JPH04369278A - Ferromagnetic magnetoresistance element with full bridge structure - Google Patents

Ferromagnetic magnetoresistance element with full bridge structure

Info

Publication number
JPH04369278A
JPH04369278A JP3145973A JP14597391A JPH04369278A JP H04369278 A JPH04369278 A JP H04369278A JP 3145973 A JP3145973 A JP 3145973A JP 14597391 A JP14597391 A JP 14597391A JP H04369278 A JPH04369278 A JP H04369278A
Authority
JP
Japan
Prior art keywords
magnetoresistive element
magnetoresistive
change
resistance value
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3145973A
Other languages
Japanese (ja)
Inventor
Akihiro Ariyoshi
有吉 昭博
Masami Matsumura
松村 政美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3145973A priority Critical patent/JPH04369278A/en
Priority to DE19924219908 priority patent/DE4219908C2/en
Publication of JPH04369278A publication Critical patent/JPH04369278A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain a ferromagnetic magnetoresistance element of a full bridge structure in which a large output voltage is obtained, and a high accuracy detection is performed without necessity of special temperature characteristic correcting means. CONSTITUTION:First to fourth magnetoresistance units MR1-MR4 are formed of ferromagnetic magnetoresistance materials, and connected in series to form a full bridge. The opposed first and third units MR1 and MR3 have equal resistance value change in the case of a magnetic flux variation. The opposed second and fourth units MR2 and MR4 have equal resistance value change in the case of a magnetic flux variation. Further, the adjacent first (third unit MR3) and second (fourth unit MR4 units MR2) have reverse change of the resistance value change in the case of the magnetic flux variation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、強磁性磁気抵抗材料
で形成された磁気抵抗体からなるフルブリッジ構造を有
する強磁性磁気抵抗素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic magnetoresistive element having a full bridge structure made of a magnetoresistive material made of a ferromagnetic magnetoresistive material.

【0002】0002

【従来の技術】図8は従来のフルブリッジ構造の強磁性
磁気抵抗素子を模式的に示す回路図である。上記従来の
強磁性磁気抵抗素子1は、強磁性磁気抵抗材料で形成さ
れた第1および第2磁気抵抗体MR1、MR2と、抵抗
材料で形成された厚膜抵抗体R1、R2とが順次直列に
接続されて、フルブリッジを構成している。ここで、第
1磁気抵抗体MR1と厚膜抵抗体R1との接続点を第1
入力端子T1とし、第2磁気抵抗体MR2と厚膜抵抗体
R2との接続点を第2入力端子T2とし、第1磁気抵抗
体MR1と第2磁気抵抗体MR2との接続点を第1出力
端子T3とし、厚膜抵抗体R1と厚膜抵抗体R2との接
続点を第2出力端子T4とする。また、第1および第2
磁気抵抗体MR1、MR2は、それぞれの磁気抵抗体パ
ターンが直交するように配置され、強磁性磁気抵抗体素
子を横切る磁束変化に対して互いに逆の抵抗値変化を示
すようになっている。
2. Description of the Related Art FIG. 8 is a circuit diagram schematically showing a conventional full-bridge structure ferromagnetic magnetoresistive element. The conventional ferromagnetic magnetoresistive element 1 has first and second magnetoresistive elements MR1 and MR2 made of a ferromagnetic magnetoresistive material and thick film resistors R1 and R2 made of a resistance material connected in series. are connected to form a full bridge. Here, the connection point between the first magnetoresistive element MR1 and the thick film resistor R1 is
The input terminal T1 is the connection point between the second magnetoresistive element MR2 and the thick film resistor R2, and the connection point between the first magnetoresistive element MR1 and the second magnetoresistive element MR2 is the first output terminal. A terminal T3 is defined as a second output terminal T4, and a connection point between the thick film resistor R1 and the thick film resistor R2 is defined as a second output terminal T4. Also, the first and second
The magnetoresistive elements MR1 and MR2 are arranged so that their respective magnetoresistive patterns are orthogonal to each other, and exhibit resistance changes that are opposite to each other with respect to changes in magnetic flux that cross the ferromagnetic magnetoresistive elements.

【0003】つぎに、上記従来の強磁性磁気抵抗素子の
動作を図9および図10の(a)、(b)に基づいて説
明する。図9に示すように、例えば磁石2が上記従来の
強磁性磁気抵抗素子1の近傍に配置され、矢印A方向の
磁石2の回転により強磁性磁気抵抗素子1を横切る磁束
方向が変化する。まず、第1入力端子T1をVccに、
第2入力端子T2をGNDに接続し、フルブリッジに所
望の電圧を入力すると、第1出力端子T3には、第1磁
気抵抗体MR1と第2磁気抵抗体MR2とで抵抗分割さ
れた電圧値が出力され、また第2出力端子T4には、厚
膜抵抗体R1と厚膜抵抗体R2とで抵抗分割された電圧
値が出力される。
Next, the operation of the conventional ferromagnetic magnetoresistive element will be explained based on FIGS. 9 and 10(a) and (b). As shown in FIG. 9, for example, a magnet 2 is placed near the conventional ferromagnetic magnetoresistive element 1, and as the magnet 2 rotates in the direction of arrow A, the direction of magnetic flux crossing the ferromagnetic magnetoresistive element 1 changes. First, the first input terminal T1 is set to Vcc,
When the second input terminal T2 is connected to GND and a desired voltage is input to the full bridge, the voltage value divided by the resistance between the first magnetoresistive element MR1 and the second magnetoresistive element MR2 is displayed at the first output terminal T3. is output, and a voltage value resistance-divided by the thick film resistor R1 and the thick film resistor R2 is output to the second output terminal T4.

【0004】ついで、磁石2の回転にともなって強磁性
磁気抵抗素子1を横切る磁束方向が変化すると、第1磁
気抵抗体MR1および第2磁気抵抗体MR2は、それぞ
れ逆の抵抗値変化を示すように配置されているので、第
1出力端子T3には図10の(a)のBで示されるよう
な正弦波の電圧波形が出力され、また厚膜抵抗体R1、
R2は、磁束の変化に対して抵抗値変化を示さないので
、第2出力端子T4には図10の(a)のBで示される
ような一定値の電圧波形が出力される。ここで、第1出
力端子T3と第2出力端子T4との差をとると、図10
の(b)に示すように、図10の(a)のBの電圧波形
と同振幅、同周期の出力波形が得られ、この出力電圧値
から磁石2の回転角度を検出している。
[0004] Next, when the direction of the magnetic flux crossing the ferromagnetic magnetoresistive element 1 changes as the magnet 2 rotates, the first magnetoresistive element MR1 and the second magnetoresistive element MR2 exhibit opposite resistance changes. Therefore, a sinusoidal voltage waveform as shown by B in FIG. 10(a) is output to the first output terminal T3, and the thick film resistors R1,
Since R2 does not show a change in resistance value with respect to a change in magnetic flux, a voltage waveform having a constant value as shown by B in FIG. 10(a) is output to the second output terminal T4. Here, if we take the difference between the first output terminal T3 and the second output terminal T4, we can see that FIG.
As shown in (b) of FIG. 10, an output waveform having the same amplitude and the same period as the voltage waveform B in FIG. 10(a) is obtained, and the rotation angle of the magnet 2 is detected from this output voltage value.

【0005】[0005]

【発明が解決しようとする課題】従来の強磁性磁気抵抗
素子は以上のように、第1および第2磁気抵抗体MR1
、MR2と厚膜抵抗体R1、R2とからフルブリッジを
構成しているので、出力電圧の振幅が小さいという課題
があった。また、第1および第2磁気抵抗体MR1、M
R2と厚膜抵抗体R1、R2との抵抗値の温度特性が異
なっているので、出力電圧に環境温度の影響が含まれ、
磁石2の回転角度を正確に検出できず、検出精度を高め
るためには、温度特性の補正手段が必要となるという課
題もあった。
[Problems to be Solved by the Invention] As described above, the conventional ferromagnetic magnetoresistive element has the first and second magnetoresistive elements MR1.
, MR2 and the thick film resistors R1 and R2 constitute a full bridge, so there was a problem that the amplitude of the output voltage was small. In addition, the first and second magnetoresistive elements MR1, M
Since the temperature characteristics of the resistance values of R2 and the thick film resistors R1 and R2 are different, the output voltage includes the influence of the environmental temperature.
There is also the problem that the rotation angle of the magnet 2 cannot be accurately detected, and in order to improve the detection accuracy, a temperature characteristic correction means is required.

【0006】この発明は、上記のような課題を解決する
ためになされたもので、出力電圧が大きくとれ、特殊な
温度特性の補正手段を必要とせずに高精度で検出できる
強磁性磁気抵抗素子を得ることを目的とする。
The present invention was made in order to solve the above-mentioned problems, and provides a ferromagnetic magnetoresistive element that can provide a large output voltage and can detect with high precision without the need for special correction means for temperature characteristics. The purpose is to obtain.

【0007】[0007]

【課題を解決するための手段】この発明に係る強磁性磁
気抵抗素子は、強磁性磁気抵抗材料からなる4個の磁気
抵抗体を直列に接続し、対角線上に向かい合う一対の接
続点を入力端子とし、対角線上に向かい合う他の一対の
接続点を出力端子としてフルブリッジを形成し、かつ対
向する磁気抵抗体同士の磁束変化に対する抵抗値変化を
同一の抵抗値変化とし、隣接する磁気抵抗体同士の磁束
変化に対する抵抗値変化を逆の抵抗値変化とするもので
ある。
[Means for Solving the Problems] A ferromagnetic magnetoresistive element according to the present invention connects four magnetoresistive bodies made of ferromagnetic magnetoresistive material in series, and connects a pair of diagonally opposing connection points to input terminals. Then, a full bridge is formed with the other pair of diagonally facing connection points as output terminals, and the change in resistance value with respect to the change in magnetic flux between the opposing magnetoresistive elements is the same, and the change in resistance value between the opposing magnetoresistive elements is the same. The change in resistance value with respect to the change in magnetic flux is the opposite change in resistance value.

【0008】[0008]

【作用】上記のように構成された発明においては、フル
ブリッジを構成する4個の磁気抵抗体が強磁性磁気抵抗
材料で形成されているので、これらの磁気抵抗体は環境
温度に対する抵抗値変化、つまり温度特性が等しく、一
対の出力端子間の差をとることにより、温度特性の影響
を除去された出力電圧が得られる。
[Operation] In the invention configured as described above, since the four magnetoresistive elements constituting the full bridge are made of ferromagnetic magnetoresistive material, these magnetoresistive elements are subject to changes in resistance value due to environmental temperature. In other words, the temperature characteristics are the same, and by taking the difference between the pair of output terminals, an output voltage from which the influence of the temperature characteristics has been removed can be obtained.

【0009】また、隣接する磁気抵抗体同士の磁束変化
に対する抵抗値変化が逆の抵抗値変化を示し、対向する
磁気抵抗体同士の磁束変化に対する抵抗値変化が同一の
抵抗値変化を示すので、一対の出力端子のそれぞれから
逆相の出力波形が得られ、これらの出力端子間の差をと
ることにより、2倍の振幅の出力波形が得られる。
[0009]Furthermore, since the changes in resistance value due to changes in magnetic flux between adjacent magnetoresistive elements show opposite changes in resistance value, and the changes in resistance value due to changes in magnetic flux between opposing magnetoresistive elements show the same change in resistance value, Output waveforms with opposite phases are obtained from each of the pair of output terminals, and by taking the difference between these output terminals, an output waveform with twice the amplitude is obtained.

【0010】0010

【実施例】以下、この発明の実施例を図について説明す
る。 実施例1.図1はこの発明の実施例1を模式的に示す回
路図である。上記実施例1の強磁性磁気抵抗素子3では
、強磁性磁気抵抗材料からなる4個の第1乃至第4磁気
抵抗体MR1、MR2、MR3、MR4が直列に接続さ
れてフルブリッジを構成している。ここで、対向する第
1磁気抵抗体MR1と第3磁気抵抗体MR3とは、磁束
変化に対して同一の抵抗値変化を示し、対向する第2磁
気抵抗体MR2と第4磁気抵抗体MR4とは磁束変化に
対して同一の抵抗値変化を示し、かつ、隣接する第1磁
気抵抗体MR1(第3磁気抵抗体MR3)と第2磁気抵
抗体MR2(第4磁気抵抗体MR4)とは磁束変化に対
して逆の抵抗値変化を示すように構成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. Example 1. FIG. 1 is a circuit diagram schematically showing a first embodiment of the present invention. In the ferromagnetic magnetoresistive element 3 of Example 1, the four first to fourth magnetoresistive elements MR1, MR2, MR3, and MR4 made of ferromagnetic magnetoresistive material are connected in series to form a full bridge. There is. Here, the opposing first magnetoresistive element MR1 and the third magnetoresistive element MR3 show the same change in resistance value with respect to a change in magnetic flux, and the opposing second magnetic resistance element MR2 and the fourth magnetic resistance element MR4 exhibit the same change in resistance value with respect to a change in magnetic flux. shows the same change in resistance value with respect to a change in magnetic flux, and the adjacent first magnetoresistive element MR1 (third magnetoresistive element MR3) and second magnetoresistive element MR2 (fourth magnetoresistive element MR4) It is configured to show a change in resistance value that is opposite to the change in resistance value.

【0011】つぎに、上記実施例1の動作を図2および
図3の(a)〜(c)に基づいて説明する。図2に示す
ように、例えば磁石2が強磁性磁気抵抗素子3の近傍に
配置され、矢印A方向の磁石2の回転により強磁性磁気
抵抗素子3を横切る磁束方向が変化する。まず、第1入
力端子T1をVccに、第2入力端子T2をGNDに接
続し、フルブリッジに所望の電圧を入力すると、第1出
力端子T3には、第1磁気抵抗体MR1と第2磁気抵抗
体MR2とで抵抗分割された電圧値が出力され、また第
2出力端子T4には、第3磁気抵抗体MR3と第4磁気
抵抗体MR4とで抵抗分割された電圧値が出力される。
Next, the operation of the first embodiment will be explained based on FIG. 2 and FIGS. 3(a) to 3(c). As shown in FIG. 2, for example, a magnet 2 is placed near a ferromagnetic magnetoresistive element 3, and the direction of magnetic flux crossing the ferromagnetic magnetoresistive element 3 changes as the magnet 2 rotates in the direction of arrow A. First, when the first input terminal T1 is connected to Vcc and the second input terminal T2 is connected to GND, and a desired voltage is input to the full bridge, the first output terminal T3 is connected to the first magnetoresistive element MR1 and the second magnetoresistive element MR1. A voltage value resistance-divided by the resistor MR2 is output, and a voltage value resistance-divided by the third magnetoresistive element MR3 and the fourth magnetoresistive element MR4 is outputted to the second output terminal T4.

【0012】ついで、磁石2の回転にともなって強磁性
磁気抵抗素子3を横切る磁束方向が変化すると、第1磁
気抵抗体MR1および第2磁気抵抗体MR2は、それぞ
れ逆の抵抗値変化を示すように配置されているので、第
1出力端子T3には図3の(a)に示すように正弦波の
電圧波形が出力される。また第3磁気抵抗体MR3およ
び第4磁気抵抗体MR4は、それぞれ逆の抵抗値変化を
示し、第3磁気抵抗体MR3と第1磁気抵抗体MR1と
が同一の抵抗値変化を示し、かつ、第4磁気抵抗体MR
4と第2磁気抵抗体MR2とが同一の抵抗値変化を示す
ように配置されているので、第2出力端子T4には図3
の(b)に示すように第1出力端子T3からの出力波形
と逆相の出力波形が出力される。ここで、第1出力端子
T3と第2出力端子T4との差をとると、図3の(c)
に示すような出力波形が得られ、この出力電圧値から磁
石1の回転角度を検出している。この出力波形は、図1
0の(b)に示した従来の強磁性磁気抵抗素子1の出力
波形の2倍の振幅が得られている。また、第1乃至第4
磁気抵抗体MR1〜MR4は、強磁性磁気抵抗材料で形
成されているので、それぞれ環境温度変化に対して同じ
抵抗値変化を示し、出力端子T2、T4の出力間の差を
取ることにより、出力電圧から環境温度の影響を除去す
ることができ、特殊な温度特性の補正手段を必要をせず
に、磁石2の回転角度の検出を高精度に行うことができ
る。
Next, when the direction of the magnetic flux crossing the ferromagnetic magnetoresistive element 3 changes as the magnet 2 rotates, the first magnetoresistive element MR1 and the second magnetoresistive element MR2 exhibit opposite resistance changes. Therefore, a sinusoidal voltage waveform is outputted to the first output terminal T3 as shown in FIG. 3(a). Further, the third magnetoresistive element MR3 and the fourth magnetoresistive element MR4 exhibit opposite resistance changes, and the third magnetoresistive element MR3 and the first magnetoresistive element MR1 exhibit the same resistance value change, and Fourth magnetoresistive element MR
4 and the second magnetoresistive element MR2 are arranged so as to exhibit the same change in resistance value, so that the second output terminal T4 has the same resistance value as shown in FIG.
As shown in (b), an output waveform having an opposite phase to the output waveform from the first output terminal T3 is output. Here, if we take the difference between the first output terminal T3 and the second output terminal T4, we can see (c) in FIG.
An output waveform as shown in is obtained, and the rotation angle of the magnet 1 is detected from this output voltage value. This output waveform is shown in Figure 1.
The amplitude twice that of the output waveform of the conventional ferromagnetic magnetoresistive element 1 shown in FIG. 0(b) is obtained. Also, the first to fourth
Since the magnetoresistive elements MR1 to MR4 are made of ferromagnetic magnetoresistive material, they each exhibit the same resistance value change with respect to environmental temperature changes, and the output can be determined by taking the difference between the outputs of the output terminals T2 and T4. The influence of environmental temperature can be removed from the voltage, and the rotation angle of the magnet 2 can be detected with high precision without the need for special temperature characteristic correction means.

【0013】実施例2.図4はこの発明の実施例2を示
す側面図、図5の(a)、(b)はそれぞれ実施例2に
おける強磁性磁気抵抗素子3の構成を示す平面図である
。この実施例2は、この発明による強磁性磁気抵抗素子
3を具体的に示したものであり、第1および第2磁気抵
抗体MR1、MR2を有する強磁性磁気抵抗素子3aと
第3および第4磁気抵抗体MR3、MR4を有する強磁
性磁気抵抗素子3bとを積層して強磁性磁気抵抗素子3
を構成している。
Example 2. FIG. 4 is a side view showing a second embodiment of the present invention, and FIGS. 5(a) and 5(b) are plan views showing the configuration of the ferromagnetic magnetoresistive element 3 in the second embodiment, respectively. This Example 2 specifically shows the ferromagnetic magnetoresistive element 3 according to the present invention, and includes a ferromagnetic magnetoresistive element 3a having first and second magnetoresistive elements MR1 and MR2, and a third and fourth magnetoresistive element 3a. The ferromagnetic magnetoresistive element 3 is laminated with the ferromagnetic magnetoresistive element 3b having the magnetoresistive elements MR3 and MR4.
It consists of

【0014】強磁性磁気抵抗材料、例えばNi−Feを
ガラス基板5a上に蒸着し、互いに直交する櫛歯状のパ
ターンの第1および第2磁気抵抗体MR1、MR2を形
成し、第1および第2磁気抵抗体MR1、MR2の両端
にAuの配線6を施し、各配線6にリード端子4a、4
b、4cを配設し、さらに絶縁樹脂でモールドして、強
磁性磁気抵抗素子3aを形成する。同様に、Ni−Fe
をガラス基板5b上に蒸着し、互いに直交する櫛歯状の
パターンの第3および第4磁気抵抗体MR3、MR4を
形成し、第3および第4磁気抵抗体MR3、MR4の両
端にAuの配線6を施し、各配線6にリード端子4b、
4c、4dを配設し、さらに絶縁樹脂でモールドして、
強磁性磁気抵抗素子3bを形成する。
A ferromagnetic magnetoresistive material, for example, Ni--Fe, is deposited on a glass substrate 5a to form first and second magnetoresistive elements MR1 and MR2 in comb-like patterns perpendicular to each other. 2 magnetoresistive elements MR1, MR2 are provided with Au wiring 6 at both ends, and lead terminals 4a, 4 are attached to each wiring 6.
b and 4c are disposed and further molded with insulating resin to form the ferromagnetic magnetoresistive element 3a. Similarly, Ni-Fe
is deposited on the glass substrate 5b to form third and fourth magnetoresistive elements MR3 and MR4 in comb-like patterns perpendicular to each other, and Au wiring is provided at both ends of the third and fourth magnetoresistive elements MR3 and MR4. 6, and connect each wiring 6 with a lead terminal 4b,
4c and 4d are arranged and further molded with insulating resin,
A ferromagnetic magnetoresistive element 3b is formed.

【0015】つぎに、第1磁気抵抗体MR1と第3磁気
抵抗体MR3とが同方向となるように、さらに第2磁気
抵抗体MR2と第4磁気抵抗体MR4とが同方向となる
ように、強磁性磁気抵抗素子3a、3bを積層し、回路
基板7上の配線パターンに各リード端子4a〜4dをは
んだ付けして、回路基板7に強磁性磁気抵抗素子3を搭
載している。ここで、回路基板7の配線パターンにより
、強磁性磁気抵抗素子3a、3bのリード端子4a〜4
dの同一端子同士を電気的に接続して、図1に示す強磁
性磁気抵抗素子3を形成している。
Next, the first magnetoresistive element MR1 and the third magnetoresistive element MR3 are arranged in the same direction, and the second magnetoresistive element MR2 and the fourth magnetoresistive element MR4 are arranged in the same direction. The ferromagnetic magnetoresistive elements 3 are mounted on the circuit board 7 by stacking the ferromagnetic magnetoresistive elements 3a and 3b and soldering the respective lead terminals 4a to 4d to the wiring pattern on the circuit board 7. Here, depending on the wiring pattern of the circuit board 7, the lead terminals 4a to 4 of the ferromagnetic magnetoresistive elements 3a and 3b are
The same terminals of d are electrically connected to each other to form the ferromagnetic magnetoresistive element 3 shown in FIG.

【0016】したがって、上記実施例2では、第1磁気
抵抗体MR1と第2磁気抵抗体MR2とのパターンが互
いに直交し、第3磁気抵抗体MR3と第4磁気抵抗体M
R4とのパターンが互いに直交するように各磁気抵抗体
MR1〜MR4を形成し、かつ、第1磁気抵抗体MR1
と第3磁気抵抗体MR3とのパターンが同方向となるよ
うに、第2磁気抵抗体MR2と第4磁気抵抗体MR4と
のパターンが同方向となるように、強磁性磁気抵抗素子
3a、3bを積層しているので、第1磁気抵抗体MR1
と第3磁気抵抗体MR3との磁束変化に対する抵抗値変
化が同一となり、第2磁気抵抗体MR2と第4磁気抵抗
体MR4との磁束変化に対する抵抗値変化が同一となり
、かつ、第1磁気抵抗体MR1(第3磁気抵抗体MR3
)と第2磁気抵抗体MR2(第4磁気抵抗体MR4)と
の磁束変化に対する抵抗値変化が逆の抵抗値変化となっ
ている。
Therefore, in the second embodiment, the patterns of the first magnetoresistive element MR1 and the second magnetoresistive element MR2 are orthogonal to each other, and the patterns of the third magnetoresistive element MR3 and the fourth magnetoresistive element M
Each of the magnetoresistive elements MR1 to MR4 is formed such that the patterns with R4 are orthogonal to each other, and the first magnetoresistive element MR1
The ferromagnetic magnetoresistive elements 3a, 3b are arranged so that the patterns of the second magnetoresistive member MR2 and the fourth magnetoresistive member MR4 are in the same direction, and the patterns of the second magnetoresistive member MR2 and the fourth magnetoresistive member MR4 are arranged in the same direction. Since the first magnetoresistive element MR1 is laminated, the first magnetoresistive element MR1
and the third magnetoresistive element MR3 have the same resistance value change with respect to the magnetic flux change, the second magnetoresistive element MR2 and the fourth magnetoresistive element MR4 have the same resistance value change with respect to the magnetic flux change, and the first magnetoresistive element MR3 has the same resistance value change with respect to the magnetic flux change. body MR1 (third magnetoresistive body MR3
) and the second magnetoresistive element MR2 (fourth magnetoresistive element MR4), the resistance value change with respect to the magnetic flux change is an opposite resistance value change.

【0017】このように上記実施例2は、上記実施例1
を具体的に示した実施例であり、同様の効果を奏する。
In this way, the above embodiment 2 is similar to the above embodiment 1.
This is an example specifically showing the above, and the same effect can be achieved.

【0018】実施例3.図6はこの発明の実施例3を示
す側面図、図7の(a)、(b)はそれぞれこの発明の
実施例3における強磁性磁気抵抗素子3の構成を示す上
面図および底面図である。上記実施例2では、強磁性磁
気抵抗素子3は強磁性磁気抵抗素子3a、3bを積層し
て構成されているが、この実施例3では、図7の(a)
、(b)に示すように、ガラス基板5の一方の面に互い
に直交する櫛歯状のパターンの第1および第2磁気抵抗
体MR1、MR2を、他方の面に互いに直交する櫛歯状
のパターンの第3および第4磁気抵抗体MR3、MR4
を形成し、第1乃至第4磁気抵抗体MR1〜MR4の各
端子に配線6を形成し、各配線6に各リード端子4a〜
4dを接続した後、絶縁樹脂でモールドしているもので
あり、同様の効果を奏する。
Example 3. FIG. 6 is a side view showing a third embodiment of the present invention, and FIGS. 7(a) and 7(b) are a top view and a bottom view, respectively, showing the configuration of the ferromagnetic magnetoresistive element 3 in the third embodiment of the present invention. . In the second embodiment, the ferromagnetic magnetoresistive element 3 is constructed by laminating the ferromagnetic magnetoresistive elements 3a and 3b.
, as shown in (b), the first and second magnetoresistive elements MR1 and MR2 are arranged in comb-shaped patterns perpendicular to each other on one surface of the glass substrate 5, and comb-shaped patterns perpendicular to each other are arranged on the other surface of the glass substrate 5. Third and fourth magnetoresistive elements MR3 and MR4 of the pattern
A wiring 6 is formed at each terminal of the first to fourth magnetoresistive elements MR1 to MR4, and each lead terminal 4a to 4a is connected to each wiring 6.
After connecting 4d, it is molded with insulating resin, and the same effect is achieved.

【0019】[0019]

【発明の効果】以上説明したようにこの発明によれば、
強磁性磁気抵抗材料で形成した4個の磁気抵抗体を用い
、対向する磁気抵抗体同士の磁束変化に対する抵抗値変
化を同一の抵抗値変化とし、隣接する磁気抵抗体同士の
磁束変化に対する抵抗値を逆の抵抗値変化としてフルブ
リッジを構成しているので、出力電圧が大きくとれ、特
殊な温度特性の補正手段を必要とせずに高精度で検出で
きるフルブリッジ構造の強磁性磁気抵抗素子が得られる
という効果がある。
[Effects of the Invention] As explained above, according to the present invention,
Using four magnetoresistive bodies made of ferromagnetic magnetoresistive material, the resistance value change with respect to magnetic flux change between opposing magnetoresistive bodies is the same resistance value change, and the resistance value with respect to magnetic flux change between adjacent magnetoresistive bodies. Since the full-bridge structure is constructed with the resistance value changing in the opposite direction, a ferromagnetic magnetoresistive element with a full-bridge structure can be obtained that can obtain a large output voltage and can detect with high precision without the need for special compensation means for temperature characteristics. It has the effect of being

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例1を模式的に示す回路図であ
る。
FIG. 1 is a circuit diagram schematically showing a first embodiment of the present invention.

【図2】この発明の実施例1の動作を説明するための平
面図である。
FIG. 2 is a plan view for explaining the operation of the first embodiment of the present invention.

【図3】(a)〜(c)はそれぞれこの発明の実施例1
における磁石の回転角度と出力電圧との関係を示す出力
電圧波形図である。
[Fig. 3] (a) to (c) are respectively Embodiment 1 of the present invention.
FIG. 3 is an output voltage waveform diagram showing the relationship between the rotation angle of the magnet and the output voltage in FIG.

【図4】この発明の実施例2を示す側面図である。FIG. 4 is a side view showing a second embodiment of the invention.

【図5】(a)、(b)はそれぞれこの発明の実施例2
における強磁性磁気抵抗素子の構造を説明する平面図で
ある。
[Fig. 5] (a) and (b) are respectively Embodiment 2 of the present invention.
FIG. 2 is a plan view illustrating the structure of a ferromagnetic magnetoresistive element in FIG.

【図6】この発明の実施例3を示す側面図である。FIG. 6 is a side view showing a third embodiment of the invention.

【図7】(a)、(b)はそれぞれこの発明の実施例3
における強磁性磁気抵抗素子の構造を説明する上面図お
よび底面図である。
[Fig. 7] (a) and (b) are respectively Embodiment 3 of the present invention.
FIG. 2 is a top view and a bottom view illustrating the structure of a ferromagnetic magnetoresistive element in FIG.

【図8】従来のフルブリッジ構造の強磁性磁気抵抗素子
の一例を模式的に示す回路図である。
FIG. 8 is a circuit diagram schematically showing an example of a conventional full-bridge structure ferromagnetic magnetoresistive element.

【図9】従来のフルブリッジ構造の強磁性磁気抵抗素子
の動作を説明するための平面図である。
FIG. 9 is a plan view for explaining the operation of a conventional full-bridge structure ferromagnetic magnetoresistive element.

【図10】(a)、(b)はそれぞれ図8に示す従来の
強磁性磁気抵抗素子における磁石の回転角度と出力電圧
との関係を示す出力電圧波形図である。
10(a) and 10(b) are output voltage waveform diagrams showing the relationship between the rotation angle of the magnet and the output voltage in the conventional ferromagnetic magnetoresistive element shown in FIG. 8, respectively.

【符号の説明】[Explanation of symbols]

3    強磁性磁気抵抗素子 3a、3b  強磁性磁気抵抗素子 MR1  第1磁気抵抗体 MR2  第2磁気抵抗体 MR3  第3磁気抵抗体 MR4  第4磁気抵抗体 T1    第1入力端子 T2    第2入力端子 T3    第1出力端子 T4    第2出力端子 3 Ferromagnetic magnetoresistive element 3a, 3b Ferromagnetic magnetoresistive element MR1 First magnetoresistive element MR2 Second magnetoresistive element MR3 Third magnetoresistive element MR4 4th magnetoresistive element T1 1st input terminal T2 2nd input terminal T3 1st output terminal T4 2nd output terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  強磁性磁気抵抗材料からなる4個の磁
気抵抗体を直列に接続してブリッジを形成し、対向する
磁気抵抗体同士の磁束変化に対する抵抗値変化を同一の
抵抗値変化とし、隣接する磁気抵抗体同士の磁束変化に
対する抵抗値変化を逆の抵抗値変化とし、対角線上に向
かい合う一対の接続点を入力端子とし、対角線上に向か
い合う他の一対の接続点を出力端子としたことを特徴と
するフルブリッジ構造の強磁性磁気抵抗素子。
1. Four magnetoresistive bodies made of a ferromagnetic magnetoresistive material are connected in series to form a bridge, and the resistance value change with respect to the magnetic flux change between the opposing magnetoresistive bodies is the same resistance value change, A change in resistance value due to a change in magnetic flux between adjacent magnetoresistive elements is treated as an opposite change in resistance value, a pair of diagonally facing connection points are used as input terminals, and another pair of diagonally facing connection points are used as output terminals. A ferromagnetic magnetoresistive element with a full bridge structure.
JP3145973A 1991-06-18 1991-06-18 Ferromagnetic magnetoresistance element with full bridge structure Pending JPH04369278A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3145973A JPH04369278A (en) 1991-06-18 1991-06-18 Ferromagnetic magnetoresistance element with full bridge structure
DE19924219908 DE4219908C2 (en) 1991-06-18 1992-06-17 Ferromagnetic resistance unit in full-way bridge circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3145973A JPH04369278A (en) 1991-06-18 1991-06-18 Ferromagnetic magnetoresistance element with full bridge structure

Publications (1)

Publication Number Publication Date
JPH04369278A true JPH04369278A (en) 1992-12-22

Family

ID=15397270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3145973A Pending JPH04369278A (en) 1991-06-18 1991-06-18 Ferromagnetic magnetoresistance element with full bridge structure

Country Status (2)

Country Link
JP (1) JPH04369278A (en)
DE (1) DE4219908C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621320A (en) * 1995-03-03 1997-04-15 Mitsubishi Denki Kabushiki Kaisha Magnetoresistance type sensor device for detecting change of magnetic field
JP2006300779A (en) * 2005-04-21 2006-11-02 Denso Corp Rotation detector
WO2011111537A1 (en) * 2010-03-12 2011-09-15 アルプス・グリーンデバイス株式会社 Current sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4427495C2 (en) * 1994-08-03 2000-04-13 Siemens Ag Sensor device with a GMR sensor element
JP3767927B2 (en) * 1995-01-31 2006-04-19 沖電気工業株式会社 Wavelength conversion method and wavelength conversion apparatus using the same
DE19507303A1 (en) * 1995-03-02 1996-09-05 Siemens Ag Sensor device with a bridge circuit of magnetoresistive sensor elements
CN109633496A (en) * 2018-12-27 2019-04-16 北京航空航天大学青岛研究院 Single, double axis magnetic field sensor and preparation method and equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD228362A1 (en) * 1984-05-31 1985-10-09 Univ Schiller Jena ARRANGEMENT FOR MEASURING PIPING PROBES IN THE FORM OF A MAGNETORESISTIC TRANSDUCER
DE3442278A1 (en) * 1984-11-20 1986-05-22 Philips Patentverwaltung Gmbh, 2000 Hamburg Magnetic-field test set

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621320A (en) * 1995-03-03 1997-04-15 Mitsubishi Denki Kabushiki Kaisha Magnetoresistance type sensor device for detecting change of magnetic field
JP2006300779A (en) * 2005-04-21 2006-11-02 Denso Corp Rotation detector
WO2011111537A1 (en) * 2010-03-12 2011-09-15 アルプス・グリーンデバイス株式会社 Current sensor

Also Published As

Publication number Publication date
DE4219908A1 (en) 1993-01-07
DE4219908C2 (en) 1995-12-14

Similar Documents

Publication Publication Date Title
US6246233B1 (en) Magnetoresistive sensor with reduced output signal jitter and temperature compensation
KR910006670B1 (en) Untouching type pattern sensor improved
US4506220A (en) Temperature compensated magnetoresistive effect thin film magnetic sensor
US20030128031A1 (en) Magnetoresistive sensor
JP7215454B2 (en) Magnetic sensors, magnetic encoders and lens position detectors
US5909115A (en) Position detecting apparatus employing magnetoresistance effect elements connected in series
JP2015108527A (en) Magnetic sensor
JPH04369278A (en) Ferromagnetic magnetoresistance element with full bridge structure
JP2005069744A (en) Magnetic detection element
JP3004926B2 (en) Magnetic encoder
JPS63311117A (en) Magnetic sensor for detecting position
JP3308123B2 (en) Magnetoresistive sensor
JPH0330089B2 (en)
JPH0329875A (en) Magnetoresistance element made of ferromagnetic body
JP2767281B2 (en) Magnetic sensor
JPS60104262A (en) Frequency generator
JP3029581B2 (en) Magnetic encoder
JP6425519B2 (en) Magnetic sensor
JPH10170619A (en) Magnetic sensor and alternating bias magnetic field impressing method therefor
JP2715879B2 (en) Magnetoresistive element
JP7341454B2 (en) magnetic sensor
JPS61209375A (en) Magnetic field detector
JPH0267983A (en) Magnetoresistance element
JP2606400B2 (en) Magnetic sensor
JPS6051153B2 (en) magnetic card reader