JPH04369466A - Abnormality detector of gas filled electric machinery - Google Patents

Abnormality detector of gas filled electric machinery

Info

Publication number
JPH04369466A
JPH04369466A JP3170517A JP17051791A JPH04369466A JP H04369466 A JPH04369466 A JP H04369466A JP 3170517 A JP3170517 A JP 3170517A JP 17051791 A JP17051791 A JP 17051791A JP H04369466 A JPH04369466 A JP H04369466A
Authority
JP
Japan
Prior art keywords
gas
light
detection element
decomposed
decomposed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3170517A
Other languages
Japanese (ja)
Inventor
Toshiro Kamiya
神谷 俊郎
Junichi Yano
純一 矢野
Kazuhiko Sato
一彦 佐藤
Yoshitaka Kondo
近藤 芳孝
Shogo Kajita
梶田 省吾
Sumio Nochida
後田 澄夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP3170517A priority Critical patent/JPH04369466A/en
Publication of JPH04369466A publication Critical patent/JPH04369466A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Relating To Insulation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To estimate and maintain the abnormal state of gas filled electric machinery by detecting the decomposed gas of insulated gas thermally decomposed by overheating or partial discharge by an optical detection means. CONSTITUTION:A decomposed gas detection element 14 composed of a material easy to react with decomposed gas is provided in an insulating gas passage so as to be freely detachable from the outside. When the decomposed gas detection element 14 is exposed to decomposed gas to receive corrosion, the transmissivity of the light applied to the detection element 14 is measured to be compared with a preset reference value by an electrical means and, when difference is generated between the reference value and the transmissivity, the generation of the decomposed gas is detected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガス絶縁変圧器等絶縁
及び冷却のために電気機器本体を絶縁ガスとともにタン
ク内に収容したガス封入電気機器において、前記電気機
器本体等の部分放電や局部過熱等によって生ずる分解ガ
スの存在を検出し、電気機器本体の機能喪失や損傷に至
る事故を未然に防止するようにしたガス封入電気機器の
異常検出装置に関する。
[Industrial Field of Application] The present invention relates to gas-filled electrical equipment such as a gas insulated transformer, in which the main body of the electrical equipment is housed in a tank together with an insulating gas for insulation and cooling. The present invention relates to an abnormality detection device for gas-filled electrical equipment that detects the presence of decomposed gas caused by overheating, etc., and prevents accidents that may lead to loss of function or damage to the electrical equipment itself.

【0002】0002

【従来の技術】従来から、例えば、変圧器のような電気
機器においては、機器本体を収容したタンク内に絶縁及
び冷却性能に優れた絶縁油を封入した油入変圧器が主流
をなしているが、この油入変圧器は、異常過熱による故
障が発生すると、絶縁油が引火・爆発したりして周囲建
造物に火災等の2次的災害を発生させるおそれがある。 特に、近年電力需要の増大に伴い、受・変電用の電気機
器はその設置場所確保の困難性から、市街地周辺のビル
の地下等に設置することが多く、この結果、変圧器等に
は設置環境の変化により、火災発生及び環境破壊のおそ
れのない安全性に優れたものが社会的に要求されている
[Prior Art] Conventionally, for example, in electrical equipment such as transformers, oil-immersed transformers have been the mainstream, in which an insulating oil with excellent insulation and cooling performance is sealed in a tank housing the equipment body. However, if this oil-immersed transformer malfunctions due to abnormal overheating, the insulating oil may catch fire or explode, causing secondary disasters such as fire to surrounding buildings. In particular, with the increase in demand for electricity in recent years, electrical equipment for receiving and transforming power is often installed in the basements of buildings around urban areas due to the difficulty of securing installation locations. Due to changes in the environment, there is a social demand for products with excellent safety without the risk of fire outbreaks or environmental destruction.

【0003】然るに、最近前記油入変圧器に代わって火
災発生等のおそれがなく、しかも、油入冷却方式に比べ
て小形、軽量化した防災及び信頼性に優れたガス絶縁変
圧器が採用されるようになってきた。このガス絶縁変圧
器は機器本体を収容したタンク内に、前記絶縁油に代わ
る冷却媒体としてSF6 ガス(六弗化硫黄ガス)等の
絶縁ガスを封入し、機器本体の絶縁及び冷却に供せられ
ている。そして、故障等によりタンク内が異常高温とな
っても、火災発生のおそれがほとんどなく、かつ、周囲
環境にも悪影響を与えることが少ないため、市街地やビ
ル地下等の設置に最適である。
Recently, however, gas-insulated transformers have been adopted in place of the oil-immersed transformers, which are less likely to cause fires, are smaller and lighter than oil-immersed cooling systems, and are superior in disaster prevention and reliability. It's starting to happen. In this gas insulated transformer, an insulating gas such as SF6 gas (sulfur hexafluoride gas) is filled as a cooling medium in place of the insulating oil in a tank that houses the main body of the device, and is used to insulate and cool the main body of the device. ing. Even if the temperature inside the tank becomes abnormally high due to a malfunction or the like, there is almost no risk of a fire breaking out, and there is little negative impact on the surrounding environment, making it ideal for installation in urban areas or underground buildings.

【0004】一方、変圧器等の電気機器は電力の安定供
給の面から考えて事故による運転停止は避けなければな
らない。しかし、変圧器等の場合、例えば、洩れ磁束に
よりタンクや機器本体を構成する構造部材に渦電流が流
れて局部的に異常過熱が発生したり、導体接続部の不完
全接触による発熱、更には、部分放電により生ずる絶縁
劣化や絶縁物の経年劣化による発熱等多くの異常発生要
因があり、これらの異常が拡大進展すると、大事故につ
ながり、電力の供給停止をもたらす原因となる。
On the other hand, from the viewpoint of stable supply of electric power, it is necessary to avoid stopping the operation of electrical equipment such as transformers due to accidents. However, in the case of transformers, for example, leakage magnetic flux may cause eddy currents to flow in the structural members that make up the tank or the equipment body, causing localized abnormal overheating, heat generation due to incomplete contact between conductor connections, and even heat generation. There are many causes of abnormalities, such as insulation deterioration caused by partial discharge and heat generation due to aging of insulators, and if these abnormalities expand and progress, they can lead to major accidents and cause power supply interruptions.

【0005】[0005]

【発明が解決しようとする課題】前記のように、電気機
器の内部異常を早期に発見したり検出することは、電気
機器の大事故を未然に防ぐ上から非常に大事なことであ
る。例えば、前記電気機器本体に内部異常が発生すると
、前記内部異常により例えば、過熱した巻線導体(CU
)とSF6 ガス等の絶縁ガスが直接反応してSF4 
ガス等の分解ガスが生成されるため、これらの分解ガス
の有無を調べることによって、機器本体が異常をきたし
ているか、否かを容易に知ることが可能となる。従って
、SF6 ガス等の絶縁ガスを用いたガス絶縁変圧器に
おいても同様であり、機器本体に異常が生じたか、否か
を判断するために絶縁ガスを常時又は定期的に検出し分
析する必要がある。然るに、従来、前記分解ガスの検出
に際しては、例えば、変圧器のタンク内からガスを採取
し、これをガスクロマトグラフや質量分析器等を用いて
、前記採取したガス中に分解ガスが含まれているか、ど
うかを分析することにより、機器本体の異常検出を行っ
ていたが、次のような問題があった。
[Problems to be Solved by the Invention] As mentioned above, early discovery or detection of internal abnormalities in electrical equipment is extremely important from the perspective of preventing major accidents involving electrical equipment. For example, if an internal abnormality occurs in the main body of the electrical equipment, the internal abnormality may cause an overheated winding conductor (CU
) and an insulating gas such as SF6 gas react directly to form SF4.
Since decomposed gases such as gases are generated, by checking the presence or absence of these decomposed gases, it is possible to easily know whether or not the main body of the device is malfunctioning. Therefore, the same applies to gas insulated transformers that use insulating gas such as SF6 gas, and it is necessary to constantly or periodically detect and analyze the insulating gas in order to determine whether an abnormality has occurred in the equipment itself. be. However, conventionally, when detecting the decomposed gas, for example, gas is sampled from inside the tank of a transformer, and a gas chromatograph, a mass spectrometer, etc. are used to detect whether the decomposed gas is contained in the sampled gas. Anomalies in the device itself were detected by analyzing whether or not the device was present, but there were the following problems.

【0006】(1)  機器本体の内部異常の有無を確
認するに際しては、タンク内のガスを一旦ボンベに採り
、これをガスクロマトグラフ等の分析器がある場所まで
運んで分解ガス有無の検出作業を行っていたので、検出
に手間と時間がかかるとともに、この間にも機器本体の
異常が進行していると、機器の大事故を未然に予測・保
全することができなくなる問題があった。 (2)  又、前記のガス採取作業は、変圧器の活線状
態下で行わなければならないので、非常に危険であると
ともに、採取量はタンク内のガスを多量に採取すると、
タンク内のガス圧が低下してしまうため、おのずと限度
があり、この結果、異常の規模が小さい場合とか、異常
発生の初期段階では、分析器による検出感度以下になる
ことが多く、異常を早期に検出できないという問題もあ
った。
(1) When checking whether there is an internal abnormality in the main body of the device, the gas in the tank is first collected into a cylinder, and the gas is transported to a place where an analyzer such as a gas chromatograph is located to detect the presence or absence of decomposed gas. As a result, detection was time-consuming and labor-intensive, and if the abnormality of the equipment continued to develop during this time, there was a problem in that it would be impossible to predict and maintain a major equipment accident. (2) Furthermore, the gas sampling work described above must be carried out with the transformer's live wires, which is extremely dangerous, and the amount of gas sampled is very large.
Because the gas pressure in the tank decreases, there is a natural limit.As a result, when the scale of the abnormality is small or in the early stages of an abnormality, the detection sensitivity of the analyzer is often below, and the abnormality can be detected early. There was also the problem that it could not be detected.

【0007】本発明は、前記の問題点に鑑み、絶縁ガス
の過熱及び部分放電等によって生成される分解ガスを必
要時連続的にモニターすることにより、電気機器の異常
発生の初期段階等軽微な時点で迅速・確実に検出し、電
気機器の異常状態を早期に予測・保全できるようにした
ガス封入電気機器の異常検出装置を提供することにある
In view of the above-mentioned problems, the present invention continuously monitors decomposed gas generated by overheating of insulating gas and partial discharge, etc. when necessary, thereby detecting minor abnormalities such as those in the early stages of abnormality in electrical equipment. An object of the present invention is to provide an abnormality detection device for gas-filled electrical equipment that can quickly and reliably detect the abnormal state of the electrical equipment at an early stage and enable early prediction and maintenance of the abnormal state of the electrical equipment.

【0008】[0008]

【課題を解決するための手段】本発明は、前記の問題点
を解決するために、機器本体を収容したタンクと、SF
6 等の絶縁ガスを冷却する冷却装置との間で配管接続
したガス流通管の途中に、ガス異常検出装置を取付け、
このガス異常検出装置は、前記ガス流通管内に配置した
分解ガスと反応しやすい材料からなる分解ガス検出素子
と、前記検出素子と直交する方向においてガス流通管の
外部に配設した発光素子及び受光素子と、光を案内する
ための光フアイバーと、受光素子にて受光された光の微
少な信号出力を演算増幅する演算増幅回路と、あらかじ
め、設定された基準値に相当する信号を出力する基準信
号発生回路と、前記演算増幅回路からの出力と基準信号
発生回路の出力とを比較して演算増幅回路からの出力が
上回った場合、出力信号を出力する比較回路と、比較回
路からの出力を例えばデジタル化してデータ処理を行う
信号処理回路と、前記処理された信号の入力によってガ
ス封入電気機器の異常を表示(警報)する装置とを備え
て構成したことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a tank containing a device main body, and an SF
A gas abnormality detection device is installed in the middle of the gas distribution pipe connected to the cooling device that cools the insulating gas such as 6.
This gas abnormality detection device includes a decomposed gas detection element made of a material that easily reacts with the decomposed gas arranged in the gas distribution pipe, and a light emitting element and a light receiving element arranged outside the gas distribution pipe in a direction perpendicular to the detection element. element, an optical fiber for guiding light, an operational amplifier circuit that operationally amplifies the minute signal output of the light received by the light receiving element, and a standard that outputs a signal corresponding to a preset reference value. The output from the signal generation circuit and the operational amplifier circuit is compared with the output from the reference signal generation circuit, and if the output from the operational amplifier circuit exceeds the output from the operational amplifier circuit, the comparison circuit outputs the output signal and the output from the comparison circuit is For example, it is characterized by being configured to include a signal processing circuit that performs digitization and data processing, and a device that displays (alarms) an abnormality in gas-filled electrical equipment by inputting the processed signal.

【0009】[0009]

【作用】本発明によれば、ガス流通管内に配置した分解
ガス検出素子として、SF6 ガス等の絶縁ガスを充満
させたガス絶縁電気機器内で発生する異常状態、例えば
、部分放電等によって生成されるSO2,SF4 等の
分解ガスと極めて反応し易い材料、例えば、シリカ(S
IO2 )を主体としたガラス基板を単独で用いたり、
前記ガラス基板の表面に、銅(Cu),アルミニウム(
Al)、クロム(Cr)等の金属材料を蒸着させて金属
蒸着膜を形成した分解ガス検出素子が、分解ガスと接触
した際に生ずる化学変化による侵食等によって、前記検
出素子自体の表面が変化する度合に応じて前記検出素子
を透過したり、あるいは、反射する光の透過率や反射率
が増減して変化するのを利用し、前記透過率等の変化を
検出することによって、SF6 ガス等の絶縁ガス中で
過熱及び部分放電等の異常発生を迅速・確実に検出でき
るようにしたことを特徴とする。
[Operation] According to the present invention, as a decomposition gas detection element disposed in a gas distribution pipe, a decomposition gas detection element is used to detect decomposed gases generated by abnormal conditions such as partial discharge, etc. that occur in gas-insulated electrical equipment filled with an insulating gas such as SF6 gas. Materials that react extremely easily with decomposed gases such as SO2 and SF4, such as silica (S
Using a glass substrate based on IO2) alone,
Copper (Cu), aluminum (
The surface of the detection element itself changes due to corrosion due to chemical changes that occur when the decomposition gas detection element, which has a metal vapor deposited film formed by vapor deposition of a metal material such as Al) or chromium (Cr), comes into contact with the decomposition gas. SF6 gas, etc. It is characterized by being able to quickly and reliably detect the occurrence of abnormalities such as overheating and partial discharge in an insulating gas.

【0010】0010

【実施例】以下、本発明をガス絶縁変圧器に実施した例
について図1ないし図4を参照して説明する。図2にお
いて、1はガス絶縁変圧器のタンクで、内部には鉄心2
及びこの鉄心2に巻装した巻線3並びに前記鉄心2の上
,下部を締付ける締付クランプ4,5等を備えて構成し
た変圧器本体6が収容設置されている。又、このタンク
1内には変圧器本体6とともに、絶縁及び冷却のための
SF6ガス等の不活性、不燃性に優れた絶縁ガスが所定
の圧力で封入されている。7はタンク1内と連通させて
タンク1側壁の上,下に取付けたガス流通管8,9の間
に介挿して設置した絶縁ガスの冷却装置で、タンク1内
で加熱された絶縁ガスをガス送風機10にてタンク1内
の上部から上部ガス流通管8を経て冷却装置7に導き、
ここで冷却した後、下部ガス流通管9を通ってタンク1
内に循環させることにより、変圧器本体6の冷却を行っ
ている。11,12はタンク1の上面に取付けられて、
巻線3からのリード線を外部に引き出すためのブッシン
グである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is implemented in a gas insulated transformer will be described below with reference to FIGS. 1 to 4. In Figure 2, 1 is a tank of a gas insulated transformer, and there is an iron core 2 inside.
A transformer main body 6 comprising a winding 3 wound around the iron core 2 and clamping clamps 4 and 5 for tightening the upper and lower parts of the iron core 2 is housed. Further, in this tank 1, together with the transformer body 6, an inert and nonflammable insulating gas such as SF6 gas for insulation and cooling is sealed at a predetermined pressure. Reference numeral 7 designates an insulating gas cooling device installed between gas distribution pipes 8 and 9 that are connected to the inside of the tank 1 and installed above and below the side wall of the tank 1. A gas blower 10 guides the gas from the upper part of the tank 1 through the upper gas distribution pipe 8 to the cooling device 7.
After cooling here, it passes through the lower gas distribution pipe 9 to the tank 1.
The transformer main body 6 is cooled by circulating the water inside the transformer body 6. 11 and 12 are attached to the top surface of the tank 1,
This is a bushing for pulling out the lead wire from the winding 3 to the outside.

【0011】次に図1において、13は下部ガス流通管
9の配管途中、例えば、タンク1とガス送風機10との
間にバルブXを介して挿設したガス異常検出装置で、そ
の概要を説明する。図1及び図3,図4において、14
は分解ガス検出素子で、この分解ガス検出素子14は、
地殻中に豊富に存在してガラスの材料となり、しかも、
分解ガスとは極めて良好に反応するシリカ(SIO2 
)を主体としたガラス基板14aと、前記ガラス基板1
4aと同様に分解ガスと極めて反応しやすい銅(Cu)
,アルミニウム(Al)、クロム(Cr)等からなる金
属材料をガラス基材14a上に所要の厚さ(光がある程
度透過できる厚さ)で蒸着した金属蒸着膜14bとによ
って形成されている。そして、前記分解ガス検出素子1
4は、例えば、、図1,図3で示すように、下部ガス流
通管9の径太部9a中心に、絶縁ガスの流通方向(図1
の矢印方向)と平行に、かつ、金属蒸着膜14bを上向
きにした状態で、下部ガス流通管9外へ取り出し自在に
取付けられる。即ち、図3のように、分解ガス検出素子
14の下部ガス流通管9内周面の軸方向と平行とする一
方の端部を保持板15にボルト等の固定部材を用いて嵌
着し、この保持板15を下部ガス流通管9の外側におい
て取付板16に支着し、下部ガス流通管9側には、保持
板15が挿通する透孔17を穿孔した支持板18をガス
流通管9の嵌合孔19に嵌合させて溶接等により固着す
るとともに、この支持板18と対応するガス流通管9の
内周面には、前記分解ガス検出素子14の他方の端部が
係合する係合溝20を横設した係止板21が固着されて
おり、分解ガス検出素子14の取付けに際しては、該検
出素子14を支持板18の透孔17から下部流通管9内
に挿入して係止板21の係合溝20に係合させるととも
に、保持板15を前記支持板18の透孔17に係載し、
この状態で、取付板16を支持板18にOリング等のシ
ール部材を介してボルト締めすることにより、分解ガス
検出素子14は下部ガス流通管9内の径太部9a中心に
取外し自在に横架して取付けることができる。
Next, in FIG. 1, reference numeral 13 denotes a gas abnormality detection device inserted through a valve X in the middle of the lower gas distribution pipe 9, for example, between the tank 1 and the gas blower 10, and its outline will be explained below. do. In Figures 1, 3, and 4, 14
is a decomposition gas detection element, and this decomposition gas detection element 14 is
It exists abundantly in the earth's crust and is a material for glass.
Silica (SIO2) reacts extremely well with cracked gas.
) and the glass substrate 1
Similar to 4a, copper (Cu) is extremely reactive with decomposition gas.
, aluminum (Al), chromium (Cr), etc., is deposited on a glass substrate 14a to a required thickness (thickness that allows light to pass through to a certain extent). Then, the decomposition gas detection element 1
4, for example, as shown in FIGS. 1 and 3, the insulating gas flow direction (FIG. 1
It is attached so that it can be taken out from the lower gas flow pipe 9 in parallel with the arrow direction) and with the metal vapor deposited film 14b facing upward. That is, as shown in FIG. 3, one end of the decomposition gas detection element 14 parallel to the axial direction of the inner circumferential surface of the lower gas flow pipe 9 is fitted onto the retaining plate 15 using a fixing member such as a bolt. This retaining plate 15 is supported on a mounting plate 16 on the outside of the lower gas distribution pipe 9, and a support plate 18 having a through hole 17 through which the retaining plate 15 is inserted is provided on the lower gas distribution pipe 9 side. The support plate 18 is fitted into the fitting hole 19 and fixed by welding or the like, and the inner peripheral surface of the gas flow pipe 9 corresponding to the support plate 18 has an engagement member with which the other end of the cracked gas detection element 14 engages. A locking plate 21 with a matching groove 20 installed horizontally is fixed, and when installing the cracked gas detection element 14, the detection element 14 is inserted into the lower flow pipe 9 through the through hole 17 of the support plate 18 and engaged. engaging the engagement groove 20 of the stop plate 21, and engaging the holding plate 15 in the through hole 17 of the support plate 18;
In this state, by bolting the mounting plate 16 to the support plate 18 via a sealing member such as an O-ring, the decomposed gas detection element 14 can be removed and placed horizontally at the center of the thick diameter portion 9a in the lower gas flow pipe 9. Can be mounted on a shelf.

【0012】つづいて、図1に示す22は下部ガス流通
管9の径太部9aの上部側において分解ガス検出素子1
4の金属蒸着膜14b側と直交して配置した例えば、発
光ダイオードやレーザー等の光源を備えた発光素子で、
この発光素子22から発せられる光は、下部ガス流通管
9に気密性のパッキン23を介して挿着した光ファイバ
ー24に案内されてその開口端面から、分解ガス検出素
子14の金属蒸着膜14bに向けて照射される。25は
発光素子22と相対向させて下部ガス流通管9の径太部
9a下側に配置した例えば、フォトトランジスタ等から
なる受光素子で、下部ガス流通管9とは、パッキン23
aを介して前記流通管9に挿着された光ファイバー24
aにて接続され、分解ガス検出素子14を透過して光フ
ァイバー24aの開口端面より光学的検出のために案内
れされた光を受光する。26は受光素子25にて受光さ
れた検出信号を電気的に演算増幅するための演算増幅回
路である。27は一定のパルスで分解ガスの発生基準値
を設定するための基準信号を出力する基準信号発生回路
で、出力される基準信号(基準値)の設定値は、使用す
る分解ガス検出素子14に応じて任意に可変できるよう
に構成されている。28は比較回路で、演算増幅回路2
6からの出力と、基準信号発生回路27からの出力とを
比較し、演算増幅回路26からの出力が基準信号発生回
路27の出力と差異を生じたとき、(即ち、分解ガスの
発生量があらかじめ設定した基準値を超えている場合)
出力信号を出力するように構成されている。29は前記
比較回路28から出力された信号を例えば、デジタル化
してデータ処理を行うための信号処理回路を示し、30
は前記信号処理回路29からの出力によって作動する表
示(警報)装置である。
Next, reference numeral 22 shown in FIG.
For example, a light emitting element equipped with a light source such as a light emitting diode or a laser, disposed orthogonally to the metal vapor deposited film 14b side of No. 4,
The light emitted from the light emitting element 22 is guided to the optical fiber 24 inserted into the lower gas flow pipe 9 via an airtight packing 23, and is directed from the open end face toward the metal vapor deposited film 14b of the decomposition gas detection element 14. irradiated. Reference numeral 25 denotes a light-receiving element made of, for example, a phototransistor, which is disposed below the large-diameter portion 9a of the lower gas flow pipe 9 so as to face the light emitting element 22.
An optical fiber 24 inserted into the distribution pipe 9 via a
a, and receives light transmitted through the decomposition gas detection element 14 and guided from the open end surface of the optical fiber 24a for optical detection. 26 is an operational amplifier circuit for electrically operationally amplifying the detection signal received by the light receiving element 25. Reference numeral 27 denotes a reference signal generation circuit that outputs a reference signal for setting the decomposition gas generation reference value with a constant pulse.The setting value of the output reference signal (reference value) is determined by the decomposition gas detection element 14 used It is configured so that it can be changed arbitrarily. 28 is a comparison circuit, and operational amplifier circuit 2
6 and the output from the reference signal generation circuit 27, and if the output from the operational amplifier circuit 26 differs from the output from the reference signal generation circuit 27 (that is, the amount of decomposition gas generated is (If it exceeds the preset standard value)
The device is configured to output an output signal. 29 denotes a signal processing circuit for digitizing and data processing the signal output from the comparison circuit 28;
is a display (alarm) device activated by the output from the signal processing circuit 29.

【0013】以上説明したように、本発明のガス異常検
出装置13は、基本的にシリカからなるガラス基板14
aに金属蒸着膜14bを蒸着して下部ガス流通管9内に
横架・支持させた分解ガス検出素子14と、光ファイバ
ー24,24aに案内されて光を前記分解ガス検出素子
14に照射させたり、該検出素子14を透過した光を受
光する発光及び受光素子22,25と、前記受光した信
号を増幅する演算増幅回路26と、分解ガスの発生基準
値を設定した基準信号発生回路27と、前記受光信号と
基準信号とを比較して差異が生じたとき信号を出力する
比較回路28と、比較回路28からの出力信号をデータ
処理して表示装置30に出力する信号処理回路29とに
よって構成されている。
As explained above, the gas abnormality detection device 13 of the present invention basically uses a glass substrate 14 made of silica.
A decomposed gas detection element 14 is provided with a metal vapor deposited film 14b deposited on it and horizontally supported within the lower gas flow pipe 9, and light is guided by optical fibers 24 and 24a to irradiate the decomposed gas detection element 14. , a light-emitting and light-receiving element 22, 25 that receives the light transmitted through the detection element 14, an operational amplifier circuit 26 that amplifies the received signal, and a reference signal generation circuit 27 that sets a reference value for the generation of decomposition gas. Consisting of a comparison circuit 28 that compares the received light signal and the reference signal and outputs a signal when a difference occurs, and a signal processing circuit 29 that processes the output signal from the comparison circuit 28 and outputs it to the display device 30. has been done.

【0014】次に、ガス異常検出装置13の動作につい
て説明する。ガス絶縁変圧器の運転に伴い、例えば、鉄
心を構成するけい素鋼帯の絶縁被膜が、輸送時等の振動
により損傷して鉄心2に局部的な異常過熱が生じたり、
部分放電によって生ずる絶縁劣化等タンク1内及び変圧
器本体6から生ずる局部的な異常過熱等の温度が、SF
6 ガス等絶縁ガスの熱分解する温度に達した場合、あ
るいは、部分放電等によって生ずる火花とSF6 ガス
等の絶縁ガスとが直接反応した場合、SO2 ,SF4
 等の分解ガスが生成される。前記分解ガスは図2,図
3で示すように、タンク1内から上部ガス流通管8→冷
却装置7→下部ガス流通管9→タンク1内の順序で循環
し、この循環途中、即ち、下部ガス流通管9内を流通す
る際、分解ガスは図1のように、分解ガス検出素子14
と直接触れることとなる。この結果、前記検出素子14
の表面(金属蒸着膜14b部分)や裏面(ガラス基板1
4aの金属蒸着膜14bを有しない部分)は、それぞれ
分解ガスとの接触による化学反応によって徐々に侵食さ
れる。 即ち、分解ガス検出素子14の表面形状が、分解ガスに
曝露される前に比べ変化することになる。これは、ガラ
ス基板14a及び金属蒸着膜14b自体を分解ガスと反
応しやすい材料を用いていることによる。従って、発光
素子22から投光されて前記分解ガス検出素子14に照
射される光の該検出素子14における透過率も表面形状
の変化とともに変化する。この透過率の変化を利用する
ことによって、例えば、タンク1内で部分放電や局部的
な異常加熱等の異常発生を検出することが可能となる。
Next, the operation of the gas abnormality detection device 13 will be explained. During the operation of a gas insulated transformer, for example, the insulation coating of the silicon steel strip that makes up the iron core may be damaged by vibrations during transportation, resulting in abnormal local overheating of the iron core 2.
SF
6 When the temperature reaches the temperature at which an insulating gas such as gas decomposes, or when a spark caused by partial discharge etc. directly reacts with an insulating gas such as SF6 gas, SO2, SF4
decomposed gases such as As shown in FIGS. 2 and 3, the decomposed gas circulates in the order from inside the tank 1 to the upper gas distribution pipe 8 → the cooling device 7 → the lower gas distribution pipe 9 → the inside of the tank 1. When flowing through the gas distribution pipe 9, the decomposed gas passes through the decomposed gas detection element 14 as shown in FIG.
You will be in direct contact with. As a result, the detection element 14
(metal vapor deposited film 14b part) and back surface (glass substrate 1
4a (portions not having the metal vapor deposited film 14b) are gradually eroded by a chemical reaction caused by contact with the decomposition gas. That is, the surface shape of the decomposition gas detection element 14 changes compared to before being exposed to the decomposition gas. This is because the glass substrate 14a and the metal vapor deposited film 14b themselves are made of materials that easily react with decomposition gas. Therefore, the transmittance through the detection element 14 of the light projected from the light emitting element 22 and irradiated onto the decomposed gas detection element 14 also changes as the surface shape changes. By utilizing this change in transmittance, it is possible to detect the occurrence of an abnormality, such as partial discharge or local abnormal heating, within the tank 1, for example.

【0015】次に、前記分解ガス検出素子14における
透過率の変化について、例えば、ガラス基板14a上に
銅の蒸着膜14bを形成した分解ガス検出素子14を用
いて、これを一定の波長間隔におけるスペクトル測定を
行ってその透過率を実験的に検証した結果について説明
する。図1において、分解ガスの発生により、前記検出
素子14を透過した光は、受光素子25に受光され、そ
のまま、演算増幅回路26で増幅されて比較回路28に
入力される。一方、基準信号発生回路27からは常時基
準値(分解ガスが存在していないときに測定しておいた
分解ガス検出素子14を透過する光の透過率に相当する
基準信号を示す)に相当する基準信号が比較回路28に
入力されており、比較回路28は前記両入力信号を比較
し、演算増幅回路26からの入力が基準信号に対して差
異が生じた場合、比較回路28から信号処理回路29を
経て表示装置30により、分解ガスが基準値を超えてい
ることを表示する。これを図8に示す金属蒸着膜14b
として銅を用いた分解ガス検出素子14の場合のスペク
トル測定結果で説明すると、図中Aで示す線図は分解ガ
スが発生していない曝露前の透過率(基準値)を測定し
たものであり、Bで示す線図は、分解ガスに曝されてい
るときに、前記検出素子14を透過した光の透過率(分
解ガスが発生した状態のとき)を測定したもので、図8
で示すように、金属蒸着膜14bに銅を用いた場合、分
解ガスが発生していると透過率が増加することが実験に
より判明した。これは、分解ガスにより金属蒸着膜14
bの表面が、例えば、侵食され、表面状態の変化が主要
因となって、透過率が変化したものと推定される。前記
実験結果により、分解ガス検出素子14が許容される範
囲内で分解ガスに侵食された時点を基準値Aと設定した
場合は、図8のように、分解ガスの発生時Bが基準値A
を上回ったとき、これを表示装置30により表示したり
、警報を発するようにすることによって、タンク1内に
おける部分放電等の異常状態を的確に検出することがで
きる。又、基準値Aの設定値を変更することによって、
軽微な故障前兆段階における微少な分解ガスを検出する
ことが可能であるため、これによって、SF6 ガス等
の絶縁ガスを封入した電気機器の異常状態を定常的に把
握することができるとともに、その予測・保全を容易に
、しかも、常時確実に行うことができる。
Next, regarding the change in transmittance in the decomposition gas detection element 14, for example, using a decomposition gas detection element 14 in which a copper vapor deposited film 14b is formed on a glass substrate 14a, the change in transmittance is determined at a constant wavelength interval. The results of spectrum measurement and experimental verification of the transmittance will be explained. In FIG. 1, light transmitted through the detection element 14 due to the generation of decomposed gas is received by a light receiving element 25, amplified by an operational amplifier circuit 26, and input to a comparison circuit 28. On the other hand, the reference signal generation circuit 27 always outputs a reference value (indicates a reference signal corresponding to the transmittance of light transmitted through the decomposed gas detection element 14 measured when no decomposed gas is present). A reference signal is input to a comparison circuit 28, and the comparison circuit 28 compares both input signals. If the input from the operational amplifier circuit 26 differs from the reference signal, the comparison circuit 28 sends a signal to the signal processing circuit. 29, the display device 30 displays that the decomposed gas exceeds the standard value. This is shown in FIG. 8 as a metal vapor deposited film 14b.
To explain the spectrum measurement results in the case of the decomposition gas detection element 14 using copper as the material, the line indicated by A in the figure is the transmittance (reference value) measured before exposure when no decomposition gas is generated. , B is a diagram obtained by measuring the transmittance of light transmitted through the detection element 14 (when decomposed gas is generated) when exposed to decomposed gas, and is shown in FIG.
As shown in the figure, it was found through experiments that when copper was used for the metal vapor deposited film 14b, the transmittance increased when decomposition gas was generated. This is caused by the decomposition gas causing the metal vapor deposited film 14 to
It is presumed that the surface of b has been eroded, for example, and the transmittance has changed mainly due to a change in the surface condition. Based on the above experimental results, if the reference value A is set as the point in time when the decomposed gas detection element 14 is attacked by the decomposed gas within the allowable range, the time B when decomposed gas is generated becomes the reference value A, as shown in FIG.
By displaying this on the display device 30 or issuing an alarm when the value exceeds 1, an abnormal state such as a partial discharge in the tank 1 can be accurately detected. Also, by changing the set value of reference value A,
Since it is possible to detect minute amounts of decomposed gas at the stage of a minor failure sign, it is possible to regularly grasp the abnormal state of electrical equipment filled with insulating gas such as SF6 gas, and also to predict it.・Maintenance can be performed easily and reliably at all times.

【0016】つづいて、本発明におけるガス異常検出装
置の第2実施例の概略構成を図5において、図1で示す
本発明の第1実施例の構成と異なる部分のみについて説
明する。図5に示す第2実施例のガス異常検出装置13
aは、分解ガス検出素子14に照射された光のうち、該
検出素子14によって反射された光の変化、即ち、反射
率の変化を利用することによってタンク1内の異常発生
を検出するものである。図5において、発光素子22は
、光ファイバー24及びプリズム31、光ファイバー2
4aを介して下部ガス流通管9の径太部9aに接続され
ており、光ファイバー24aの径太部9a内に突出して
いる開口端は、分解ガス検出素子14の金属蒸着膜14
bと相対向して径太部9aに取付けられている。一方、
受光素子25は、下部ガス流通管9の径太部9aに分解
ガス検出素子14の金属蒸着膜14bと相対向した状態
で、光ファイバー24a及び24bを介して接続されて
いる。次に前記本発明の第2実施例において分解ガスの
発生度合を、第1実施例と同様にガラス基板14aの表
面に銅の蒸着膜14bを形成した分解ガス検出素子14
によって実験した例について説明する。図5において、
発光素子22から投光された光をプリズム31を利用し
て分解ガス検出素子14に照射すると、前記照射された
光の大部分は分解ガス検出素子14を透過する。しかし
、照射された光の一部は検出素子14により反射し、受
光素子25に受光され、演算増幅回路26で演算増幅さ
れて比較回路28に出力される。一方、基準信号発生回
路27aからは、分解ガスが存在していないときに測定
しておいた分解ガス検出素子14から反射する光の反射
率に相当する基準信号が、前記比較回路28に入力され
ており、比較回路28は前記両入力を比較し、演算増幅
回路26からの入力が基準信号に対して差異が生じたと
き、信号処理回路29に出力信号を出力し表示装置30
にて分解ガスが基準値を超えていることを表示する。
Next, a schematic configuration of a second embodiment of the gas abnormality detection device according to the present invention will be described with reference to FIG. 5, only the parts that are different from the configuration of the first embodiment of the present invention shown in FIG. Gas abnormality detection device 13 of the second embodiment shown in FIG.
A detects the occurrence of an abnormality in the tank 1 by utilizing a change in the light reflected by the decomposition gas detection element 14, that is, a change in reflectance, out of the light irradiated onto the decomposition gas detection element 14. be. In FIG. 5, the light emitting element 22 includes an optical fiber 24, a prism 31, an optical fiber 2
The open end of the optical fiber 24a, which is connected to the thick diameter portion 9a of the lower gas distribution pipe 9 through the fiber 4a and protrudes into the thick diameter portion 9a of the optical fiber 24a, is connected to the metal vapor deposited film 14 of the decomposed gas detection element 14.
It is attached to the thick diameter portion 9a facing oppositely to b. on the other hand,
The light receiving element 25 is connected to the large diameter portion 9a of the lower gas flow pipe 9 via optical fibers 24a and 24b, facing the metal vapor deposited film 14b of the decomposed gas detection element 14. Next, in the second embodiment of the present invention, the degree of generation of decomposition gas is measured using the decomposition gas detection element 14, which has a copper vapor deposited film 14b formed on the surface of the glass substrate 14a, as in the first embodiment.
We will explain an example of an experiment conducted by In Figure 5,
When the light emitted from the light emitting element 22 is irradiated onto the decomposition gas detection element 14 using the prism 31, most of the irradiated light is transmitted through the decomposition gas detection element 14. However, a part of the irradiated light is reflected by the detection element 14, received by the light receiving element 25, operationally amplified by the operational amplifier circuit 26, and output to the comparison circuit 28. On the other hand, from the reference signal generation circuit 27a, a reference signal corresponding to the reflectance of light reflected from the decomposed gas detection element 14 measured when no decomposed gas is present is inputted to the comparison circuit 28. The comparison circuit 28 compares the two inputs, and when the input from the operational amplifier circuit 26 differs from the reference signal, outputs an output signal to the signal processing circuit 29 and displays the display device 30.
indicates that the decomposition gas exceeds the standard value.

【0017】これを図9で示すスペクトル測定結果で説
明すると、図中Cで示す線図は分解ガスの発生前におけ
る光の反射率(基準値)を、Dで示す線図は分解ガス検
出素子14が分解ガスに曝されているときに、それぞれ
該検出素子14から反射されている光の反射率(分解ガ
スが発生した状態のとき)を測定したもので、これをみ
て判るように、分解ガスが発生しているときの光の反射
率Dが、発生していないときの反射率Cより減少してい
ることが実験によって確認できた。これは分解ガスの発
生によって分解ガス検出素子14の表面状態が変化し、
第1実施例と同様に光の透過率が増加したことを示すも
ので、この第2実施例においても、分解ガス検出素子1
4が分解ガスによって侵食されていることが確認できた
。即ち、前記本発明の第1及び第2実施例において、検
出素子14が分解ガスに侵食されておれば、必ず光の透
過率と反射率の増・減は反比例し、従って、これらいづ
れの分解ガス検出手段においても、分解ガスの発生を検
出することが可能であることを確認することができた。 これにより、第2実施例においても、基準値Cの設定は
第1実施例と同様に可変とすることによって、分解ガス
の発生を検出する時点が任意に設定可能となり、この結
果、基準値Cと分解ガスの発生時Dとに差異が生じたと
き、表示装置30にて表示させることによって、タンク
1内の異常を確実に検出することができる。
To explain this with the spectrum measurement results shown in FIG. 9, the line C in the figure shows the light reflectance (reference value) before the decomposed gas is generated, and the line D shows the reflectance of the decomposed gas detection element. The reflectance of the light reflected from each detection element 14 (when decomposition gas is generated) is measured when 14 is exposed to decomposition gas. It was confirmed through experiments that the reflectance D of light when gas is generated is lower than the reflectance C when no gas is generated. This is because the surface condition of the decomposed gas detection element 14 changes due to the generation of decomposed gas,
This shows that the light transmittance has increased as in the first example, and also in this second example, the decomposed gas detection element 1
4 was confirmed to have been eroded by decomposition gas. That is, in the first and second embodiments of the present invention, if the detection element 14 is eroded by the decomposed gas, the increase or decrease in light transmittance and reflectance are necessarily inversely proportional, and therefore, either of these decomposition It was confirmed that the gas detection means could also detect the generation of decomposed gas. As a result, in the second embodiment, the setting of the reference value C is made variable as in the first embodiment, so that the time point at which generation of cracked gas is detected can be arbitrarily set, and as a result, the reference value C When a difference occurs between the time D and the time D when decomposed gas is generated, an abnormality in the tank 1 can be reliably detected by displaying it on the display device 30.

【0018】次に、本発明におけるガス異常検出装置の
第3実施例の概略構成を図6によって、図1で示す本発
明の第1実施例及び図5に示す第2実施例の構成と異な
る部分についてのみ説明する。図6において示す第3実
施例のガス異常検出装置13bは、分解ガス検出素子1
4に発光素子22からの光が照射されたとき、前記検出
素子14から透過した光の変化と反射された光の変化、
即ち、光の透過率と反射率とを合算することによって生
じる変化を利用して、タンク1内の異常発生を検出する
ものである。図6において、発光素子22は第2実施例
と同様に光ファイバー24及びプリズム31,光ファイ
バー24aを介して下部ガス流通管9の径太部9aに接
続されており、前記光ファイバー24aの径太部9a内
に突出している開口端面は、分解ガス検出素子14の金
属蒸着膜14bと相対向させて前記径太部9aに取付け
られている。一方、分解ガス検出素子14から透過する
光を受光する受光素子25は図6で示すように、プリズ
ム31と相対向して下部ガス流通管9の径太部9a上側
に、パッキン23にて前記径太部9aに気密に挿着した
光ファイバー24bを介して接続され、又、前記受光素
子25の出力端は、演算増幅回路26aに接続されてい
る。又、分解ガス検出素子14から反射する光を受光す
る受光素子25aは、図6のように、分解ガス検出素子
14の金属蒸着膜14bと相対向して下部ガス流通管9
の径太部9a下側に、パッキン23aにて径太部9aに
気密に挿着した光ファイバー24a,24dを介して接
続されており、その出力端は受光素子25と同様に演算
増幅回路26aと接続される。
Next, FIG. 6 shows a schematic configuration of a third embodiment of the gas abnormality detection device according to the present invention, which is different from the configuration of the first embodiment of the present invention shown in FIG. 1 and the second embodiment shown in FIG. Only parts will be explained. The gas abnormality detection device 13b of the third embodiment shown in FIG.
4 is irradiated with light from the light emitting element 22, a change in the light transmitted from the detection element 14 and a change in the light reflected,
That is, the occurrence of an abnormality within the tank 1 is detected by utilizing the change caused by adding up the transmittance and reflectance of light. In FIG. 6, the light emitting element 22 is connected to the thick diameter portion 9a of the lower gas flow pipe 9 via the optical fiber 24, the prism 31, and the optical fiber 24a, as in the second embodiment. The opening end surface projecting inward is attached to the thick diameter portion 9a so as to face the metal vapor deposited film 14b of the decomposed gas detection element 14. On the other hand, as shown in FIG. 6, a light-receiving element 25 that receives the light transmitted from the decomposed gas detection element 14 is placed above the thick diameter part 9a of the lower gas flow pipe 9, facing oppositely to the prism 31. It is connected via an optical fiber 24b that is airtightly inserted into the thick diameter portion 9a, and the output end of the light receiving element 25 is connected to an operational amplifier circuit 26a. Further, as shown in FIG. 6, the light receiving element 25a that receives the light reflected from the decomposed gas detecting element 14 is located opposite to the metal vapor deposited film 14b of the decomposed gas detecting element 14.
The optical fibers 24a and 24d are connected to the lower side of the thick diameter part 9a with a packing 23a, and are airtightly inserted into the thick diameter part 9a, and the output end thereof is connected to the operational amplifier circuit 26a as well as the light receiving element 25. Connected.

【0019】つづいて、前記第3実施例において分解ガ
スの発生度合を、第1実施例と同様の分解ガス検出素子
14を用いて実験した例について説明する。図6におい
て、受光素子22からの光をプリズム31により前記検
出素子14に照射すると、前記光は検出素子14を透過
するとともに、その一部は反射し、それぞれ受光素子2
5,25aにて受光され、演算増幅回路26aで透過率
と反射率とを合算した状態で演算増幅されて比較回路2
8に出力する。一方、基準信号発生回路27bからは、
分解ガスが存在していない時点に測定した分解ガス検出
素子14から透過及び反射する光の透過率と反射率とを
合算した数値に相当する基準信号が、前記比較回路28
に入力されており、比較回路28は前記入力を比較し、
演算増幅回路26aからの入力が基準信号に対して差異
が生じたとき、信号処理回路29に出力信号を出力し表
示装置30にて分解ガスが基準値を超えていることを表
示する。
Next, an example will be described in which the degree of generation of decomposed gas in the third embodiment was tested using the same decomposed gas detection element 14 as in the first embodiment. In FIG. 6, when the light from the light receiving element 22 is irradiated onto the detecting element 14 through the prism 31, the light passes through the detecting element 14 and a part of it is reflected.
5, 25a, and is operationally amplified by the operational amplifier circuit 26a in a state where the transmittance and reflectance are summed, and then sent to the comparison circuit 2.
Output to 8. On the other hand, from the reference signal generation circuit 27b,
A reference signal corresponding to the sum of the transmittance and reflectance of the light transmitted and reflected from the decomposed gas detection element 14 measured at the time when no decomposed gas is present is detected by the comparison circuit 28.
The comparator circuit 28 compares the inputs,
When the input from the operational amplifier circuit 26a differs from the reference signal, an output signal is output to the signal processing circuit 29, and the display device 30 displays that the decomposed gas exceeds the reference value.

【0020】前記の結果を図10で示すスペクトル測定
結果によって説明すると、図中Eで示す線図は分解ガス
の発生前を、Fで示す線図は分解ガス検出素子14が分
解ガスに曝されているときに、該検出素子14からそれ
ぞれ透過及び反射する光の透過率と反射率とを合算した
場合の値をそれぞれ示し、これら線図E,Fから判るよ
うに、分解ガスが発生している場合、光の透過率と反射
率との合算値Fの方が、分解ガスの発生前の合算値Eに
比べ減少していることが実験により確認できた。これは
、前記2つの実施例と同様に、分解ガスによって検出素
子14自体が侵食されていることが判明した。このよう
に、本発明の第1ないし第3実施例において、分解ガス
検出素子14の表面状態が分解ガスに曝されることによ
って変化し、これによって検出素子14に照射した光の
透過率と反射率とが必ず増・減の関係となり、この結果
に基づいて分解ガスの存在、即ち、分解ガスの発生を検
出することが可能であることが確認できた。この分解ガ
スの検出度合により、SF6 ガス等絶縁ガス中の異常
発生を事故発生に至る前の軽微な故障前兆段階で検出す
ることができる。なお、第3実施例において、基準値E
の設定は第1及び第2の実施例と同様に可変とし、この
基準値Eと分解ガスの発生時Fとに差異が生じた場合、
表示装置30により表示することは前述の実施例と同様
である。
To explain the above results using the spectrum measurement results shown in FIG. 10, the line marked E in the figure shows the state before the decomposed gas is generated, and the line marked F shows the state before the decomposed gas detection element 14 is exposed to the decomposed gas. The sum of the transmittance and reflectance of the light transmitted and reflected from the detection element 14 is shown, and as can be seen from these diagrams E and F, decomposed gas is generated. It has been confirmed through experiments that the total value F of light transmittance and reflectance is smaller than the total value E before the decomposition gas is generated. This was found to be due to the detection element 14 itself being eroded by the decomposition gas, similar to the two examples above. As described above, in the first to third embodiments of the present invention, the surface state of the decomposition gas detection element 14 changes when exposed to decomposition gas, and this changes the transmittance and reflection of light irradiated onto the detection element 14. It was confirmed that there is always an increase/decrease relationship with the rate, and that it is possible to detect the presence of decomposed gas, that is, the generation of decomposed gas, based on this result. Depending on the degree of detection of this decomposed gas, it is possible to detect the occurrence of an abnormality in an insulating gas such as SF6 gas at a minor failure precursor stage before an accident occurs. In addition, in the third embodiment, the reference value E
The setting is variable as in the first and second embodiments, and if there is a difference between this reference value E and the time F when cracked gas is generated,
The display on the display device 30 is the same as in the previous embodiment.

【0021】つづいて、分解ガス検出素子14を例えば
、ガラス基板14a単体のみを使用した実施例の場合に
おける実験結果を、図11ないし図13のスペクトル測
定結果によって説明する。図11はガラス基板14aの
みからなる分解ガス検出素子(図示せず)を用いて、分
解ガス発生時における光の透過率bと分解ガスが発生し
ていないときにおける透過率aとを比較したものであり
、又、図12は図11と同様に、分解ガスの発生時にお
ける図示しない分解ガス検出素子(ガラス基板14aの
み)からの光の反射率dと、発生していないときの反射
率cとを比較し、更に、図13は分解ガス発生時におけ
る図示しない分解ガス検出素子(ガラス基板14aのみ
)からの光の透過率bと反射率dとを合算した値fと、
発生していないときの透過率aと反射率cとを合算した
値eとを比較したものをそれぞれ示すもので、前記図1
1ないし図13で判るように、ガラス基板14aのみか
らなる分解ガス検出素子においても、ガラス基板14a
自体が分解ガスと良好に反応するシリカガラス(SiO
2 )を使用している関係上、分解ガスがタンク1内に
発生すると、分解ガスに曝されているガラス基板14a
は、分解ガスとの化学反応によって、表面状態が変化し
、これにより、光の透過率が増加したり、逆に反射率が
減少するため、この光の透過率及び反射率の増・減の変
化から、SF6 ガス等の絶縁ガス中で部分放電等の異
常発生を検出する。
Next, experimental results in an example in which the decomposed gas detection element 14 uses, for example, only the glass substrate 14a will be explained with reference to the spectrum measurement results shown in FIGS. 11 to 13. FIG. 11 shows a comparison between the light transmittance b when decomposed gas is generated and the transmittance a when no decomposed gas is generated, using a decomposed gas detection element (not shown) consisting only of a glass substrate 14a. Similarly to FIG. 11, FIG. 12 shows the reflectance d of light from a decomposed gas detection element (only the glass substrate 14a, not shown) when decomposed gas is generated, and the reflectance c when no decomposed gas is generated. Furthermore, FIG. 13 shows the sum value f of the transmittance b and reflectance d of light from the decomposed gas detection element (only the glass substrate 14a) (not shown) when decomposed gas is generated, and
It shows a comparison between the value e, which is the sum of the transmittance a and the reflectance c when no occurrence occurs, and is shown in FIG. 1 above.
1 to 13, even in the decomposed gas detection element consisting only of the glass substrate 14a, the glass substrate 14a
Silica glass (SiO
2), when decomposed gas is generated in the tank 1, the glass substrate 14a exposed to the decomposed gas
The surface condition changes due to a chemical reaction with decomposed gas, which increases the light transmittance or decreases the reflectance. Based on the changes, abnormal occurrences such as partial discharge can be detected in insulating gas such as SF6 gas.

【0022】前記のように、本発明においては、分解ガ
スと比較的反応しやすい分解ガス検出素子14に照射し
た光の透過・反射の割合を定常的に検出し、これをあら
かじめ設定した基準値と容易に比較してタンク1内の異
常状態を比較的軽微な時点で検出することができるので
、SF6 ガス等の絶縁ガスを封入した電気機器の異常
状態の予測・保全を迅速・確実に行うことができる。
As described above, in the present invention, the ratio of transmission and reflection of light irradiated to the decomposition gas detection element 14, which is relatively likely to react with decomposition gas, is constantly detected, and this is set to a preset reference value. Since it is possible to easily detect abnormal conditions in the tank 1 at a relatively minor point in time compared to the above, it is possible to quickly and reliably predict and maintain abnormal conditions in electrical equipment filled with insulating gas such as SF6 gas. be able to.

【0023】次に、分解ガスに侵食されて検出素子14
が、その機能を果たせなくなったときは交換が必要であ
る。その場合、最初に冷却装置7を停止し、つづいて、
図2のバルブXを閉じたあと、図3において、取付板1
6と支持板18との固定を解き、透孔17から取付板1
6とともに、使用済みの分解ガス検出素子14を取外し
、新しい検出素子14を備えた取付板16(又は分解ガ
ス検出素子14のみを交換してもよい)を支持板18に
止着することにより、活線状態下での分解ガス検出素子
14の交換を行うものである。又、図7は分解ガス検出
素子14の他の取付状態を示すもので、下部ガス流通管
9にU字状のバイパス管35を、その配管途中にバルブ
Yを介して連通可能に連結し、前記バイパス管35の径
太部35aに分解ガス検出素子14を配置したもので、
この場合における検出素子14の交換に際しては、バル
ブYを閉じたあと、前記した交換作業の手順で、分解ガ
ス検出素子14を新しいものと代える。この場合の交換
作業は、バイパス管35をバルブYで閉塞すればよいの
で、電気機器は冷却装置7を停止させることなく、分解
ガス検出素子14の交換が行える。なお、図1及び図5
ないし図7に示す36はSF6 ガス等絶縁ガスの補充
パイプであり、分解ガス検出素子14の交換時にこの補
充パイプ36を利用して絶縁ガスを真空封入を行うもの
である。
Next, the detection element 14 is eroded by the decomposition gas.
However, when it can no longer perform its function, it needs to be replaced. In that case, first stop the cooling device 7, then
After closing valve X in Fig. 2, in Fig. 3, attaching plate 1
6 and the support plate 18, and remove the mounting plate 1 from the through hole 17.
6, by removing the used decomposition gas detection element 14 and fixing the mounting plate 16 equipped with a new detection element 14 (or only the decomposition gas detection element 14 may be replaced) to the support plate 18, This is to replace the decomposed gas detection element 14 under live line conditions. Further, FIG. 7 shows another installation state of the cracked gas detection element 14, in which a U-shaped bypass pipe 35 is connected to the lower gas distribution pipe 9 via a valve Y in the middle of the pipe so that it can communicate with the U-shaped bypass pipe 35. A cracked gas detection element 14 is arranged in the large diameter portion 35a of the bypass pipe 35,
When replacing the detection element 14 in this case, after closing the valve Y, replace the decomposed gas detection element 14 with a new one using the above-described replacement procedure. In this case, the replacement work can be done by closing the bypass pipe 35 with the valve Y, so that the cracked gas detection element 14 can be replaced without stopping the cooling device 7 of the electric equipment. In addition, Figures 1 and 5
Reference numeral 36 shown in FIG. 7 is a replenishment pipe for insulating gas such as SF6 gas, and the replenishment pipe 36 is used to vacuum-fill the insulating gas when replacing the decomposed gas detection element 14.

【0024】[0024]

【発明の効果】本発明は以上説明したように構成されて
いるので、次に示すような効果を有する。 (1)、本発明は、SF6 ガス等絶縁ガスが熱分解し
たとき、あるいは、部分放電等により分解した際に生ず
る分解ガスと比較的反応しやすい材料を使用して分解ガ
ス検出素子が形成してあるので、ガス封入電気機器内で
過熱及び部分放電等の異常が発生した場合、前記分解ガ
ス検出素子は分解ガスと反応してその表面状態が比較的
早期に変化するため、発光素子からの光を照射すること
によって、その透過率等が迅速に変化することを利用し
て、この光の変化を定常的にモニターすることにより、
ガス中の異常を迅速に、かつ、軽微の段階で確実に検出
することができる。 (2)、又、分解ガス検出素子は、絶縁ガスの流通路内
の中空部にガスの流通方向と平行して絶縁ガスの流通の
妨げにならないように横架・支持させてあるので、分解
ガスが発生したときはどの部位においても分解ガスと良
好に触れることができるため、分解ガスの検出が早期に
可能となるとともに、分解ガスに侵食されて交換するよ
うな場合も、絶縁ガスの流通路の外側から容易に取外し
て交換できるように構成したので、交換作業は電気機器
に悪影響を与えることなく、円滑・良好に行うことがで
きる。 (3)、更に、ガス封入電気機器の異常検出に際しては
、前記のように、分解ガス検出素子が分解ガスと反応し
やすい材料を使用している関係上、光学的検出手段の採
用により、例えば、透過率や反射率の測定が容易となり
、分解ガスの検出をその発生時点から余り時間が経過し
ない範囲で、迅速・確実に行うことが可能となり、これ
によって、ガス封入電気機器の異常を軽微のうちに予測
・保全することができる。 (4)、その上、本発明のガス封入電気機器の異常検出
装置は、基材にどこにでも存在するシリカ系の材料を使
用し又、金属蒸着膜の材料も汎用金属を使用しているの
で、分解ガス検出素子を容易に形成することができると
ともに、分解ガスの検出手段も前記検出素子に作用する
光の度合を光学的に検出するだけでよいので、従来のよ
うに、分解ガスの検出に際してタンク内から絶縁ガスを
抜取って検出するという手間や、検出のために高精度の
測定器や分析器を全く必要としない等異常検出装置はそ
の検出性能を良好に維持することはもとより、簡素な構
成で経済的に製作することができる。
Since the present invention is constructed as described above, it has the following effects. (1) In the present invention, the decomposed gas detection element is formed using a material that relatively easily reacts with the decomposed gas generated when an insulating gas such as SF6 gas is thermally decomposed or decomposed due to partial discharge, etc. Therefore, if an abnormality such as overheating or partial discharge occurs in a gas-filled electrical device, the decomposition gas detection element will react with the decomposition gas and its surface state will change relatively quickly, so that the light emitting element will not be detected. By taking advantage of the fact that the transmittance of light changes rapidly when it is irradiated with light, and constantly monitoring changes in this light,
Abnormalities in gas can be detected quickly and reliably at a minor stage. (2) Also, the decomposed gas detection element is horizontally mounted and supported in the hollow part of the insulating gas flow path parallel to the gas flow direction so as not to obstruct the flow of the insulating gas. When gas is generated, any part can come into contact with the decomposed gas, making it possible to detect the decomposed gas at an early stage.In addition, even if it is attacked by the decomposed gas and needs to be replaced, it is possible to prevent the insulating gas from flowing. Since it is constructed so that it can be easily removed and replaced from the outside of the road, the replacement work can be carried out smoothly and efficiently without adversely affecting the electrical equipment. (3) Furthermore, when detecting abnormalities in gas-filled electrical equipment, as mentioned above, since the decomposed gas detection element uses a material that easily reacts with decomposed gas, optical detection means can be used, for example. , it becomes easy to measure transmittance and reflectance, and it becomes possible to detect decomposed gas quickly and reliably within a short period of time from the time of generation, thereby minimizing abnormalities in gas-filled electrical equipment. It can be predicted and maintained within a short period of time. (4) Moreover, the abnormality detection device for gas-filled electrical equipment of the present invention uses a ubiquitous silica-based material as the base material, and also uses a general-purpose metal as the material of the metal vapor deposition film. , the decomposition gas detection element can be easily formed, and the decomposition gas detection means only needs to optically detect the degree of light acting on the detection element. The abnormality detection device not only maintains its detection performance well, but also eliminates the trouble of extracting insulating gas from the tank for detection, and eliminates the need for high-precision measuring instruments and analyzers. It has a simple configuration and can be manufactured economically.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のガス異常検出装置の概略構成図である
FIG. 1 is a schematic configuration diagram of a gas abnormality detection device of the present invention.

【図2】本発明のガス異常検出装置を備えたガス封入電
気機器の要部を縦断して示す縦断面である。
FIG. 2 is a vertical cross-section showing a main part of a gas-filled electrical device equipped with the gas abnormality detection device of the present invention.

【図3】分解ガス検出素子の取付状態を示す断面図であ
る。
FIG. 3 is a sectional view showing how the decomposition gas detection element is attached.

【図4】分解ガス検出素子の縦断面図である。FIG. 4 is a longitudinal cross-sectional view of a decomposed gas detection element.

【図5】本発明の他の実施例によるガス異常検出装置の
概略構成図である。
FIG. 5 is a schematic configuration diagram of a gas abnormality detection device according to another embodiment of the present invention.

【図6】本発明の更に他の実施例によるガス異常検出装
置の概略構成図である。
FIG. 6 is a schematic configuration diagram of a gas abnormality detection device according to still another embodiment of the present invention.

【図7】分解ガス検出素子の他の取付状態を示す断面図
である。
FIG. 7 is a sectional view showing another mounting state of the decomposition gas detection element.

【図8】銅を使用した金属蒸着膜を有する分解ガス検出
素子において、光の透過率を分解ガスの発生前と発生後
とを比較して示すスペクトル測定結果の図である。
FIG. 8 is a graph of spectrum measurement results showing a comparison of light transmittance before and after generation of decomposed gas in a decomposed gas detection element having a metal vapor deposited film using copper.

【図9】光の反射率を比較したスペクトル測定結果の図
である。
FIG. 9 is a diagram of spectrum measurement results comparing light reflectance.

【図10】光の透過率と反射率とを合算した値を比較し
て示すスペクトル測定結果の図である。
FIG. 10 is a diagram of spectrum measurement results showing a comparison of the sum of light transmittance and reflectance.

【図11】ガラス基板のみからなる分解ガス検出素子に
おいて、光の透過率を分解ガスの発生前と発生後とを比
較して示すスペクトル測定結果の図である。
FIG. 11 is a diagram of spectrum measurement results showing a comparison of light transmittance before and after generation of decomposed gas in a decomposed gas detection element made of only a glass substrate.

【図12】光の反射率を比較したスペクトル測定結果の
図である。
FIG. 12 is a diagram of spectrum measurement results comparing light reflectance.

【図13】光の透過率と反射率とを合算した値を比較し
て示すスペクトル測定結果の図である。
FIG. 13 is a diagram of spectrum measurement results showing a comparison of the sum of light transmittance and reflectance.

【符号の説明】[Explanation of symbols]

1  タンク 6  変圧器本体 9  下部ガス流通管 13  ガス異常検出装置 14  分解ガス検出素子 15  保持板 16  取付板 18  支持板 20  係合溝 21  係止板 22  発光素子 24  光ファイバー 25  受光素子 26  演算増幅回路 27  基準信号発生回路 28  比較回路 29  信号処理回路 30  表示装置 1 Tank 6 Transformer body 9 Lower gas distribution pipe 13 Gas abnormality detection device 14 Decomposition gas detection element 15 Holding plate 16 Mounting plate 18 Support plate 20 Engagement groove 21 Locking plate 22 Light emitting element 24 Optical fiber 25 Photo receiving element 26 Operational amplifier circuit 27 Reference signal generation circuit 28 Comparison circuit 29 Signal processing circuit 30 Display device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  ガス流通管内の中空部に取外し自在に
横架・支着された分解ガスと反応しやすい材料からなる
分解ガス検出素子と、前記ガス流通管の外側において分
解ガス検出素子と相対向させて光フアイバー等光の伝達
手段を介して配置された発光素子及び受光素子と、前記
発光素子の光が分解ガス検出素子を透過又は反射したと
き、この光を受光素子にて検出し、かつ、受光素子にて
検出した信号を演算増幅する増幅手段と、この増幅手段
からの出力と事前に設定した基準値とを比較する比較手
段と、更に、前記比較手段からの出力に対応してこれを
表示する表示手段とを備えたことを特徴とするガス封入
電気機器の異常検出装置。
1. A decomposed gas detection element made of a material that easily reacts with decomposed gas, removably horizontally supported and supported in a hollow part of a gas flow pipe, and a decomposed gas detection element facing opposite to the decomposed gas detection element on the outside of the gas flow pipe. a light-emitting element and a light-receiving element arranged via a light transmission means such as an optical fiber, and when the light of the light-emitting element is transmitted or reflected by a decomposition gas detection element, this light is detected by the light-receiving element, and , an amplifying means for operationally amplifying the signal detected by the light receiving element, a comparing means for comparing the output from the amplifying means with a preset reference value, and further an amplifying means for operationally amplifying the signal detected by the light receiving element; An abnormality detection device for gas-filled electrical equipment, characterized in that it is equipped with a display means for displaying.
【請求項2】  前記分解ガス検出素子は、その一方の
端部をガス流通管内に設けた係止板に係脱自在に係合さ
せ、反対側は保持板に嵌着してこの保持板をガス流通管
の外側において取付板に止着し、この取付板を前記ガス
流通管に穿孔した嵌合孔に、分解ガス検出素子を前記係
止板に横架・係載させた状態で、気密に、かつ、取外し
自在に取付けるようにしたことを特徴とする請求項1記
載のガス封入電気機器の異常検出装置。
2. The cracked gas detection element has one end removably engaged with a locking plate provided in the gas flow pipe, and the opposite end fitted into a retaining plate, which retains the retaining plate. It is fixed to a mounting plate on the outside of the gas distribution pipe, and the decomposed gas detection element is mounted horizontally and suspended on the locking plate in the fitting hole drilled in the gas distribution pipe, and the mounting plate is installed in an airtight manner. 2. The abnormality detection device for gas-filled electrical equipment according to claim 1, wherein the device is removably attached to the gas-filled electrical equipment.
【請求項3】  前記分解ガスと反応しやすい材料から
なる分解ガス検出素子は、シリカを主体としたガラス基
板又は該ガラス基板に分解ガスと反応しやすい金属材料
を蒸着して形成したことを特徴とする請求項1記載のガ
ス封入電気機器の異常検出装置。
3. The decomposed gas detection element made of a material that easily reacts with decomposed gas is formed by depositing a glass substrate mainly made of silica or a metal material that easily reacts with decomposed gas on the glass substrate. An abnormality detection device for gas-filled electrical equipment according to claim 1.
【請求項4】  前記受光素子にて検出される光は、分
解ガス検出素子を透過した光の透過率、又は反射率、あ
るいは前記透過率と反射率とを合算した値のいづれか一
つであることを特徴とする請求項1記載のガス封入電気
機器の異常検出装置。
4. The light detected by the light receiving element has one of the transmittance or reflectance of the light transmitted through the decomposed gas detection element, or the sum of the transmittance and the reflectance. The abnormality detection device for gas-filled electrical equipment according to claim 1.
JP3170517A 1991-06-14 1991-06-14 Abnormality detector of gas filled electric machinery Pending JPH04369466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3170517A JPH04369466A (en) 1991-06-14 1991-06-14 Abnormality detector of gas filled electric machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3170517A JPH04369466A (en) 1991-06-14 1991-06-14 Abnormality detector of gas filled electric machinery

Publications (1)

Publication Number Publication Date
JPH04369466A true JPH04369466A (en) 1992-12-22

Family

ID=15906411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3170517A Pending JPH04369466A (en) 1991-06-14 1991-06-14 Abnormality detector of gas filled electric machinery

Country Status (1)

Country Link
JP (1) JPH04369466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173288A (en) * 2011-02-17 2012-09-10 General Electric Co <Ge> Optical gas sensor for use with electrical equipment and method of assembling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173288A (en) * 2011-02-17 2012-09-10 General Electric Co <Ge> Optical gas sensor for use with electrical equipment and method of assembling the same

Similar Documents

Publication Publication Date Title
JPH0933358A (en) Device that measures temperature of high-temperature wall
US11821757B2 (en) Explosion-protected housing for means for transmitting and receiving electromagnetic radiation
CN106841456A (en) Malleation purges explosion-proof chromatograph
KR20120102785A (en) Flame detecting device
WO2015110422A1 (en) A device comprising a high voltage apparatus including a fluid and equipment for detecting one or more physical properties of the fluid
KR101404899B1 (en) Combined hydrogen and pressure sensor assembly
CN103748438A (en) Combined hydrogen and pressure sensor assembly
US4749855A (en) Method of detecting liquid leakage
JPH04369466A (en) Abnormality detector of gas filled electric machinery
CA3097863C (en) Gas impermeable temperature sensor protection system
JPH04370774A (en) Abnormality detector for gas insulated electric apparatus
WO2021241910A1 (en) Integrated management device and method for fluid storage tank
KR101143223B1 (en) Apparatus for monitoring combustion of sole flue in coke oven and method for the same
JPH04339254A (en) Method and apparatus for detecting decomposed gas in gas filled electric machinery
KR20190097418A (en) Piping unit and heating system having the same
US11852533B2 (en) Explosion-proof and flameproof enclosure for Raman systems
KR19980067037U (en) Window Assembly for Thin Film Endpoint Detector for Semiconductor Dry Etching Equipment
Muto et al. Operation and Maintenance experience of Sodium Leak Detector in Monju
Jackson et al. Safety and automation
Girard et al. Development of innovating Na leak detector on pipes
KR20220008190A (en) Hood exterior structure and detection device to prevent rupture of reactor hood and detect water leakage
CN104048751B (en) A kind of flame detector thermal stress to good conformity ability
KR100392336B1 (en) apparatus for indicating internal fault zone of gas insulation device
KR100620100B1 (en) System and Method for Air Gap Detecting of Downward Part in Blast Furnace Hearth
CN104048315A (en) Flame detection mechanism beneficial to guaranteeing sealing performance