JPH04368843A - Ultra-high-molecular-weight polyethylene composite tubular material and manufacture thereof - Google Patents

Ultra-high-molecular-weight polyethylene composite tubular material and manufacture thereof

Info

Publication number
JPH04368843A
JPH04368843A JP14480891A JP14480891A JPH04368843A JP H04368843 A JPH04368843 A JP H04368843A JP 14480891 A JP14480891 A JP 14480891A JP 14480891 A JP14480891 A JP 14480891A JP H04368843 A JPH04368843 A JP H04368843A
Authority
JP
Japan
Prior art keywords
ultra
weight polyethylene
molecular weight
high molecular
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14480891A
Other languages
Japanese (ja)
Inventor
Kunie Hiroshige
広 重 国 衛
Takeshi Shiraki
白 木   武
Iwatoshi Suzuki
鈴 木 岩 俊
Tatsuo Kato
加 藤 達 夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP14480891A priority Critical patent/JPH04368843A/en
Publication of JPH04368843A publication Critical patent/JPH04368843A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide composite tubular material suitable for transporting liquid and powder and granular material combined with characteristics such as excellent wear resistance, self-lubricating properties, shock resistance, resistance to chemicals and non-tackiness, all of which are indigenous to ultra-high- molecular-weight polyethylene, and excellent elasticity, flexibility, durability and the like, all of which are indigenous to rubber. CONSTITUTION:The ultra-high-molecular-weight polyethylene composite tubular material concerned is produced by bonding the ultra-high-molecular-weight polyethylene, of which inner tube 1 having the wall thickness of 0.01-5mm and the outer diameter of 2mm or more is made, and the rubber, of which outer tube 2 is made so as to fit onto the inner tube through vulcanization.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は超高分子量ポリエチレン
複合管材およびその製造方法に関し、特に、超高分子量
ポリエチレンの有する優れた耐摩耗性、自己潤滑性、耐
衝撃性、耐薬品性および非粘着性と、ゴムの有する優れ
た弾性、柔軟性、耐久性等の特性とを兼ね備える超高分
子量ポリエチレン複合管材、および該複合管材を簡便な
工程で得ることができる方法に関する。
[Industrial Application Field] The present invention relates to an ultra-high molecular weight polyethylene composite pipe material and a method for producing the same, and in particular to ultra-high molecular weight polyethylene's excellent wear resistance, self-lubricating property, impact resistance, chemical resistance, and non-stick properties. The present invention relates to an ultra-high molecular weight polyethylene composite pipe material that has the properties of rubber, such as excellent elasticity, flexibility, and durability, and a method for obtaining the composite pipe material through a simple process.

【0002】0002

【従来の技術】超高分子量ポリエチレンは、耐摩耗性、
自己潤滑性、耐薬品性、低温特性、例えば、耐低温衝撃
性等に優れており、これらの優れた特性を生かして各種
用途への利用が考えられている。そこで、この超高分子
量ポリエチレンの有する優れた特性を利用した複合材の
製造方法が提案されている。例えば、特開昭61−27
3934号公報には、超高分子量ポリオレフィンを融点
近傍の温度で加工して径を細くした状態で固化させた芯
材料を、他の材質からなる、内径が上記芯材料の加工前
の外径よりも小さい中空体の内部に挿入し、上記芯材料
を融点以上に加熱して径を拡大させることにより、上記
中空体内壁に圧着させることを特徴とする方法が開示さ
れている。また、特開昭62−99133号公報には、
この方法において、超高分子量ポリオレフィンと他の材
質からなる中空体との間に接着剤を介在して接着させる
方法が開示されている。
[Prior art] Ultra-high molecular weight polyethylene has wear resistance,
It has excellent self-lubricating properties, chemical resistance, and low-temperature properties, such as low-temperature impact resistance, and is being considered for use in various applications by taking advantage of these excellent properties. Therefore, a method of manufacturing a composite material has been proposed that utilizes the excellent properties of this ultra-high molecular weight polyethylene. For example, JP-A-61-27
Publication No. 3934 discloses that a core material made of ultra-high molecular weight polyolefin is processed at a temperature near its melting point and solidified in a thinner diameter state, and the core material is made of another material and has an inner diameter smaller than the outer diameter of the core material before processing. A method is disclosed in which the core material is inserted into a small hollow body, and the core material is heated to a temperature higher than its melting point to enlarge its diameter, thereby being press-bonded to the inner wall of the hollow body. Also, in Japanese Patent Application Laid-open No. 62-99133,
In this method, a method is disclosed in which an ultra-high molecular weight polyolefin and a hollow body made of another material are bonded by interposing an adhesive between them.

【0003】0003

【発明が解決しようとする課題】しかし、前記の特開昭
61−273934号公報および同62−99133号
公報に記載の方法によって得られる複合材は、中空体と
してポリアミド、ポリエステル等の熱可塑性樹脂、ある
いはフェノール樹脂等の熱硬化性樹脂、銅等の金属、ガ
ラス等の無機質材料、あるいは木等の有機材料からなる
ものを外側被覆材とする複合材であるが、得られる複合
材の弾性や柔軟性が著しく乏しいという問題があった。 また、特開昭62−99133号公報に記載の方法によ
って得られる複合材は、中空体と芯材料とは接着剤で接
着されている複合材であるため、芯材料への接着剤の塗
布、あるいは積層等の成形工数が増し、また成形工程が
煩雑となる。また、コスト上昇の原因となるなどの問題
があった。
[Problems to be Solved by the Invention] However, the composite materials obtained by the methods described in JP-A-61-273934 and JP-A-62-99133 are hollow bodies made of thermoplastic resin such as polyamide or polyester. or a composite material whose outer coating is made of thermosetting resin such as phenolic resin, metal such as copper, inorganic material such as glass, or organic material such as wood, but the elasticity and The problem was that flexibility was extremely poor. Furthermore, since the composite material obtained by the method described in JP-A No. 62-99133 is a composite material in which the hollow body and the core material are bonded with an adhesive, applying the adhesive to the core material, Alternatively, the number of molding steps such as lamination increases, and the molding process becomes complicated. Furthermore, there were other problems such as an increase in costs.

【0004】そこで本発明の目的は、超高分子量ポリエ
チレンの有する優れた耐摩耗性、自己潤滑性、耐衝撃性
、耐薬品性および非粘着性と、ゴムの有する優れた弾性
、柔軟性、耐久性等の特性とを兼ね備え、かつ外管材と
内管材とが強固に接着された超高分子量ポリエチレン複
合管材、および該複合管材を簡便な工程により、経済的
に得ることができる方法を提供することにある。
Therefore, the object of the present invention is to combine the excellent abrasion resistance, self-lubrication, impact resistance, chemical resistance, and non-adhesiveness of ultra-high molecular weight polyethylene with the excellent elasticity, flexibility, and durability of rubber. To provide an ultra-high molecular weight polyethylene composite pipe material which has properties such as elasticity, and in which an outer pipe material and an inner pipe material are firmly bonded, and a method for economically obtaining the composite pipe material through a simple process. It is in.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決するために、極限粘度〔η〕が5.0dl/g以上の
超高分子量ポリエチレンからなる肉厚0.01〜5mm
、外径2mm以上の内管と、該内管の外側に嵌装された
ゴムからなる外管とを有し、前記内管の超高分子量ポリ
エチレンと外管のゴムとが加硫接着されていることを特
徴とする超高分子量ポリエチレン複合管材を提供するも
のである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a wall thickness of 0.01 to 5 mm made of ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 5.0 dl/g or more.
, has an inner tube with an outer diameter of 2 mm or more, and an outer tube made of rubber fitted on the outside of the inner tube, and the ultra-high molecular weight polyethylene of the inner tube and the rubber of the outer tube are vulcanized and bonded. The present invention provides an ultra-high molecular weight polyethylene composite pipe material characterized by:

【0006】また、本発明は、この超高分子量ポリエチ
レン複合管材の第1の製造方法として、未加硫ゴムから
なる外管材の内部に、極限粘度〔η〕が5.0dl/g
以上の超高分子量ポリエチレンからなり、125℃で1
0%以上膨張する膨張性内管材を内挿した後、超高分子
量ポリエチレンの融点付近以上の温度に加熱して該超高
分子量ポリエチレンからなる内管材を膨張させながら、
内管材の超高分子量ポリエチレンと外管材の未加硫ゴム
とを加硫接着させる工程を有する超高分子量ポリエチレ
ン複合管材の製造方法を提供するものである。
[0006] Furthermore, the present invention provides a first method for producing this ultra-high molecular weight polyethylene composite pipe material, in which the inner part of the outer pipe material made of unvulcanized rubber has an intrinsic viscosity [η] of 5.0 dl/g.
It is made of ultra-high molecular weight polyethylene with a temperature of 1
After inserting an expandable inner tube material that expands by 0% or more, while expanding the inner tube material made of ultra-high molecular weight polyethylene by heating it to a temperature near the melting point of the ultra-high molecular weight polyethylene or higher,
The present invention provides a method for manufacturing an ultra-high molecular weight polyethylene composite pipe material, which includes a step of vulcanizing and bonding ultra-high molecular weight polyethylene of the inner pipe material and unvulcanized rubber of the outer pipe material.

【0007】さらに、本発明は、前記超高分子量ポリエ
チレン複合管材の第2の製造方法として、極限粘度〔η
〕が5.0dl/g以上の超高分子量ポリエチレンから
なり、140℃で5%以上収縮する収縮性内管材の内部
に、所定の外径を有する耐熱性樹脂からなる芯材を挿入
した後、加熱して超高分子量ポリエチレンからなる内管
材を収縮させて内管材を前記芯材に密着させて芯材の外
側に内管を嵌装させる工程と、前記芯材に嵌装された内
管の外側を未加硫ゴムで被覆した後、ゴムの加硫温度で
加熱してゴムと超高分子量ポリエチレンとを加硫接着さ
せて外管を形成する工程と、前記内管から芯材を抜き取
る工程とを有する超高分子量ポリエチレン複合管材の製
造方法をも提供するものである。
Furthermore, the present invention provides a second method for producing the ultra-high molecular weight polyethylene composite pipe material, which has a limiting viscosity [η
] After inserting a core material made of a heat-resistant resin having a predetermined outer diameter into the inside of a shrinkable inner tube material made of ultra-high molecular weight polyethylene with a diameter of 5.0 dl/g or more and shrinking by 5% or more at 140°C, A step of shrinking the inner tube material made of ultra-high molecular weight polyethylene by heating to bring the inner tube material into close contact with the core material and fitting the inner tube outside the core material; A process of coating the outside with unvulcanized rubber and then heating at the vulcanization temperature of the rubber to vulcanize and bond the rubber and ultra-high molecular weight polyethylene to form an outer tube, and a process of extracting the core material from the inner tube. The present invention also provides a method for producing an ultra-high molecular weight polyethylene composite pipe material having the following.

【0008】以下、本発明の超高分子量ポリエチレン複
合管材(以下、「複合管材」という)およびその製造方
法について、詳細に説明する。
[0008] Hereinafter, the ultra-high molecular weight polyethylene composite pipe material (hereinafter referred to as "composite pipe material") of the present invention and its manufacturing method will be explained in detail.

【0009】本発明の複合管材は、図1に概略を示すよ
うに、内管1と該内管1の外側に嵌装された外管2とを
有するものである。
The composite tube material of the present invention has an inner tube 1 and an outer tube 2 fitted on the outside of the inner tube 1, as schematically shown in FIG.

【0010】内管1は超高分子量ポリエチレンからなり
、肉厚0.01〜5mm、好ましくは0.01〜3mm
のものである。柔軟性を有する複合管材とするためには
、通常、0.01〜3mm程度、好ましくは0.01〜
2mm程度の肉厚の超高分子量ポリエチレン薄肉パイプ
、あるいは超高分子量ポリエチレンの円筒状フィルムな
どを内管として用いればよい。また、剛性を有する複合
管材とするためには、通常、0.1〜5mm程度、好ま
しくは3〜5mm程度の肉厚の超高分子量ポリエチレン
パイプなどを内管として用いればよい。
The inner tube 1 is made of ultra-high molecular weight polyethylene and has a wall thickness of 0.01 to 5 mm, preferably 0.01 to 3 mm.
belongs to. In order to obtain a flexible composite pipe material, the thickness is usually about 0.01 to 3 mm, preferably 0.01 to 3 mm.
A thin ultra-high molecular weight polyethylene pipe with a wall thickness of about 2 mm, a cylindrical film of ultra-high molecular weight polyethylene, or the like may be used as the inner tube. Further, in order to obtain a composite pipe material having rigidity, an ultra-high molecular weight polyethylene pipe or the like having a wall thickness of approximately 0.1 to 5 mm, preferably approximately 3 to 5 mm may be used as the inner pipe.

【0011】また外管2はゴムからなるものであり、こ
の外管2と内管1とは、内管を構成する超高分子量ポリ
エチレンと外管を構成するゴムとが加硫によって、接着
されている。この外管2の肉厚は、通常、0.5〜70
mm程度、好ましくは1〜50mm程度である。
Further, the outer tube 2 is made of rubber, and the outer tube 2 and the inner tube 1 are made by bonding the ultra-high molecular weight polyethylene constituting the inner tube and the rubber constituting the outer tube by vulcanization. ing. The wall thickness of this outer tube 2 is usually 0.5 to 70 mm.
It is about mm, preferably about 1 to 50 mm.

【0012】この複合管材の内管の素材である超高分子
量ポリエチレンは、エチレンを主成分とするものであり
、例えば、エチレンの単独重合体、エチレンを主成分と
しエチレンと該エチレンと共重合可能な単量体との共重
合体などが挙げられる。このエチレンと共重合可能な単
量体としては、例えば、炭素数3以上のα−オレフィン
などが挙げられる。
The ultra-high molecular weight polyethylene that is the material for the inner pipe of this composite pipe material has ethylene as its main component. Examples include copolymers with other monomers. Examples of monomers copolymerizable with ethylene include α-olefins having 3 or more carbon atoms.

【0013】この炭素数3以上のα−オレフィンとして
は、例えば、プロピレン、1−ブテン、イソブテン、1
−ペンテン、2−メチル−1−ブテン、3−メチル−1
−ブテン、1−ヘキセン、3−メチル−1−ペンテン、
4−メチル−1−ペンテン、1−ヘプテン、1−オクテ
ン、1−デセン、1−ドデセン、1−テトラデセン、1
−ヘキサデセン、1−オクタデセン、1−イコセン等が
挙げられる。
Examples of the α-olefin having 3 or more carbon atoms include propylene, 1-butene, isobutene, and 1-butene.
-Pentene, 2-methyl-1-butene, 3-methyl-1
-butene, 1-hexene, 3-methyl-1-pentene,
4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1
-hexadecene, 1-octadecene, 1-icosene, etc.

【0014】この超高分子量ポリエチレンは、内管材の
成形時に、この超高分子量ポリエチレンの溶融物が、後
記のインナーダイとの共廻りによる捩れやインナーダイ
の撓みによる偏肉を起こさず、肉厚の均一な内管材が得
られる点で、極限粘度〔η〕が5.0dl/g以上のも
のであり、好ましくは極限粘度〔η〕が  8〜30d
l/gである。
[0014] This ultra-high molecular weight polyethylene, when molding the inner tube material, does not cause the molten material of this ultra-high molecular weight polyethylene to twist due to co-rotation with the inner die, which will be described later, or cause thickness unevenness due to the deflection of the inner die, and the wall thickness can be increased. In order to obtain a uniform inner tube material, the material has an intrinsic viscosity [η] of 5.0 dl/g or more, preferably an intrinsic viscosity [η] of 8 to 30 dl/g.
l/g.

【0015】この超高分子量ポリエチレンには、必要に
応じて各種の安定剤を配合してもよい。この安定剤とし
ては、例えば、テトラキス〔メチレン(3,5−ジ−t
−ブチル−4−ヒドロキシ)ヒドロシンナメート〕メタ
ン、ジステアリルチオジプロピオネート等の耐熱安定剤
、あるいはビス(2,2′,6,6′−テトラメチル−
4−ピペリジン)セバケート、2(2−ヒドロキシ−t
−ブチル−5−メチルフェニル)−5−クロロベンゾト
リアゾール等の耐候安定剤等が挙げられる。また、着色
剤として、無機系、有機系のドライカラーを添加しても
よい。
[0015] This ultra-high molecular weight polyethylene may be blended with various stabilizers as required. Examples of the stabilizer include tetrakis[methylene (3,5-di-t
-butyl-4-hydroxy)hydrocinnamate]methane, heat stabilizers such as distearylthiodipropionate, or bis(2,2',6,6'-tetramethyl-
4-piperidine) sebacate, 2(2-hydroxy-t
-butyl-5-methylphenyl)-5-chlorobenzotriazole and other weathering stabilizers. Furthermore, an inorganic or organic dry color may be added as a coloring agent.

【0016】また、外管を構成するゴムは、天然ゴム、
あるいは合成ゴムのいずれでもよく、特に限定されない
。この合成ゴムとしては、例えば、スチレン−ブタジエ
ンゴム、ブタジエンゴム、イソプレンゴム、エチレン−
α−オレフィン−ジエン共重合体等のジエン系ゴム、ブ
チルゴム、エチレン−α−オレフィンゴム、アクリルゴ
ム等のオレフィン系ゴム、シリコーンゴム、ウレタンゴ
ム等の従来公知の種々のゴムが挙げられる。
[0016] Furthermore, the rubber constituting the outer tube may be natural rubber,
Alternatively, it may be made of synthetic rubber, and is not particularly limited. Examples of this synthetic rubber include styrene-butadiene rubber, butadiene rubber, isoprene rubber, and ethylene-butadiene rubber.
Examples include various conventionally known rubbers such as diene rubber such as α-olefin-diene copolymer, olefin rubber such as butyl rubber, ethylene-α-olefin rubber, and acrylic rubber, silicone rubber, and urethane rubber.

【0017】本発明の複合管材を製造するための第1の
方法としては、未加硫ゴムからなる外管材の内部に、超
高分子量ポリエチレンからなる膨張性内管材を内挿した
後、超高分子量ポリエチレンの融点付近以上の温度に加
熱して該超高分子量ポリエチレンからなる内管材を膨張
させながら、内管材の超高分子量ポリエチレンと外管材
の未加硫ゴムとを加硫接着させる工程を有する方法が挙
げられる。
[0017] The first method for manufacturing the composite pipe material of the present invention is to insert an expansible inner pipe material made of ultra-high molecular weight polyethylene into an outer pipe material made of unvulcanized rubber, and then It has a step of vulcanizing and bonding the ultra-high molecular weight polyethylene of the inner tube material and the unvulcanized rubber of the outer tube material while expanding the inner tube material made of the ultra-high molecular weight polyethylene by heating to a temperature near the melting point of the molecular weight polyethylene or higher. There are several methods.

【0018】この第1の方法においては、まず、図2に
示すように、加硫剤を含有する未加硫ゴムからなる外管
材3の内部に超高分子量ポリエチレンからなり、外管材
3の内径よりも小さい外径を有する膨張性の内管材4を
内挿する。
In this first method, first, as shown in FIG. 2, the inside of the outer tube material 3 made of unvulcanized rubber containing a vulcanizing agent is made of ultra-high molecular weight polyethylene, and the inner diameter of the outer tube material 3 is An expandable inner tube 4 having an outer diameter smaller than that is inserted.

【0019】次に、加熱して該膨張性の超高分子量ポリ
エチレンからなる内管材4を膨張させて外径を拡大させ
、内管材4の外周面と外管材3の内周面とを密着させる
。このとき、加熱の温度は、超高分子量ポリエチレンの
融点付近以上の温度であり、通常、(超高分子量ポリエ
チレンの融点−15℃)〜(融点+120℃)の温度、
好ましくは(融点−10℃)〜(融点+100℃)の温
度である。
Next, the inner tube material 4 made of the expandable ultra-high molecular weight polyethylene is expanded by heating to increase its outer diameter, and the outer peripheral surface of the inner tube material 4 and the inner peripheral surface of the outer tube material 3 are brought into close contact. . At this time, the heating temperature is a temperature near the melting point of ultra-high molecular weight polyethylene or higher, usually a temperature of (melting point of ultra-high molecular weight polyethylene -15°C) to (melting point +120°C),
Preferably, the temperature is from (melting point -10°C) to (melting point +100°C).

【0020】この加熱によって、外管材3の未加硫ゴム
は、含有する加硫剤によって加硫されるとともに、超高
分子量ポリエチレンと加硫接着されることによって、図
1に示す本発明の複合管材を製造することができる。
By this heating, the unvulcanized rubber of the outer tube material 3 is vulcanized by the vulcanizing agent contained therein, and is vulcanized and bonded to the ultra-high molecular weight polyethylene, thereby forming the composite material of the present invention shown in FIG. Piping materials can be manufactured.

【0021】外管材の素材である未加硫ゴムが含有する
加硫剤としては、この種のゴムの加硫に用いられる加硫
剤が使用され、特に限定されない。例えば、ジ−t−ブ
チルパーオキサイド、ジクミルパーオキサイド等の従来
公知の有機過酸化物、イオウなどが挙げられる。また、
この未加硫ゴムは、カーボンブラック、炭酸カルシウム
、クレー等の従来公知の無機充填剤、あるいは加硫促進
剤、老化防止剤、補強剤、軟化剤、加硫助剤などを含有
していてもよい。
The vulcanizing agent contained in the unvulcanized rubber that is the raw material for the outer tube material is not particularly limited, and may be a vulcanizing agent used for vulcanizing this type of rubber. Examples include conventionally known organic peroxides such as di-t-butyl peroxide and dicumyl peroxide, and sulfur. Also,
This unvulcanized rubber may contain conventionally known inorganic fillers such as carbon black, calcium carbonate, clay, or vulcanization accelerators, anti-aging agents, reinforcing agents, softeners, vulcanization aids, etc. good.

【0022】加熱の方法は、特に制限されず、例えば、
熱水による加熱、オーブンによる加熱、遠赤外線による
加熱などが挙げられる。
[0022] The heating method is not particularly limited, and for example,
Examples include heating with hot water, heating with an oven, and heating with far infrared rays.

【0023】また、膨張性の超高分子ポリエチレンから
なる内管材4は、例えば、極限粘度〔η〕が5.0dl
/g以上の超高分子量ポリエチレンをスクリュー押出機
に供給して溶融、混練し、該スクリュー押出機のスクリ
ューに連結され、スクリュー押出機のスクリューの回転
とともに回転するインナーダイが内部に配設されてなる
、L/D比が少なくとも10であるダイから、超高分子
量ポリエチレンの溶融物を連続して押出して円筒状の粗
成形物に成形した後、該円筒状の粗成形物を、引取機ま
たは巻取機によって、外径がアウターダイの内径の0.
9〜0.1倍になるように縮径させながら、スクリュー
押出機における超高分子量ポリエチレンの押出速度の1
.1倍以上の引取速度で引き取るとともに、冷却装置に
おいて超高分子量ポリエチレンが冷却固化を開始するよ
うにする方法によって製造することができる。
Further, the inner tube material 4 made of expandable ultra-high molecular polyethylene has, for example, an intrinsic viscosity [η] of 5.0 dl.
/g or more of ultra-high molecular weight polyethylene is supplied to a screw extruder, melted and kneaded, and an inner die is arranged inside that is connected to the screw of the screw extruder and rotates with the rotation of the screw of the screw extruder. The melt of ultra-high molecular weight polyethylene is continuously extruded from a die having an L/D ratio of at least 10 to form a cylindrical rough molded product, and then the cylindrical rough molded product is transferred to a drawing machine or The winding machine adjusts the outer diameter to 0.00 mm of the inner diameter of the outer die.
1 of the extrusion speed of ultra-high molecular weight polyethylene in a screw extruder while reducing the diameter to 9 to 0.1 times.
.. It can be produced by a method in which the ultra-high molecular weight polyethylene is taken at a take-up speed of 1 times or more, and the ultra-high molecular weight polyethylene starts cooling and solidifying in a cooling device.

【0024】さらに、本発明の複合管材を製造するため
の第2の方法として、超高分子量ポリエチレンからなる
収縮性内管材の内部に、所定の外径を有する耐熱性樹脂
からなる芯材を挿入した後、加熱して超高分子量ポリエ
チレンからなる内管材を収縮させて内管材を前記芯材に
密着させて芯材の外側に内管を嵌装させる工程と、前記
芯材に嵌装された内管の外側を未加硫ゴムで被覆した後
、ゴムの加硫温度で加熱してゴムと超高分子量ポリエチ
レンとを加硫接着させて外管を形成する工程と、前記内
管から芯材を抜き取る工程とを有する方法が挙げられる
Furthermore, as a second method for manufacturing the composite pipe material of the present invention, a core material made of a heat-resistant resin having a predetermined outer diameter is inserted inside a shrinkable inner pipe material made of ultra-high molecular weight polyethylene. After that, heating is performed to shrink the inner tube material made of ultra-high molecular weight polyethylene so that the inner tube material is brought into close contact with the core material, and the inner tube is fitted on the outside of the core material. A process of coating the outside of the inner tube with unvulcanized rubber and then heating it at the vulcanization temperature of the rubber to vulcanize and bond the rubber and ultra-high molecular weight polyethylene to form an outer tube, and removing the core material from the inner tube. The method includes a step of extracting the.

【0025】この第2の方法においては、まず、図3(
A)に示すように、芯材5を超高分子量ポリエチレンか
らなる収縮性内管材6の内部に挿入する。
In this second method, first, FIG.
As shown in A), the core material 5 is inserted into the shrinkable inner tube material 6 made of ultra-high molecular weight polyethylene.

【0026】この芯材5は、耐熱性樹脂からなるもので
あり、この耐熱性樹脂としては、150℃以上の融点を
有するものが挙げられ、例えば、ポリプロピレン、ポリ
4−メチル−1−ペンテン、ポリアミド、ポリエステル
ラバーなどが挙げられる。また、この芯材5は、所望の
内径を有する複合管材が得られるように、予め所定の外
径を有するものを使用すると、好ましい。
The core material 5 is made of a heat-resistant resin, and examples of the heat-resistant resin include those having a melting point of 150° C. or higher, such as polypropylene, poly4-methyl-1-pentene, Examples include polyamide and polyester rubber. Further, it is preferable to use a core material 5 having a predetermined outer diameter so that a composite pipe material having a desired inner diameter can be obtained.

【0027】次に、加熱して収縮性超高分子量ポリエチ
レンからなる内管材6を収縮させて、図3(B)に示す
ように、内管材6を芯材5に密着させ、嵌装させる。
Next, the inner tube material 6 made of shrinkable ultra-high molecular weight polyethylene is contracted by heating, and as shown in FIG. 3(B), the inner tube material 6 is brought into close contact with the core material 5 and fitted.

【0028】加熱の温度は、通常、100〜200℃、
好ましくは130〜160℃であり、また、加熱の方法
は、特に制限されず、例えば、熱水による加熱、オーブ
ンによる加熱、遠赤外線による加熱等の方法が挙げられ
る。
[0028] The heating temperature is usually 100 to 200°C;
The temperature is preferably 130 to 160°C, and the heating method is not particularly limited, and examples thereof include methods such as heating with hot water, heating with an oven, and heating with far infrared rays.

【0029】また、収縮性の超高分子量ポリエチレンか
らなる内管材6は、例えば、極限粘度〔η〕が5.0d
l/g以上の超高分子量ポリエチレンをスクリュー押出
機に供給して溶融、混練し、該スクリュー押出機のスク
リューに連結され、スクリュー押出機のスクリューの回
転とともに回転するインナーダイが内部に配設されてな
る、L/D比が少なくとも10であるダイから、超高分
子量ポリエチレンの溶融物を連続して押出して円筒状の
粗成形物に成形した後、該円筒状の粗成形物を、前記イ
ンナーダイに連結されたテーパーコアによって、最大拡
径部の内径がインナーダイの外径の1.05〜4倍にな
るように拡径させながら、スクリュー押出機における超
高分子量ポリエチレンの押出速度の5倍以下の引取速度
で引き取るとともに、テーパーコアのテーパー部におい
て超高分子量ポリエチレンが冷却固化を開始するように
する方法によって製造することができる。
The inner tube material 6 made of shrinkable ultra-high molecular weight polyethylene has, for example, an intrinsic viscosity [η] of 5.0 d.
Ultra-high molecular weight polyethylene of 1/g or more is supplied to a screw extruder, melted and kneaded, and an inner die connected to the screw of the screw extruder and rotated with the rotation of the screw of the screw extruder is disposed inside. The melt of ultra-high molecular weight polyethylene is continuously extruded from a die having an L/D ratio of at least 10 to form a cylindrical rough molded product, and then the cylindrical rough molded product is The tapered core connected to the die expands the inner diameter of the maximum diameter part to 1.05 to 4 times the outer diameter of the inner die, while increasing the extrusion speed of ultra-high molecular weight polyethylene in the screw extruder by 5 times. It can be produced by a method in which the ultra-high molecular weight polyethylene is taken at a take-up speed of twice that or less, and the ultra-high molecular weight polyethylene starts cooling and solidifying in the tapered portion of the tapered core.

【0030】以上のように、芯材5に内管材6を嵌装さ
せた後、図3(C)に示すように、内管材6の外側に未
加硫ゴム7で被覆した後、加熱して未加硫ゴム7を加硫
させるとともに、未加硫ゴムと超高分子量ポリエチレン
とを加硫接着させて、内管に外管が嵌装された複合管材
を得ることができる。未加硫ゴムによる被覆は、押出成
形等の方法にしたがって、行うことができる。押出成形
によって被覆する場合、押出成形の温度は、通常、超高
分子量ポリエチレンの融点(136℃)以下、好ましく
は70〜110℃の範囲が望ましい。また、押出成形は
、例えば、二軸押出機、単軸押出機等の押出成形機を用
いればよい。
After the inner tube material 6 is fitted onto the core material 5 as described above, the outside of the inner tube material 6 is coated with unvulcanized rubber 7, and then heated. By vulcanizing the unvulcanized rubber 7 and vulcanizing and adhering the unvulcanized rubber and ultra-high molecular weight polyethylene, it is possible to obtain a composite pipe material in which an outer pipe is fitted into an inner pipe. Covering with unvulcanized rubber can be performed by extrusion molding or other methods. When coating by extrusion molding, the temperature of extrusion molding is usually below the melting point of ultra-high molecular weight polyethylene (136°C), preferably in the range of 70 to 110°C. For extrusion molding, an extrusion molding machine such as a twin-screw extruder or a single-screw extruder may be used, for example.

【0031】用いられる未加硫ゴムは、前記第1の方法
について例示のものと同じものが挙げられる。
[0031] The unvulcanized rubber used may be the same as exemplified for the first method.

【0032】また、加硫の温度は、芯材の材質にもよる
が、通常、140〜200℃であり、好ましくは150
〜170℃である。
The vulcanization temperature is usually 140 to 200°C, preferably 150°C, although it depends on the material of the core material.
~170°C.

【0033】次に、芯材を抜取ることにより、図1に示
す本発明の複合管材を得ることができる。この芯材の抜
取は、例えば、芯材と内管との間の界面に3〜30kg
/cm2 程度の圧力の圧力水を注入して、複合管材を
少し膨張させ、芯材を引き抜くことにより、行うことが
できる。
Next, by removing the core material, the composite pipe material of the present invention shown in FIG. 1 can be obtained. When removing this core material, for example, 3 to 30 kg is placed at the interface between the core material and the inner tube.
This can be done by injecting pressurized water at a pressure of about /cm2 to slightly expand the composite pipe material and pulling out the core material.

【0034】この第2の方法においては、芯材の外径を
適宜選択することによって、所望の内径を有する複合管
材を製造することができ、また、その内径の寸法精度も
良好なものとすることができる利点がある。
[0034] In this second method, by appropriately selecting the outer diameter of the core material, a composite pipe material having a desired inner diameter can be manufactured, and the dimensional accuracy of the inner diameter can also be made good. There is an advantage that it can be done.

【0035】[0035]

【実施例】以下、実施例および比較例を挙げ、本発明を
さらに詳細説明するが、本発明は、その要旨を越えない
限り、これらの実施例に何ら制約されるものではない。
[Examples] The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples in any way unless the gist of the invention is exceeded.

【0036】 (実施例1)   各部の仕様が下記:   スクリュー外径                
          30mmφ  スクリュー有効長
さ(L/D)            22  フライ
トピッチ                     
     18mm一定  スクリュー圧縮比    
                    1.8であ
るスクリュー押出機、   パイプダイ長さ                
        750mm  ダイ出口におけるアウ
ターダイ内径        20mmφ  ダイ有効
長さ(L/D)                  
37.5  インナーダイ外径           
             16mmφであるダイ、さ
らに、長さ1.5mの冷却水槽、2対のゴムロールを有
する引取機、および巻取機で装置を構成した。
(Example 1) Specifications of each part are as follows: Screw outer diameter
30mmφ Screw effective length (L/D) 22 Flight pitch
18mm constant screw compression ratio
Screw extruder, pipe die length is 1.8
750mm Outer die inner diameter at die exit 20mmφ Die effective length (L/D)
37.5 Inner die outer diameter
The apparatus consisted of a die having a diameter of 16 mm, a cooling water tank having a length of 1.5 m, a take-up machine having two pairs of rubber rolls, and a winding machine.

【0037】この装置に、極限粘度〔η〕:15dl/
g、融点136℃の超高分子量ポリエチレンを供給し、
スクリュー押出機において溶融、混練し、引取機により
スクリュー押出機における押出速度の4倍の引取速度で
引取り、125℃で100%の膨張性を有する、外径1
0mmφ、肉厚1mmの膨張性内管材を成形した。
[0037] Intrinsic viscosity [η]: 15 dl/
g, supplying ultra-high molecular weight polyethylene with a melting point of 136°C,
Melted and kneaded in a screw extruder, taken off by a take-off machine at a take-off speed 4 times the extrusion speed in the screw extruder, and has 100% expandability at 125°C, outer diameter 1
An expandable inner tube material having a diameter of 0 mm and a wall thickness of 1 mm was molded.

【0038】   次に、下記配合処方:     天然ゴム                 
                       10
0重量部    カーボンブラック(ファーネスカーボ
ン)            40重量部    軟化
剤(ナフテン系プロセスオイル)          
        4重量部    加硫剤(イオウ) 
                         
      2.5重量部    加硫促進剤(N−シ
クロヘキシル−2−ベンゾチアジルスルフェンアミド)
                         
                         
  0.5重量部    加硫促進助剤(亜鉛華)  
                         
   5重量部    加硫促進助剤(ステアリン酸)
                        2
重量部のゴム配合物を成形して、内径14mmφ、肉厚
2mmの未加硫ゴムからなる外管材を得、この外管材に
膨張性内管材を挿入し、図2に示す形態とした後、オー
ブンにより150℃で1時間加熱して膨張性内管材を膨
張させて、外管が加硫天然ゴムからなり、内管が超高分
子量ポリエチレンからなり、内管と外管が加硫接着され
た複合管材を得た。
Next, the following formulation: Natural rubber
10
0 parts by weight Carbon black (furnace carbon) 40 parts by weight Softener (naphthenic process oil)
4 parts by weight Vulcanizing agent (sulfur)

2.5 parts by weight Vulcanization accelerator (N-cyclohexyl-2-benzothiazylsulfenamide)


0.5 parts by weight Vulcanization accelerator (zinc white)

5 parts by weight Vulcanization accelerator (stearic acid)
2
The weight part of the rubber compound was molded to obtain an outer tube material made of unvulcanized rubber with an inner diameter of 14 mmφ and a wall thickness of 2 mm, and an expandable inner tube material was inserted into this outer tube material to form the shape shown in FIG. 2. The expandable inner tube material was expanded by heating at 150°C for 1 hour in an oven, and the outer tube was made of vulcanized natural rubber, the inner tube was made of ultra-high molecular weight polyethylene, and the inner tube and outer tube were vulcanized and bonded. A composite pipe material was obtained.

【0039】得られた複合管材は、外管が加硫ゴムから
なり、外管と内管とが強固に接着され、超高分子量ポリ
エチレンの有する優れた耐摩耗性、自己潤滑性、耐薬品
性および非粘着性を有するとともに、ゴムの有する優れ
た弾性、柔軟性、耐久性等の特性を兼ね備えていた。
The obtained composite tube material has an outer tube made of vulcanized rubber, an outer tube and an inner tube that are firmly bonded, and has the excellent wear resistance, self-lubricity, and chemical resistance of ultra-high molecular weight polyethylene. In addition to being non-adhesive, it also had the excellent properties of rubber, such as elasticity, flexibility, and durability.

【0040】(比較例1)極限粘度〔η〕:3.0dl
/gの超高分子量ポリエチレンを用いた以外は、実施例
1と同様にして膨張性内管材の成形を試みたが、超高分
子量ポリエチレンの溶融物がインナーダイとの共廻りに
よる捩れ現象を起こしたため、内管材を成形することが
できなかった。
(Comparative Example 1) Intrinsic viscosity [η]: 3.0 dl
An attempt was made to mold an expandable inner tube material in the same manner as in Example 1, except that ultra-high molecular weight polyethylene with a weight of Therefore, it was not possible to mold the inner tube material.

【0041】(比較例2)スクリュー押出機の押出速度
の1.096倍の引取速度で引取を行った以外は、実施
例1と同様にして成形を行い、125℃で10%以下の
膨張性を有する外径19.2mmφ、肉厚1.9mmの
膨張性内管材を得た。
(Comparative Example 2) Molding was carried out in the same manner as in Example 1 except that the withdrawal speed was 1.096 times the extrusion speed of the screw extruder. An expandable inner tube material having an outer diameter of 19.2 mmφ and a wall thickness of 1.9 mm was obtained.

【0042】   次に、下記配合処方:     天然ゴム                 
                       10
0重量部    カーボンブラック(ファーネスカーボ
ン)            40重量部    軟化
剤(ナフテン系プロセスオイル)          
        4重量部    加硫剤(イオウ) 
                         
      2.5重量部    加硫促進剤(N−シ
クロヘキシル−2−ベンゾチアジルスルフェンアミド)
                         
                         
  0.5重量部    加硫促進助剤(亜鉛華)  
                         
   5重量部    加硫促進助剤(ステアリン酸)
                        2
重量部のゴム配合物を成形して、内径20.2mmφ、
肉厚1.5mmの未加硫ゴムからなる外管材を得、この
外管材に膨張性内管材を挿入し、図2に示す形態とした
後、オーブンにより150℃で1時間加熱して複合管材
の製造を試みたが、外管材と内管材とが十分に接着され
た複合管材は得られなかった。
Next, the following formulation: Natural rubber
10
0 parts by weight Carbon black (furnace carbon) 40 parts by weight Softener (naphthenic process oil)
4 parts by weight Vulcanizing agent (sulfur)

2.5 parts by weight Vulcanization accelerator (N-cyclohexyl-2-benzothiazylsulfenamide)


0.5 parts by weight Vulcanization accelerator (zinc white)

5 parts by weight Vulcanization accelerator (stearic acid)
2
The weight part of the rubber compound was molded to an inner diameter of 20.2 mmφ,
An outer tube material made of unvulcanized rubber with a wall thickness of 1.5 mm was obtained, an expandable inner tube material was inserted into this outer tube material, the shape shown in Fig. 2 was obtained, and the composite tube material was heated in an oven at 150°C for 1 hour. However, a composite tube material in which the outer tube material and the inner tube material were sufficiently bonded could not be obtained.

【0043】 (実施例2)   各部の仕様が下記:   スクリュー外径                
          30mmφ  スクリュー有効長
さ(L/D)            22  フライ
トピッチ                     
     18mm一定  スクリュー圧縮比    
                    1.8であ
るスクリュー押出機、   パイプダイ長さ                
        750mm  ダイ出口におけるアウ
ターダイ内径        20mmφ  ダイ有効
長さ(L/D)                  
37.5  インナーダイ外径           
             15mmφであるダイ、さ
らに、インナーダイ先端に連結され、シャフトに対して
8度の角度で拡径し、最大外径30mmφ、長さ80m
mであるテーパー部と、外径30mmφ、長さ90mm
の円筒状部とからなり、表面にフッ素樹脂コーティング
が施されているテーパーコアを備え、また、冷却水槽、
4対のゴムロールを有する引取機、および巻取機で装置
を構成した。
(Example 2) Specifications of each part are as follows: Screw outer diameter
30mmφ Screw effective length (L/D) 22 Flight pitch
18mm constant screw compression ratio
Screw extruder, pipe die length is 1.8
750mm Outer die inner diameter at die exit 20mmφ Die effective length (L/D)
37.5 Inner die outer diameter
The die is 15mmφ, and is connected to the tip of the inner die, expands at an angle of 8 degrees to the shaft, has a maximum outer diameter of 30mmφ, and has a length of 80m.
Tapered part that is m, outer diameter 30mmφ, length 90mm
It consists of a cylindrical part, a tapered core whose surface is coated with fluororesin, and a cooling water tank,
The apparatus consisted of a take-up machine having four pairs of rubber rolls and a winding machine.

【0044】この装置に、極限粘度〔η〕:15dl/
g、融点:136℃の超高分子量ポリエチレンを供給し
、スクリュー押出機において溶融、混練し、テーパーコ
アにより最大拡径部の内径がインナーダイの外径の1.
5倍になるように拡径させながら、引取機によりスクリ
ュー押出機における押出速度の1.91倍の引取速度で
引取り、140℃で30%収縮する、内径30mmφ、
肉厚0.5mmの収縮性内管材を成形した。
[0044] Intrinsic viscosity [η]: 15 dl/
g. Ultra-high molecular weight polyethylene with a melting point of 136°C is supplied, melted and kneaded in a screw extruder, and a tapered core is used to make the inner diameter of the maximum diameter part 1.
While expanding the diameter to 5 times, it is taken by a take-off machine at a take-off speed of 1.91 times the extrusion speed of the screw extruder, and the inner diameter is 30 mmφ, which shrinks by 30% at 140 ° C.
A shrinkable inner tube material with a wall thickness of 0.5 mm was molded.

【0045】この収縮性内管材の中に、耐熱性を有する
ポリ4−メチルペンテン−1樹脂(三井石油化学工業(
株)製、TPX)からなる、外径22mmφの芯材を挿
入し、図3(A)に示す形態とし、これをオーブンによ
り150℃で1時間加熱して収縮性内管材を収縮させて
、超高分子量ポリエチレンからなる内管でポリ4−メチ
ルペンテン−1からなる芯材を嵌装した図3(B)に示
すような複合管を得た。
In this shrinkable inner tube material, heat-resistant poly-4-methylpentene-1 resin (Mitsui Petrochemical Industries Co., Ltd.
A core material made by Co., Ltd., TPX) with an outer diameter of 22 mmφ was inserted, and the shape shown in FIG. A composite tube as shown in FIG. 3(B) was obtained, in which an inner tube made of ultra-high molecular weight polyethylene was fitted with a core material made of poly-4-methylpentene-1.

【0046】   得られた複合管の外側に、下記配合処方:    
天然ゴム                     
                   100重量部
    カーボンブラック(ファーネスカーボン)  
          40重量部    軟化剤(ナフ
テン系プロセスオイル)              
    4重量部    加硫剤(イオウ)     
                         
  2.5重量部    加硫促進剤(N−シクロヘキ
シル−2−ベンゾチアジルスルフェンアミド)    
                         
                       0.
5重量部    加硫促進助剤(亜鉛華)      
                        5
重量部    加硫促進助剤(ステアリン酸)    
                    2重量部の
ゴム配合物を、単軸押出機により押出して肉厚3mmに
被覆させて、ポリ4−メチルペンテン−1からなる芯材
と、超高分子量ポリエチレンからなる内管とを未加硫の
天然ゴム配合物からなる外管材で被覆してなる成形物を
得、この成形物をオーブンにて150℃で1時間加熱し
た。
[0046] On the outside of the obtained composite tube, the following compounding recipe:
natural rubber
100 parts by weight carbon black (furnace carbon)
40 parts by weight Softener (naphthenic process oil)
4 parts by weight Vulcanizing agent (sulfur)

2.5 parts by weight Vulcanization accelerator (N-cyclohexyl-2-benzothiazylsulfenamide)

0.
5 parts by weight Vulcanization accelerator (zinc white)
5
Part by weight Vulcanization accelerator (stearic acid)
2 parts by weight of the rubber compound was extruded using a single-screw extruder to coat it to a thickness of 3 mm, and a core material made of poly-4-methylpentene-1 and an inner tube made of ultra-high molecular weight polyethylene were unvulcanized. A molded product was obtained by covering it with an outer tube material made of a natural rubber compound, and this molded product was heated in an oven at 150° C. for 1 hour.

【0047】その後、芯材と内管との間に、圧力5kg
/cm2 の水を圧入して芯材を抜取り、加硫天然ゴム
からなる外管と超高分子量ポリエチレンからなる内管と
からなる複合管材を得た。
After that, a pressure of 5 kg is applied between the core material and the inner tube.
/cm2 of water was press-injected and the core material was extracted to obtain a composite pipe material consisting of an outer pipe made of vulcanized natural rubber and an inner pipe made of ultra-high molecular weight polyethylene.

【0048】得られた複合管材は、外管が加硫天然ゴム
からなり、外管と内管とが強固に接着され、超高分子量
ポリエチレンの有する優れた耐摩耗性、自己潤滑性、耐
薬品性および非粘着性を有するとともに、ゴムの有する
優れた弾性、柔軟性、耐久性等の特性を兼ね備えていた
The obtained composite tube material has an outer tube made of vulcanized natural rubber, an outer tube and an inner tube that are firmly adhered, and has the excellent wear resistance, self-lubrication, and chemical resistance of ultra-high molecular weight polyethylene. In addition to being flexible and non-adhesive, it also had the excellent properties of rubber, such as elasticity, flexibility, and durability.

【0049】(比較例3)極限粘度〔η〕:3.0dl
/gの超高分子量ポリエチレンを用いた以外は、実施例
2と同様にして収縮性内管材の成形を試みたが、スクリ
ュー押出機のダイ出口とインナーダイに連結されたテー
パーコアとの間において、超高分子量ポリエチレンの溶
融物がインナーダイとの共廻りによって捩れ現象を起こ
し、内管材を成形することができなかった。
(Comparative Example 3) Intrinsic viscosity [η]: 3.0 dl
An attempt was made to mold a shrinkable inner tube material in the same manner as in Example 2, except that ultra-high molecular weight polyethylene with a weight of However, the molten ultra-high molecular weight polyethylene twisted in conjunction with the inner die, making it impossible to form the inner tube material.

【0050】(比較例4)インナーダイ先端に連結され
たシャフトに対して0.5度の角度で拡径し、最大外径
20.9mmφ、長さ25mmのテーパー部と、外径2
0.9mmφ、長さ50mmである円筒状部とからなり
、表面がフッ素コーティングされたテーパーコアを使用
した以外は、実施例2と同様にして、最大拡径部の内径
がインナーダイの外径の1.045倍になるように拡径
させながら、スクリュー押出機の押出速度の1.04倍
の引取速度で引取り、内径20.9mmφ、肉厚1.8
mmで、140℃で5%以下の収縮率を有する収縮性内
管材を成形した。
(Comparative Example 4) The diameter was expanded at an angle of 0.5 degrees with respect to the shaft connected to the tip of the inner die, and a tapered part with a maximum outer diameter of 20.9 mmφ and a length of 25 mm was formed.
The inner diameter of the maximum expanded diameter part was the same as the outer diameter of the inner die in the same manner as in Example 2, except that a tapered core consisting of a cylindrical part with a diameter of 0.9 mm and a length of 50 mm and whose surface was coated with fluorine was used. While expanding the diameter to 1.045 times that of the screw extruder, it was taken at a take-up speed that was 1.04 times the extrusion speed of the screw extruder, and the inner diameter was 20.9 mmφ and the wall thickness was 1.8.
A shrinkable inner tube material having a shrinkage rate of 5% or less at 140° C. was molded.

【0051】この収縮性内管材の中に、耐熱性を有する
ポリ4−メチルペンテン−1樹脂(三井石油化学工業(
株)製、TPX)からなる、外径19.9mmφの芯材
を挿入し、図3(A)に示す形態とし、これをオーブン
により150℃で1時間加熱して収縮性内管材の収縮を
試みたが、内管材が芯材に完全に密着していない複合管
が得られた。
In this shrinkable inner tube material, heat-resistant poly-4-methylpentene-1 resin (Mitsui Petrochemical Industries Co., Ltd.
A core material with an outer diameter of 19.9 mm φ made by Co., Ltd., TPX) was inserted, and the shape shown in Fig. 3 (A) was formed. This was heated in an oven at 150 ° C. for 1 hour to prevent the shrinkable inner tube material from shrinking. However, a composite tube was obtained in which the inner tube material did not completely adhere to the core material.

【0052】次に、得られた複合管の外側に、実施例2
と同様にして未加硫の天然ゴム配合物で厚さ3mmに被
覆してなる外管材を有する成形物を得、この成形物をオ
ーブンにて150℃に加熱して外管と内管の加硫接着を
試みた。しかし、内管材と芯材とが完全に密着していな
いで内管材と芯材の間に隙間があるため、内管材が一部
捩れた二重構造となり、外管材と内管材とがその界面全
面にわたって強固に接着されなかった。また、芯材の抜
取後、内管の内面を観察したところ、内面の平滑性に劣
っていた。
Next, Example 2 was applied to the outside of the obtained composite tube.
In the same manner as above, a molded product having an outer tube material coated with an unvulcanized natural rubber compound to a thickness of 3 mm was obtained, and this molded product was heated in an oven to 150°C to cure the outer tube and inner tube. I tried sulfur bonding. However, because the inner tube material and the core material are not completely in contact with each other and there is a gap between the inner tube material and the core material, the inner tube material has a partially twisted double structure, and the outer tube material and the inner tube material It was not firmly bonded over the entire surface. Furthermore, when the inner surface of the inner tube was observed after removing the core material, it was found that the inner surface had poor smoothness.

【0053】[0053]

【発明の効果】本発明の超高分子量ポリエチレン複合管
材は、内管を構成する超高分子量ポリエチレンが、耐摩
耗性、自己潤滑性、耐薬品性、および耐低温衝撃性等の
低温特性に優れるため、液体、粉粒体の輸送ホースとし
て好適なものである。特に、冷媒の輸送ホースとして好
適である。また、本発明の超高分子量ポリエチレン複合
管材の第1および第2の製造方法は、この超高分子量ポ
リエチレン複合管材を、簡便な方法によって所望の肉厚
の内径を有する複合管材を製造することができる。また
、使用する超高分子量ポリエチレンからなる内管として
、0.01〜5mmの広範囲の肉厚範囲のものを使用す
ることができるため、複合管材に柔軟性が要求される場
合には、この内管を薄肉のものとし、剛性が要求される
複合管材には、厚肉の内管を使用することにより、それ
ぞれの要求に合致した管材を製造することができる。 また、本発明の第2の方法によれば、特に、内面が平滑
でかつ内径の寸法が均一な複合管材を得ることができる
。また、芯材の外径を適当に選択すれば、所望の内径を
有する複合管材を得ることができる。
[Effects of the Invention] The ultra-high molecular weight polyethylene composite pipe material of the present invention has excellent low-temperature properties such as wear resistance, self-lubricating property, chemical resistance, and low-temperature impact resistance due to the ultra-high molecular weight polyethylene constituting the inner pipe. Therefore, it is suitable as a transport hose for liquids and powders. It is particularly suitable as a refrigerant transport hose. Moreover, the first and second manufacturing methods of the ultra-high molecular weight polyethylene composite pipe material of the present invention make it possible to manufacture the ultra-high molecular weight polyethylene composite pipe material into a composite pipe material having an inner diameter of a desired wall thickness by a simple method. can. In addition, the inner tube made of ultra-high molecular weight polyethylene can have a wide range of wall thickness from 0.01 to 5 mm, so if flexibility is required for the composite tube material, it is possible to use one of these inner tubes. By making the tube thin and using a thick-walled inner tube for composite tube materials that require rigidity, it is possible to manufacture tube materials that meet the respective requirements. Moreover, according to the second method of the present invention, it is possible to obtain a composite pipe material having a smooth inner surface and a uniform inner diameter. Moreover, by appropriately selecting the outer diameter of the core material, a composite tube material having a desired inner diameter can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の超高分子量ポリエチレン複合管材
の構造を説明する概略断面図。
FIG. 1 is a schematic cross-sectional view illustrating the structure of the ultra-high molecular weight polyethylene composite pipe material of the present invention.

【図2】  本発明の超高分子量ポリエチレン複合管材
の製造方法の第1の実施態様を説明する模式断面図。
FIG. 2 is a schematic cross-sectional view illustrating the first embodiment of the method for producing an ultra-high molecular weight polyethylene composite pipe material of the present invention.

【図3】  本発明の超高分子量ポリエチレン複合管材
の製造方法の第2の実施態様を説明する模式断面図。
FIG. 3 is a schematic cross-sectional view illustrating a second embodiment of the method for producing an ultra-high molecular weight polyethylene composite pipe material of the present invention.

【符号の説明】[Explanation of symbols]

1  内管 2  外管 3  外管材 4  内管材 5  芯材 6  収縮性内管材 7  未加硫ゴム 1 Inner pipe 2 Outer tube 3 Outer pipe material 4 Inner pipe material 5 Core material 6 Shrinkable inner tube material 7 Unvulcanized rubber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  極限粘度〔η〕が5.0dl/g以上
の超高分子量ポリエチレンからなる肉厚0.01〜5m
m、外径2mm以上の内管と、該内管の外側に嵌装され
たゴムからなる外管とを有し、前記内管の超高分子量ポ
リエチレンと外管のゴムとが加硫接着されていることを
特徴とする超高分子量ポリエチレン複合管材。
Claim 1: A wall thickness of 0.01 to 5 m made of ultra-high molecular weight polyethylene with an intrinsic viscosity [η] of 5.0 dl/g or more.
m, has an inner tube with an outer diameter of 2 mm or more, and an outer tube made of rubber fitted on the outside of the inner tube, and the ultra-high molecular weight polyethylene of the inner tube and the rubber of the outer tube are vulcanized and bonded. Ultra-high molecular weight polyethylene composite pipe material.
【請求項2】  請求項1の超高分子量ポリエチレン複
合管材の製造方法であって、未加硫ゴムからなる外管材
の内部に、極限粘度〔η〕が5.0dl/g以上の超高
分子量ポリエチレンからなり、125℃で10%以上膨
張する膨張性内管材を内挿した後、超高分子量ポリエチ
レンの融点付近以上の温度に加熱して該超高分子量ポリ
エチレンからなる内管材を膨張させながら、内管材の超
高分子量ポリエチレンと外管材の未加硫ゴムとを加硫接
着させる工程を有する超高分子量ポリエチレン複合管材
の製造方法。
2. The method for producing an ultra-high molecular weight polyethylene composite tube material according to claim 1, wherein the outer tube material made of unvulcanized rubber contains an ultra-high molecular weight material having an intrinsic viscosity [η] of 5.0 dl/g or more. After inserting an expandable inner tube material made of polyethylene that expands by 10% or more at 125 ° C., while expanding the inner tube material made of ultra-high molecular weight polyethylene by heating it to a temperature near or above the melting point of the ultra-high molecular weight polyethylene, A method for manufacturing an ultra-high molecular weight polyethylene composite pipe material, which includes the step of vulcanizing and adhering ultra-high molecular weight polyethylene as an inner pipe material and unvulcanized rubber as an outer pipe material.
【請求項3】  請求項1の超高分子量ポリエチレン複
合管材の製造方法であって、極限粘度〔η〕が5.0d
l/g以上の超高分子量ポリエチレンからなり、140
℃で5%以上収縮する収縮性内管材の内部に、所定の外
径を有する耐熱性樹脂からなる芯材を挿入した後、加熱
して超高分子量ポリエチレンからなる内管材を収縮させ
て内管材を前記芯材に密着させて芯材の外側に内管を嵌
装させる工程と、前記芯材に嵌装された内管の外側を未
加硫ゴムで被覆した後、ゴムの加硫温度で加熱してゴム
と超高分子量ポリエチレンとを加硫接着させて外管を形
成する工程と、前記内管から芯材を抜き取る工程とを有
する超高分子量ポリエチレン複合管材の製造方法。
3. A method for producing the ultra-high molecular weight polyethylene composite pipe material according to claim 1, wherein the intrinsic viscosity [η] is 5.0 d.
Made of ultra-high molecular weight polyethylene of 1/g or more, 140
A core material made of heat-resistant resin having a predetermined outer diameter is inserted into a shrinkable inner tube material that shrinks by 5% or more at °C, and then heated to shrink the inner tube material made of ultra-high molecular weight polyethylene to create an inner tube material. A step of fitting the inner tube to the outside of the core material by bringing the inner tube into close contact with the core material, and coating the outside of the inner tube fitted to the core material with unvulcanized rubber, and then heating the inner tube at the vulcanization temperature of the rubber. A method for producing an ultra-high molecular weight polyethylene composite pipe material, comprising the steps of: heating and vulcanizing and bonding rubber and ultra-high molecular weight polyethylene to form an outer tube; and extracting a core material from the inner tube.
JP14480891A 1991-06-17 1991-06-17 Ultra-high-molecular-weight polyethylene composite tubular material and manufacture thereof Withdrawn JPH04368843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14480891A JPH04368843A (en) 1991-06-17 1991-06-17 Ultra-high-molecular-weight polyethylene composite tubular material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14480891A JPH04368843A (en) 1991-06-17 1991-06-17 Ultra-high-molecular-weight polyethylene composite tubular material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04368843A true JPH04368843A (en) 1992-12-21

Family

ID=15370948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14480891A Withdrawn JPH04368843A (en) 1991-06-17 1991-06-17 Ultra-high-molecular-weight polyethylene composite tubular material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04368843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165358A (en) * 1999-09-27 2001-06-22 Yokohama Rubber Co Ltd:The Low-permeability hose and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165358A (en) * 1999-09-27 2001-06-22 Yokohama Rubber Co Ltd:The Low-permeability hose and its manufacturing method
JP4496629B2 (en) * 1999-09-27 2010-07-07 横浜ゴム株式会社 Low permeability hose and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0851805B1 (en) Method and apparatus for manufacturing of oriented polymeric products
EP0507613B1 (en) Ultra-high molecular weight polyethylene thin-wall pipe, and method of and apparatus for manufacturing the same
US5895695A (en) Crosslinked overmolded plumbing tubes
NZ290885A (en) Screw fed extrusion die having a friction-reducing surface
HRP960299A2 (en) Oriented polymeric products
US3949042A (en) Method and apparatus for making laminar plastic sheet material
KR100863058B1 (en) Process for the production of an oriented plastic film
FR2614671A1 (en) FLEXIBLE PIPE CAPABLE OF ACCEPTING LOW BENDING RADIUS AND METHOD OF MANUFACTURING THE SAME
JP3471924B2 (en) Spiral die and method of manufacturing laminate using the same
JPH04368843A (en) Ultra-high-molecular-weight polyethylene composite tubular material and manufacture thereof
JP2005225232A (en) Method, system and device for extrusion
JP3057615B2 (en) Ultra high molecular weight polyethylene coated steel pipe
JPH0516298A (en) Ultra-high-molecular-weight polyethylene coated roll
JP3051487B2 (en) Ultra-high molecular weight polyethylene shrink pipe, method and apparatus for producing the same
JPH04348939A (en) High molecular weight polyethylene coated hose and its preparation
KR20180119650A (en) METHOD FOR MANUFACTURING A MOLDED PRODUCT CONTAINING A GRAIN PATTERN,
JPH0524153A (en) Ultrahigh molecular weight polyethylene coated steel pipe and manufacture thereof
RU2022790C1 (en) Extrusion method for producing shrinkable thermoplastic products
JP2002321286A (en) Method for producing crosslinked resin pipe
EP0380547A1 (en) A method of producing a shrinkable product.
JP2003117987A (en) Method for manufacturing lining material for ductwork of polyvinyl chloride
JPH01304929A (en) Ultra-high molecular weight polyolefin coated rubber roll and manufacturing method thereof
JP2001079925A (en) Continuous production of resin oriented article
JPH0639946A (en) Method for manufacturing rubber roll and its device
JP2002052606A (en) Method and mold for continuously manufacturing oriented product

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903