370126 A JPH04370126 A JP H04370126A
Authority
JP
Japan
Prior art keywords
carbon black
mode diameter
diameter
rubber
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17312991A
Other languages
Japanese (ja)
Other versions
JP2593115B2 (en
Inventor
Shinji Misono
味曽野 伸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP17312991A priority Critical patent/JP2593115B2/en
Publication of JPH04370126A publication Critical patent/JPH04370126A/en
Application granted granted Critical
Publication of JP2593115B2 publication Critical patent/JP2593115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To provide the subject rubber composition having an improved abrasion resistance while keeping its low heat built-up and low impact resilience and suitable for a tire tread of a passenger car, a track and a bus. CONSTITUTION:With 100 pts.wt. rubber component, 35-100 pts.wt. furnace carbon black having 60-160m<2>/g specific surface area measured by nitrogen adsorption and 90-150ml/100g DBP oil absorption, belonging to hard group and showing characteristics represented by the formula (Dp mode diameter is most probable mode diameter in pore size distribution between carbon black particles, measured by differential scanning calorimeter; Dst mode diameter is stokes mode diameter of carbon black, measured by discentrifuge device) is blended.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、タイヤトレッド部材に
用いて好適なゴム組成物、詳しくは低発熱性を損なうこ
となしに改善された耐摩耗性を備えるゴム組成物に関す
る。 【0002】 【従来の技術】近時、自動車の高性能化に伴って高速性
能、安定性能ならびに耐久性能に対する要求が高まり、
これら諸性能に関与するタイヤトレッド部材の特性、と
りわけ耐摩耗性と低発熱性の両立改良が重要な課題とさ
れている。また、省資源、省エネルギー等の社会的要請
に対応するため、低燃費タイヤの開発も盛んにおこなわ
れているが、この課題に対してもタイヤトレッドを構成
するゴムに高い反撥弾性を与える低発熱特性を具備させ
ることが不可欠となる。 【0003】一般に、ゴムの摩耗、発熱等の性能は配合
するカーボンブラックの性状特性に支配される要素が大
きいが、これらのゴム性能には二律背反的な関係がある
ことが知られている。例えば、低燃費タイヤに必要な低
発熱性を付与するためには、比較的粒子径の大きいカー
ボンブラックを少ない配合量でゴムに配合することが有
効であるが、この配合では耐摩耗性や湿潤路面での制動
性といった面の特性低下が避けられない。また、苛酷な
走行条件で高度の耐摩耗性が必要なタイヤトレッドに対
しては可及的に粒子径が小さくてストラクチャーの大き
な特性のカーボンブラックが有効であるが、反面、この
種のカーボンブラックはゴム組成物の発熱性を高めて走
行中に蓄熱による内部構造の破壊、構成材料の老化など
の現象を促進させる危険性を招く。 【0004】このようなことから、カーボンブラックの
粒子径(比表面積)、ストラクチャーなどの基本特性に
加えてその他の諸特性をミクロに評価し、特定の選択的
特性を備えるカーボンブラックをゴムに配合することに
より耐摩耗性と低発熱性を同時に改善させる技術が数多
く提案されている。 【0005】このうち、乗用車や軽トラック用のタイヤ
トレッドとして好んで使用されるN339 級のカーボ
ンブラックを対象にするものには、次のような提案があ
る。 (1) 窒素吸着比表面積(N2SA)が60m2/g
以上、圧縮DBPが112ml/100g以上の範囲に
あり、カーボンブラック凝集体のストークスモード径お
よび同分布が一定値以上の特性をもつゴム配合用のカー
ボンブラック(特公平1−53978 号公報) 。 (2) N2 SAが60m2/g以上、DBPが10
8ml/100g以上の範囲にあり、一定比表面積当た
りの真比重を公知のカーボンブラックよりも著しく低い
特定範囲に設定するとともに着色力ならびに凝集体モー
ド径当たりの分布巾を一定値以上に制御したカーボンブ
ラックを配合するゴム組成物(特開昭59−14024
1号公報) 。 (3) N2 SAが65〜84m2/g、N2 SA
/よう素吸着量(IA)の比が1.10〜1.35の範
囲にあり、圧縮DBP、ブラックネス、IAおよび凝集
体モード径を変数とする式で定義される値を特定値以上
に設定した特性をもつゴム配合用のカーボンブラック(
特開昭63−225639号公報) 。 (4) N2 SAが75〜105m2/g 、圧縮D
BPが110ml/100g以上の範囲にあり、一定比
表面積当たりの真比重を公知のカーボンブラックより低
い特定範囲に設定するとともに、粒子凝集体空隙直径な
らびに凝集体モード径当たりの分布巾を一定値以上に維
持する特性をもつゴム配合用のカーボンブラック(特開
平1−201367号公報) 。 【0006】また、主にトラック、バス用の大型タイヤ
トレッド部材に使用されるN220 、N110 級の
カーボンブラックを対象とするものには、次のような改
良提案がなされている。 (5) N2 SAが 100〜200m2/g の範
囲にあり、粒子径に対して相対的にブロードな凝集体ス
トークス径分布を備えるカーボンブラックを配合したゴ
ム組成物(特開昭63−112638号公報) 。 (6) N2 SAが70〜185m2/g の範囲に
あり、凝集体ストークス径分布が特定範囲の2点の極大
点をもつカーボンブラックを配合したゴム組成物(特開
昭63−179941号公報) 。 (7) N2 SAが 110〜155m2/g の範
囲にあり、DBP、圧縮DBP、ブラックネス、N2 
SAおよびよう素吸着量を変数とする式で定義される値
が特定範囲にある特性のカーボンブラックを配合したゴ
ム組成物(特開昭63−297439号公報) 。 【0007】しかしながら、近年の低燃費タイヤに対す
る要求はますます高度化しており、高水準の反撥弾性を
保持しながらより優れた耐摩耗性を有する低発熱性ゴム
組成物の開発が求められている。本発明者は、この要求
に沿う特性のゴム組成物として、窒素吸着比表面積(N
2SA)が60〜100m2/g のハード系領域に属
し、かつアグリゲート粒間ポアのモード径(Dp)がD
p≦1.543 ×Dstモード径) −55.0の関
係式を満たすファーネスカーボンブラックをゴム成分1
00 重量部に対し35〜100 重量部の割合で配合
したゴム組成物を開発した (特願平2−340732
号) 。 【0008】 【発明が解決しようとする課題】しかしながら、前記先
願発明によるゴム組成物は乗用車や軽トラックのタイヤ
トレッド用としては好適であるが、より過酷条件で使用
される大型のバスやトラックに装備するタイヤトレッド
としては具備特性に不足面があった。 【0009】本発明は、引き続き前記課題を解決するた
めの研究を重ねた結果、N2 SAが60〜160m2
/g 、DBP吸油量が90〜150ml/100gの
ハード系領域に属するカーボンブラックであって、先願
発明とは逆にアグリゲート粒間ポアのモード径がこれま
で知られているカーボンブラックに比べて大きな特性の
ものを選択配合したゴム組成物は、乗用車からトラック
、バスに至る広範囲のタイヤトレッドに適合し得る反撥
弾性(低発熱性)と耐摩耗性を兼備する事実を解明して
開発されたものである。 【0010】したがって本発明の目的は、乗用車からト
ラック、バスに至る低燃費タイヤトレッド用として好適
な低発熱性を保持しながら高度の耐摩耗性能を発揮する
ゴム組成物を提供することにある。 【0011】 【課題を解決するための手段】上記の目的を達成するた
めの本発明によるゴム組成物は、窒素吸着比表面積(N
2SA)が60〜160m2/g 、DBP吸油量(D
BP) が90〜150ml/100gのハード系領域
に属し、かつ下記の選択的特性を備えるカーボンブラッ
クをゴム成分 100重量部に対し35〜100 重量
部の割合で配合してなることを構成上の特徴とする。 Dp モード径  ≧ 1.543  × (Dstモ
ード径) −30.0但し、Dp モード径は示差走査
熱量計(DSC) により測定されるカーボンブラック
粒間のポア径分布における最大頻度のモード径を指し、
Dstモード径はディスクセントリフュージ装置(DS
C) により測定されるカーボンブラックアグリゲート
のストークスモード径を指す。 【0012】上記構成によるカーボンブラックの各特性
は、以下の測定方法によって得られる値が用いられる。 窒素吸着比表面積(N2SA);ASTM  D303
7−88  “Standard Test Meth
od for Carbon Black−Surfa
ceArea by Nitrogen Absorp
tion ”MethodBによる。この方法によるI
RB#6の測定値は、76m2/gである。 DBP吸油量(DBP) ;JIS  K6221(1
982)「ゴム用カーボンブラックの試験方法」6 ・
1 ・2 項、吸油量A法による。この方法によるIR
B#6の測定値は、99.0ml/100g である。 【0013】Dp モード径 ;JIS  K6221
(1982) 5「乾燥試料の作り方」に基づいて乾燥
したのち、精秤採取したカーボンブラック試料を蒸留水
と混合してカーボンブラック濃度0.250g/cm3
のペーストを作成し、超音波で十分に分散させる。超音
波分散後10分以内に示差走査熱量計(DSC, Me
ttler 社製 DSC30)でアグリゲート粒間ポ
アの分布測定を開始する。この場合のペースト採取量は
約3〜5mgの範囲内とし、アルミ製のサンプル容器に
入れシールしたのち、ペーストの質量を確認し前記DS
C装置にセットし、次のステップで測定する。■室温か
ら−80℃まで急冷する。■−80℃から−5℃まで1
0℃/min. の速度で加熱する。■−5℃から−0
.1 ℃まで1℃/min. の速度で加熱したのち、
−0.1 ℃ (蒸留水の凝固点より0.1 ℃低い温
度) に10分間保持する。■−0.1 ℃から−8℃
まで0.1℃/min. の速度で徐々に冷却し、補償
エネルギーを記録する。そして、■の段階で得られた補
償エネルギーのチャートから各温度(0.1℃刻み) 
の山の高さ(y) を読み取り、下記(2) 、(3)
 式からアグリゲート粒間のポア径(Dp)およびポア
分布 (△ V/△ Dp)を得る。 Dp = (135.34/ΔT)+1.14  ……
(2)ΔV /ΔDp= K・ (ΔT)2/Wa×y
 …(3)(2) 、(3) 式において、ΔT は蒸
留水の凝固点降下幅、Waは蒸留水の凝固熱、K はD
SC装置の感度やサンプルの質量を考慮に入れたファク
ターである。これらの式はBrunらによって導かれた
もので、Thermochimica Acta,21
(1977)59〜88“A NEW METHOD 
FOR THE SIMULTANEOUS DETE
RMINATION OF THE SIZE AND
THE SHAPE OF PORES : THE 
THERMOPOROMETRY”に詳説されている。 なお、この方法で測定したASTM  D−24 St
andard Reference Black C−
3(N234) のDp モード径は、77.6nmで
あった。 【0014】Dstモード径;乾燥カーボンブラックを
少量の界面活性剤を含む20%エタノール水溶液と混合
してカーボンブラック濃度50ml/lの分散液を作成
し、これを超音波で十分に分散させて試料とする。ディ
スクセントリフュージ装置〔英国 Joyes Lob
el社製〕を8000rpm の回転速度に設定し、ス
ピン液(2%グリセリン溶液) を10ml加えたのち
1mlのバッファー液 (エタノール水溶液) を注入
する。ついで、カーボンブラック分散液 0.5mlを
注射器で加えて遠心沈降を開始し、同時に記録計を作動
させて光学的にアグリゲート・ストークス相当径の分布
曲線を作成する。得られた分布曲線における最大頻度の
ストークス相当径を、Dstモード径とする。この方法
で測定したASTM  D−24 Standard 
Reference Black C−3(N234)
 のDstモード径は80nmであった。 【0015】本発明で特定したカーボンブラック特性項
目のうち、窒素吸着比表面積(N2SA)が60〜16
0m2/g の粒子径範囲およびDBP吸油量90〜1
50ml/100gのストラクチャー範囲は通常品種の
ハード系領域に属し、配合ゴムに高度の耐摩耗性を付与
するとともに適度の低発熱性を保持させるための前提要
件となる。この窒素吸着比表面積(N2SA)が60m
2/g未満では耐摩耗性の低下が著しく、他方160m
2/g を越えるとゴムに対する分散性が悪化して耐摩
耗性が円滑に向上せず、発熱性も増大する。また、DB
P吸油量が90ml/100g 未満では耐摩耗性が損
なわれ、150ml/100gを上廻る場合にはアイス
スキッド性が低下して安全性能の減退を招く。 【0016】本発明において設定したDp モード径に
関する選択的特性は、カーボンブラックが強固に融着結
合した凝集体(アグリゲート)性状を示す指標であって
、カーボンブラックのアグリゲート自体の大きさ (D
stモード径) に比べてアグリゲート粒間ポアの大き
さ (Dp モード径) が相対的に大きいことに特徴
付けられる。そして、Dp モード径≧ 1.543×
(Dstモード径) −30.0の要件を満たす場合に
配合ゴムに好適な低発熱性と著しく改善された耐摩耗性
を付与することが可能となる。 【0017】これらの特性を備えるカーボンブラックは
、炉頭部に接線方向の空気供給口と炉軸方向に挿着され
た燃焼バーナーを有する燃焼室と、これに同軸的に連設
された数段の狭径および広径反応ゾーンを備える構造の
オイルファーネス炉を用い、燃料油供給量、空気供給量
などの燃焼条件、狭径反応ゾーンに多段に導入する原料
油の供給量等を制御するとによって製造することができ
る。 【0018】上記のカーボンブラックは、常法に従って
天然ゴム、ジエン系合成ゴム、天然ゴムまたはイソプレ
ンゴムにジエン系合成ゴムを配合したブレンドゴムなど
のエラストマーに配合する。カーボンブラックの配合比
率は、ゴム成分100重量部に対し35〜100 重量
部とし、加硫剤、加硫促進剤、老化防止剤、加硫助剤、
軟化剤、可塑剤等の必要成分とともに混練して本発明の
ゴム組成物を得る。 【0019】 【作用】アグリゲート粒間ポアのDp モード径は, 
カーボンブラック製造工程における反応温度や燃焼ガス
の撹乱度など生成時の条件と密接に関連しており、この
ため生成カーボンブラックのストラクチャーおよび比表
面積との相関要素が大きい。発明者の検討によると、現
在、上市されているカーボンブラックのDp モード径
は下式(4) および(5) の範囲にあることが確認
されている。 Dp モード径=〔75.2×(DBP/N2SA)〕
±3.0Dp モード径=〔1.543 ×(Dstモ
ード径) −42.8±8.0例えば、ASTM  D
−24 Standard Reference Bl
ack C−3(N234) のDp モード径実測値
は77.6nmであるが、この値はそのDstモード径
実測値80nmから算出される上記 (5)式によるD
p モード径(72.6 〜88.6nm) の範囲に
入っている。 【0020】したがって、本発明で特定されているDp
 モード径は、Dstモード径との関係において (5
)式から算出される値よりも高い水準に位置しており、
この独特な性状が配合ゴムの低発熱性を損ねることなし
に耐摩耗性を増大するために有効機能するものと推測さ
れる。この機能はDp モード径を低水準に設定した特
願平2−340732号発明が耐摩耗性に比べて耐発熱
性の改良巾を大きくしている機能とは相違している。 【0021】前記の機能が前提となる窒素吸着比表面積
およびDBP吸油量によるゴム性能の調整化作用と相俟
って、タイヤトレッドとして好適な低発熱性と高耐摩耗
性を兼備するゴム組成物の提供が可能となる。 【0022】 【実施例】 実施例1〜3、比較例1〜3 炉頭部に接線方向空気供給口と炉軸方向に装着した燃焼
バーナーを有する燃焼室(直径900mm 、長さ10
00mm) を設置し、該燃焼室と同軸的に連結する第
1段狭径反応ゾーン(直径200mm 、長さ600m
m)、第2段狭径反応ゾーン(直径160mm 、長さ
600mm)および引き続く広径反応ゾーン (直径4
00mm)とから構成され、原料油導入ノズルを第1段
と第2段の狭径反応ゾーンに各設置した形態のオイルフ
ァーネス炉を用い、発生条件を変えて3種類のカーボン
ブラックを製造した。原料油としては、比重(15/4
 ℃)1.073、粘度(エングラー40/20 ℃)
2.10 、トルエン不溶分0.03%、相関係数(B
MCI)140 の芳香族炭化水素油を、また燃料油に
は、比重(15/4 ℃)0.903、粘度(Cst/
50 ℃)16.1 、残炭分 5.4%、引火点96
℃の炭化水素油を用いた。 【0023】表1にカーボンブラックの発生条件、表2
に得られたカーボンブラックの特性をそれぞれ実施例 
No.に対応させて表示した。なお、表2の比較例1〜
3は同等のハード系特性を有しながら本発明の選択的特
性要件を外れる従来品種のカーボンブラックである。 【0024】 【表1】       【0025】 【表2】   表注:(1) 〔1.543 ×(Dstモード径
) −30.0〕計算値(表6も同じ)。 (2) 比較例1:N351、比較例2:N347、比
較例3:N339【0026】次に、これらのカーボン
ブラック試料を表3に示す配合比によりスチレンブタジ
エンゴム(SBR) に配合した。 【0027】 【表3】 【0028】表3の配合物を145 ℃の温度で50分
間加硫して得られた各ゴム組成物につき、各種ゴム特性
を測定した結果を表4に示した。なお、ゴム特性の測定
は下記によった。 ■摩耗量 ランボーン摩耗試験機(機械式スリップ機構)を用い、
次の条件で測定した。 試験片:厚さ 10mm 、外径 44mmエメリーホ
イール:GCタイプ、粒度80、硬度 H添加カーボラ
ンダム粉:粒度80メッシュ、添加量  約9g/mi
n. エメリーホイール面と試験片の相対スリップ率:24%
、60% 試験片回転数:535rpm 試験荷重:4kg 【0029】■tanδ(損失係数) 岩本製作所製のVisco Elastic Spec
trometerを用い、次の条件で測定した。 試験片:厚さ2mm、長さ30mm、幅5mm周波数:
50Hz 動的歪率:1.2 % 温  度:60℃ ■その他の特性 JIS  K6301「加硫ゴム物理試験法」によった
。 【0030】 【表4】 【0031】表4から、実施例の結果は同比表面積レベ
ルにありながら本発明の選択的特性要件を外れる比較例
に比べ、低発熱性の指標となるtanδ(損失係数)な
らびに反撥弾性が同等であるにも拘らず耐摩耗性能が有
意に向上していることが認められる。 【0032】実施例4〜5、比較例4〜5実施例1と同
一のオイルファーネス炉、原料油および燃料油を用い、
表5の発生条件により2種類のカーボンブラックを製造
した。 【0033】 【表5】       【0034】得られたカーボンブラックの
特性は、表6のとおりであった。なお、表6に併載した
比較例4、5は同等比表面積を有する既存のカーボンブ
ラックである。 【0035】 【表6】     表注;比較例4:N220、比較例5:N11
0。 【0036】ついで、各カーボンブラックを表7に示す
配合条件で天然ゴムに配合した。 【0037】 【表7】 【0038】表7の配合物を145 ℃の温度で40分
間加硫し、得られたゴム組成物につき各種特性を測定し
た。その結果を表8に示した。 【0039】 【表8】 【0040】表8から、本発明の選択的特性要件を満た
す実施例4、5は天然ゴム配合においても同比表面積レ
ベルの比較例と比べ同等以上の低発熱性と高度の耐摩耗
性が付与されている。 【0041】 【発明の効果】以上のとおり、本発明のゴム組成物には
好適な低発熱性および反撥弾性を保持しながら効果的に
改善された耐摩耗性能が付与される。この両特性の兼備
により、苛酷な走行条件下で高速性、安定性および耐久
性が要求される乗用車からトラック、バスに至るあらゆ
る車種のタイヤトレッド用として極めて有用となる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention provides a rubber composition suitable for use in tire tread members, and more particularly, a rubber composition that exhibits improved wear resistance without impairing low heat generation properties. The present invention relates to a rubber composition. [0002]Recently, as the performance of automobiles increases, demands for high-speed performance, stability performance, and durability performance have increased.
It is an important issue to improve the properties of tire tread members that are involved in these various performances, especially to achieve both wear resistance and low heat generation. In addition, in order to respond to social demands such as resource conservation and energy conservation, the development of fuel-efficient tires is actively underway. It is essential to have these characteristics. [0003] In general, the performance of rubber, such as wear and heat generation, is largely controlled by the properties of the carbon black to be blended, but it is known that these rubber performances have an antinomic relationship. For example, in order to provide the low heat build-up required for fuel-efficient tires, it is effective to incorporate a small amount of carbon black, which has a relatively large particle size, into rubber; A deterioration in characteristics such as braking performance on road surfaces is unavoidable. Additionally, carbon black, which has the characteristics of having the smallest possible particle size and large structure, is effective for tire treads that require a high degree of wear resistance under harsh driving conditions. This increases the heat generation property of the rubber composition, leading to the risk of accelerating phenomena such as destruction of the internal structure due to heat accumulation during running and aging of the constituent materials. [0004] For this reason, in addition to the basic properties of carbon black such as particle size (specific surface area) and structure, other properties were micro-evaluated, and carbon black with specific selective properties was blended into rubber. Many techniques have been proposed to simultaneously improve wear resistance and low heat generation. Among these, the following proposals target N339 class carbon black, which is often used as tire treads for passenger cars and light trucks. (1) Nitrogen adsorption specific surface area (N2SA) is 60m2/g
As described above, carbon black for rubber compounding (Japanese Patent Publication No. 1-53978) has a compressed DBP in a range of 112 ml/100 g or more and a Stokes mode diameter and a Stokes mode distribution of carbon black aggregates of a certain value or more. (2) N2 SA is 60m2/g or more, DBP is 10
8 ml/100 g or more, the true specific gravity per specific surface area is set to a specific range that is significantly lower than that of known carbon blacks, and the coloring power and distribution width per aggregate mode diameter are controlled to above a certain value. Rubber composition containing black (Japanese Patent Application Laid-Open No. 59-14024
Publication No. 1). (3) N2 SA is 65 to 84 m2/g, N2 SA
/iodine adsorption amount (IA) ratio is in the range of 1.10 to 1.35, and the value defined by the formula using compressed DBP, blackness, IA, and aggregate mode diameter as variables is greater than a specific value. Carbon black for rubber compounding with set properties (
JP-A-63-225639). (4) N2 SA is 75-105m2/g, compression D
The BP is in the range of 110 ml/100 g or more, the true specific gravity per certain specific surface area is set to a specific range lower than that of known carbon black, and the distribution width per particle aggregate pore diameter and aggregate mode diameter is set to a certain value or more. carbon black for rubber compounding which has the property of maintaining [0006] Further, the following improvement proposals have been made for N220 and N110 class carbon blacks, which are mainly used in large tire tread members for trucks and buses. (5) A rubber composition containing carbon black having an N2 SA in the range of 100 to 200 m2/g and having a relatively broad aggregate Stokes size distribution with respect to the particle size (Japanese Patent Application Laid-open No. 112638/1983) ). (6) A rubber composition containing carbon black having an N2 SA in the range of 70 to 185 m2/g and an aggregate Stokes diameter distribution having two maximum points in a specific range (Japanese Patent Application Laid-open No. 179941/1983). . (7) N2 SA is in the range of 110 to 155 m2/g, DBP, compressed DBP, blackness, N2
A rubber composition containing carbon black whose value is within a specific range defined by a formula using SA and iodine adsorption as variables (Japanese Unexamined Patent Publication No. 63-297439). However, in recent years, demands for fuel-efficient tires have become increasingly sophisticated, and there is a demand for the development of low heat generation rubber compositions that have superior abrasion resistance while maintaining a high level of rebound. . The present inventor has developed a rubber composition with characteristics that meet this requirement, with a nitrogen adsorption specific surface area (N
2SA) belongs to the hard type region of 60 to 100 m2/g, and the mode diameter (Dp) of the aggregate intergranular pores is D.
Furnace carbon black that satisfies the relational expression p≦1.543×Dst mode diameter) -55.0 was used as rubber component 1.
Developed a rubber composition containing 35 to 100 parts by weight to 00 parts by weight (Japanese Patent Application No. 2-340732)
No.). [0008] However, although the rubber composition according to the prior invention is suitable for tire treads of passenger cars and light trucks, it is not suitable for use in large buses and trucks used under more severe conditions. The tire tread installed on the vehicle had some shortcomings in its characteristics. [0009] As a result of continued research to solve the above-mentioned problems, the present invention has developed a system with N2 SA of 60 to 160 m2.
/g, is a carbon black that belongs to the hard type region with a DBP oil absorption of 90 to 150 ml/100 g, and contrary to the prior invention, the mode diameter of aggregate intergranular pores is smaller than that of previously known carbon blacks. The rubber composition, which has been selected and blended with great properties, was developed based on the discovery that it has both rebound resilience (low heat generation) and abrasion resistance, making it suitable for a wide range of tire treads, from passenger cars to trucks and buses. It is something that [0010] Accordingly, an object of the present invention is to provide a rubber composition that exhibits high wear resistance while maintaining low heat generation properties suitable for use in fuel-efficient tire treads for vehicles ranging from passenger cars to trucks and buses. Means for Solving the Problems The rubber composition according to the present invention for achieving the above object has a nitrogen adsorption specific surface area (N
2SA) is 60-160m2/g, DBP oil absorption (D
BP) belongs to the hard type range of 90 to 150 ml/100 g, and carbon black having the following selective properties is blended at a ratio of 35 to 100 parts by weight per 100 parts by weight of the rubber component. Features. Dp mode diameter ≧ 1.543 × (Dst mode diameter) -30.0 However, Dp mode diameter refers to the mode diameter of the maximum frequency in the pore diameter distribution between carbon black particles measured by differential scanning calorimeter (DSC). ,
The Dst mode diameter is the disk centrifuge device (DS
C) refers to the Stokes mode diameter of carbon black aggregate measured by [0012] For each characteristic of the carbon black having the above structure, values obtained by the following measuring method are used. Nitrogen adsorption specific surface area (N2SA); ASTM D303
7-88 “Standard Test Meth
od for Carbon Black-Surfa
ceArea by Nitrogen Absorp
tion” by MethodB.I by this method
The measured value of RB#6 is 76 m2/g. DBP oil absorption (DBP); JIS K6221 (1
982) “Testing method for carbon black for rubber” 6 ・
Items 1 and 2, based on oil absorption method A. IR using this method
The measured value of B#6 is 99.0ml/100g. [0013] Dp mode diameter; JIS K6221
(1982) 5. After drying based on "How to prepare a dry sample", a precisely weighed carbon black sample was mixed with distilled water to obtain a carbon black concentration of 0.250 g/cm3.
Create a paste and thoroughly disperse it using ultrasound. Within 10 minutes after ultrasonic dispersion, a differential scanning calorimeter (DSC, Me
Start measuring the distribution of aggregate intergranular pores using DSC30 (manufactured by Ttler). In this case, the amount of paste to be collected should be within the range of approximately 3 to 5 mg, and after placing it in an aluminum sample container and sealing it, confirm the mass of the paste and use the DS mentioned above.
Set it in the C device and measure in the next step. ■Quickly cool from room temperature to -80℃. ■From -80℃ to -5℃1
0°C/min. Heat at a speed of ■-5℃ to -0
.. 1°C/min. After heating at a rate of
Maintain at -0.1°C (0.1°C lower than the freezing point of distilled water) for 10 minutes. ■-0.1℃ to -8℃
up to 0.1°C/min. Cool gradually at a rate of and record the compensation energy. Then, from the chart of compensation energy obtained in step ■, each temperature (in 0.1°C increments)
Read the height (y) of the mountain and perform the following (2) and (3).
The pore diameter (Dp) and pore distribution (ΔV/ΔDp) between aggregate particles are obtained from the equation. Dp = (135.34/ΔT)+1.14...
(2) ΔV /ΔDp=K・(ΔT)2/Wa×y
...(3) In the equations (2) and (3), ΔT is the freezing point depression width of distilled water, Wa is the heat of solidification of distilled water, and K is D
This is a factor that takes into account the sensitivity of the SC device and the mass of the sample. These formulas were derived by Brun et al., Thermochimica Acta, 21
(1977) 59-88 “A NEW METHOD”
FOR THE SIMULTANEOUS DETE
RMINATION OF THE SIZE AND
THE SHAPE OF PORES: THE
THERMOPOROMETRY”. In addition, ASTM D-24 St
andard Reference Black C-
The Dp mode diameter of 3(N234) was 77.6 nm. Dst mode diameter: Dry carbon black is mixed with a 20% aqueous ethanol solution containing a small amount of surfactant to create a dispersion liquid with a carbon black concentration of 50 ml/l, and this is sufficiently dispersed with ultrasonic waves to prepare a sample. shall be. Disc centrifuge device [UK Joyes Lob
[manufactured by El Corporation] was set at a rotation speed of 8,000 rpm, 10 ml of spin solution (2% glycerin solution) was added, and 1 ml of buffer solution (ethanol aqueous solution) was injected. Next, 0.5 ml of the carbon black dispersion liquid is added with a syringe to start centrifugal sedimentation, and at the same time, a recorder is activated to optically create a distribution curve of the aggregate Stokes equivalent diameter. The Stokes equivalent diameter of the maximum frequency in the obtained distribution curve is defined as the Dst mode diameter. ASTM D-24 Standard measured using this method
Reference Black C-3 (N234)
The Dst mode diameter of was 80 nm. Among the carbon black characteristic items specified in the present invention, nitrogen adsorption specific surface area (N2SA) is 60 to 16
Particle size range of 0m2/g and DBP oil absorption 90~1
The structure range of 50 ml/100 g belongs to the hard type range of ordinary products, and is a prerequisite for imparting a high degree of abrasion resistance to compounded rubber and maintaining an appropriate low heat generation property. This nitrogen adsorption specific surface area (N2SA) is 60m
If it is less than 2/g, the abrasion resistance will be significantly reduced;
If it exceeds 2/g, the dispersibility in rubber deteriorates, wear resistance does not improve smoothly, and heat generation also increases. Also, D.B.
If the P oil absorption amount is less than 90 ml/100 g, the wear resistance will be impaired, and if it exceeds 150 ml/100 g, the ice skid property will decrease, leading to a decline in safety performance. The selective characteristic regarding the Dp mode diameter set in the present invention is an index indicating the properties of aggregates in which carbon black is firmly fused and bonded, and is determined by the size of the carbon black aggregate itself ( D
It is characterized in that the size of the aggregate intergranular pores (Dp mode diameter) is relatively large compared to the Dp mode diameter). And Dp mode diameter ≧ 1.543×
(Dst mode diameter) When the requirement of -30.0 is satisfied, it becomes possible to impart suitable low heat build-up and significantly improved abrasion resistance to the compounded rubber. [0017] Carbon black with these characteristics has a combustion chamber having an air supply port in the tangential direction at the furnace head and a combustion burner inserted in the axial direction of the furnace, and several stages coaxially connected to the combustion chamber. By using an oil furnace with a structure that has a narrow diameter reaction zone and a wide diameter reaction zone, combustion conditions such as fuel oil supply amount and air supply amount, feed amount of feedstock oil introduced in multiple stages into the narrow diameter reaction zone, etc. are controlled. can be manufactured. The above-mentioned carbon black is blended into an elastomer such as natural rubber, diene-based synthetic rubber, or a blended rubber obtained by blending diene-based synthetic rubber with natural rubber or isoprene rubber in accordance with a conventional method. The blending ratio of carbon black is 35 to 100 parts by weight per 100 parts by weight of the rubber component, and it is combined with a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a vulcanization aid,
The rubber composition of the present invention is obtained by kneading with necessary components such as a softener and a plasticizer. [Operation] The Dp mode diameter of the aggregate intergranular pores is
It is closely related to the conditions during production, such as the reaction temperature and degree of disturbance of combustion gas in the carbon black production process, and therefore has a large correlation with the structure and specific surface area of the produced carbon black. According to the inventor's study, it has been confirmed that the Dp mode diameter of carbon black currently on the market is within the range of formulas (4) and (5) below. Dp mode diameter = [75.2 x (DBP/N2SA)]
±3.0Dp mode diameter = [1.543 × (Dst mode diameter) -42.8±8.0 For example, ASTM D
-24 Standard Reference Bl
The actual measured Dp mode diameter of ack C-3 (N234) is 77.6 nm, but this value is calculated from the actual measured Dst mode diameter of 80 nm, which is calculated from the above equation (5).
The p mode diameter is within the range of 72.6 to 88.6 nm. [0020] Therefore, the Dp specified in the present invention
The mode diameter is determined in relation to the Dst mode diameter (5
) is located at a higher level than the value calculated from the formula,
It is presumed that this unique property functions effectively to increase the abrasion resistance of the compounded rubber without impairing its low heat build-up properties. This function is different from the function of the invention of Japanese Patent Application No. 2-340732 in which the Dp mode diameter is set to a low level, which improves the heat resistance to a greater extent than the wear resistance. [0021] The above functions are premised on a rubber composition that combines low heat build-up and high abrasion resistance and is suitable for tire treads, in conjunction with the ability to adjust rubber performance through nitrogen adsorption specific surface area and DBP oil absorption. It becomes possible to provide [Example] Examples 1 to 3, Comparative Examples 1 to 3 A combustion chamber (diameter 900 mm, length 10
A first stage narrow-diameter reaction zone (diameter 200 mm, length 600 m) is installed and coaxially connected to the combustion chamber.
m), a second stage narrow-diameter reaction zone (diameter 160 mm, length 600 mm) and a subsequent wide-diameter reaction zone (diameter 4
Three types of carbon black were produced by changing the generation conditions using an oil furnace consisting of a 100 mm diameter oil furnace with feedstock oil introduction nozzles installed in each of the first and second narrow-diameter reaction zones. As raw material oil, specific gravity (15/4
°C) 1.073, viscosity (Engler 40/20 °C)
2.10, toluene insoluble content 0.03%, correlation coefficient (B
Aromatic hydrocarbon oil with MCI) 140 and fuel oil with specific gravity (15/4 °C) 0.903 and viscosity (Cst/
50℃) 16.1, residual coal content 5.4%, flash point 96
℃ hydrocarbon oil was used. Table 1 shows carbon black generation conditions, Table 2
Examples of the characteristics of carbon black obtained in
No. Displayed in accordance with. In addition, Comparative Examples 1 to 1 in Table 2
No. 3 is a conventional type of carbon black that has equivalent hard properties but does not meet the selective property requirements of the present invention. [Table 1] [Table 2] Table note: (1) [1.543×(Dst mode diameter) −30.0] Calculated value (same for Table 6). (2) Comparative Example 1: N351, Comparative Example 2: N347, Comparative Example 3: N339 Next, these carbon black samples were blended into styrene-butadiene rubber (SBR) at the blending ratio shown in Table 3. Table 4 shows the results of measuring various rubber properties for each rubber composition obtained by vulcanizing the formulations in Table 3 at a temperature of 145° C. for 50 minutes. The rubber properties were measured as follows. ■Wear amount Using a Lambourne abrasion tester (mechanical slip mechanism),
Measurement was performed under the following conditions. Test piece: Thickness 10mm, outer diameter 44mm Emery wheel: GC type, particle size 80, hardness H-added carborundum powder: particle size 80 mesh, addition amount approximately 9g/mi
n. Relative slip rate between emery wheel surface and test piece: 24%
, 60% Test piece rotation speed: 535 rpm Test load: 4 kg 0029 ■ tan δ (loss coefficient) Visco Elastic Spec manufactured by Iwamoto Seisakusho
It was measured using a trometer under the following conditions. Test piece: 2mm thick, 30mm long, 5mm wide Frequency:
50Hz Dynamic strain rate: 1.2% Temperature: 60°C ■Other properties According to JIS K6301 "Vulcanized Rubber Physical Test Method". [Table 4] From Table 4, the results of the examples show that tan δ (loss coefficient ) and impact resilience were the same, but it was recognized that the wear resistance performance was significantly improved. Examples 4-5, Comparative Examples 4-5 Using the same oil furnace, raw material oil and fuel oil as in Example 1,
Two types of carbon black were produced under the generation conditions shown in Table 5. [Table 5] The properties of the obtained carbon black are as shown in Table 6. Note that Comparative Examples 4 and 5 listed in Table 6 are existing carbon blacks having the same specific surface area. [Table 6] Table note; Comparative example 4: N220, Comparative example 5: N11
0. Next, each carbon black was blended with natural rubber under the blending conditions shown in Table 7. [0037] [0038] The formulation shown in Table 7 was vulcanized at a temperature of 145°C for 40 minutes, and various properties of the obtained rubber composition were measured. The results are shown in Table 8. [Table 8] From Table 8, Examples 4 and 5, which meet the selective property requirements of the present invention, have low heat build-up and high-grade properties that are equal to or higher than those of the comparative example with the same specific surface area level even when compounded with natural rubber. It has abrasion resistance. [0041] As described above, the rubber composition of the present invention is provided with effectively improved abrasion resistance while maintaining suitable low heat generation properties and rebound resilience. The combination of these properties makes it extremely useful for tire treads of all types of vehicles, from passenger cars to trucks and buses, which require high speed, stability, and durability under severe driving conditions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  窒素吸着比表面積(N2SA)が60
〜160m2/g 、DBP吸油量(DBP) が90
〜150ml/100gのハード系領域に属し、かつ下
記の選択的特性を備えるファーネスカーボンブラックを
ゴム成分 100重量部に対し35〜100 重量部の
割合で配合してなることを特徴とするゴム組成物。 Dp モード径  ≧ 1.543  × (Dstモ
ード径) −30.0但し、Dp モード径は示差走査
熱量計(DSC) により測定されるカーボンブラック
粒間のポア径分布における最大頻度のモード径を指し、
Dstモード径はディスクセントリフュージ装置(DC
F) により測定されるカーボンブラックのストークス
モード径を指す。
[Claim 1] Nitrogen adsorption specific surface area (N2SA) is 60
~160m2/g, DBP oil absorption (DBP) is 90
~150ml/100g A rubber composition characterized by being blended with furnace carbon black belonging to the hard type region and having the following selective properties at a ratio of 35 to 100 parts by weight per 100 parts by weight of the rubber component. . Dp mode diameter ≧ 1.543 × (Dst mode diameter) -30.0 However, Dp mode diameter refers to the mode diameter of the maximum frequency in the pore diameter distribution between carbon black particles measured by differential scanning calorimeter (DSC). ,
The Dst mode diameter is the disc centrifuge device (DC
F) refers to the Stokes mode diameter of carbon black measured by
JP17312991A 1991-06-17 1991-06-17 Rubber composition Expired - Fee Related JP2593115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17312991A JP2593115B2 (en) 1991-06-17 1991-06-17 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17312991A JP2593115B2 (en) 1991-06-17 1991-06-17 Rubber composition

Publications (2)

Publication Number Publication Date
JPH04370126A true JPH04370126A (en) 1992-12-22
JP2593115B2 JP2593115B2 (en) 1997-03-26

Family

ID=15954665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17312991A Expired - Fee Related JP2593115B2 (en) 1991-06-17 1991-06-17 Rubber composition

Country Status (1)

Country Link
JP (1) JP2593115B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100512133B1 (en) * 2002-05-31 2005-09-02 금호타이어 주식회사 The tire tread rubber composition with improved abrasion resistance and rolling resistance
WO2011018887A1 (en) * 2009-08-12 2011-02-17 新日化カーボン株式会社 Hard carbon black and rubber composition
JP2011037995A (en) * 2009-08-12 2011-02-24 Nippon Steel Chemical Carbon Co Ltd Hard carbon black

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100512133B1 (en) * 2002-05-31 2005-09-02 금호타이어 주식회사 The tire tread rubber composition with improved abrasion resistance and rolling resistance
WO2011018887A1 (en) * 2009-08-12 2011-02-17 新日化カーボン株式会社 Hard carbon black and rubber composition
JP2011037995A (en) * 2009-08-12 2011-02-24 Nippon Steel Chemical Carbon Co Ltd Hard carbon black
CN102471608A (en) * 2009-08-12 2012-05-23 新日化碳株式会社 Hard carbon black and rubber composition
JPWO2011018887A1 (en) * 2009-08-12 2013-01-17 新日化カーボン株式会社 Hard carbon black and rubber composition

Also Published As

Publication number Publication date
JP2593115B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
JPH0415268A (en) Carbon black and rubber composition containing the same
JP2631994B2 (en) Carbon black for tire tread
JP2593113B2 (en) Rubber composition
JP3316249B2 (en) Rubber composition
JP3461396B2 (en) Rubber composition for tire tread
JP3283953B2 (en) Rubber composition
JPH07292157A (en) Rubber composition
JP2729975B2 (en) Rubber composition
JP3816541B2 (en) Rubber composition
KR950012929B1 (en) Rubber composition
JPH04370126A (en) Rubber composition
JP3316267B2 (en) Rubber composition for tire tread
JP3517756B2 (en) Rubber composition for tire tread
JP3283942B2 (en) Rubber composition
JP2562338B2 (en) Rubber composition for tires
JP2729973B2 (en) Rubber composition
JP3806447B2 (en) Rubber composition for tire tread
JP3407810B2 (en) Rubber composition
JP3510656B2 (en) Rubber composition
JP2649189B2 (en) Rubber composition
JP3316248B2 (en) Rubber composition
JP3434353B2 (en) Rubber composition for large tire tread
JP2729972B2 (en) Rubber composition
JP2649201B2 (en) Rubber composition
JP3101772B2 (en) Rubber composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees