JPH04367650A - Magnetoresonance imaging device - Google Patents

Magnetoresonance imaging device

Info

Publication number
JPH04367650A
JPH04367650A JP3141800A JP14180091A JPH04367650A JP H04367650 A JPH04367650 A JP H04367650A JP 3141800 A JP3141800 A JP 3141800A JP 14180091 A JP14180091 A JP 14180091A JP H04367650 A JPH04367650 A JP H04367650A
Authority
JP
Japan
Prior art keywords
coil
asgc
cooling pipe
primary coil
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3141800A
Other languages
Japanese (ja)
Inventor
Motoji Haratou
基司 原頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3141800A priority Critical patent/JPH04367650A/en
Publication of JPH04367650A publication Critical patent/JPH04367650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To obtain a cooling structure having high cooling efficiency by building a self-shielding type graded magnetic field coil (ASGC) constituted by providing a spacing between a primary coil and a screen coil, arranging cooling pipe in this spacing and packing an inert gas therein. CONSTITUTION:The ASGC 1 is constituted by providing the spacing between the primary coil 2 and the screen coil 3, winding and arranging the cooling pipe 4 in this spacing spirally along the outer peripheral surface of the primary coil 2 and packing an inert liquid 5 therein. The primary coil 2 consists of a winding frame 6 and a conductor 7 and the screen coil 3 consists of a winding frame 8 and a conductor 9. The conductors 7, 9 of the respective coils are connected in series. Water or oil flows as a medium in the cooling pipe 4 and the conductors 7, 9 of the primary coil 2 and the screen coil 3 are cooled by the inert liquid 5 to which the cold heat is transmitted thereto by this medium.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁気共鳴現象を利用し
て磁気共鳴画像等を得る磁気共鳴イメージング装置(以
下「MRI装置」という)に関し、特に静磁場空間に配
置された被写体に対しスライス用、位相エンコード用、
リード用等の各傾斜磁場を印加するために用いる傾斜磁
場コイルの改良に関する。
[Industrial Application Field] The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an "MRI apparatus") that obtains magnetic resonance images etc. using magnetic resonance phenomena, and in particular, the present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an "MRI apparatus") that obtains magnetic resonance images etc. using magnetic resonance phenomena. for phase encoding,
This invention relates to improvements in gradient magnetic field coils used to apply gradient magnetic fields for leads and the like.

【0002】0002

【従来の技術】近年、プライマリーコイルに対しスクリ
ーンコイルを同軸状に外側配置し、これにより外部に洩
れ磁場がないようにした傾斜磁場コイル、即ち自己シー
ルド型傾斜磁場コイル(active shielde
d gradient coil を略して以下「AS
GC」という)が開発されている。このASGCは、静
磁場マグネットとの間に磁気的相互作用として「渦電流
」が発生しないことから、画質低下やアーチファクトの
発生を招かないため理想的であると言われている。
2. Description of the Related Art In recent years, gradient magnetic field coils, in other words, self-shielded gradient magnetic field coils (active shield type), have been developed in which a screen coil is coaxially arranged outside the primary coil to prevent leakage of magnetic fields to the outside.
d gradient coil is abbreviated as “AS” below.
GC) has been developed. This ASGC is said to be ideal because it does not cause "eddy current" as a magnetic interaction with the static magnetic field magnet, so it does not cause image quality deterioration or artifacts.

【0003】従来、この種のASGCは、MRI装置で
必要な傾斜磁場強度があまり大きくないことから、コイ
ルに流す電流が最大170A程度、コイルの抵抗が0.
1Ω程度に設計されている。この場合、最悪でも2.8
9kw程度のエネルギーがASGC内部で熱になるに過
ぎず、また実用上はパルスシーケンスにもよるが100
%デューティで使用されることがない。
Conventionally, in this type of ASGC, since the strength of the gradient magnetic field required for an MRI apparatus is not very large, the current flowing through the coil is about 170 A at the maximum, and the resistance of the coil is 0.
It is designed to have a resistance of about 1Ω. In this case, at worst 2.8
Only about 9kW of energy becomes heat inside the ASGC, and in practical terms, it depends on the pulse sequence, but the energy is about 100kW.
Never used in % duty.

【0004】ところが、撮影時間が今までのMRI装置
より大幅に短縮された超高速MRI装置(echo p
lanar imaging を略して以下「EPI」
という)では、傾斜磁場強度について比較すると、従来
10mT/mだったものを50mT/m程度にする必要
があり、そのためASGCに流す電流が約850A程度
になってしまう。これにより熱となるエネルギーが25
倍にもなって72.25kwとなる。従って、ASGC
を強制的に冷却することが必要となる。
However, ultra-high-speed MRI equipment (echo p.
Lanar Imaging is abbreviated as “EPI” below.
Comparing the gradient magnetic field strength, it is necessary to increase the gradient magnetic field strength from 10 mT/m to about 50 mT/m, which results in a current of about 850 A flowing through the ASGC. This generates 25 energy that turns into heat.
It will double to 72.25kw. Therefore, ASGC
It is necessary to forcefully cool the

【0005】そこで、ASGCを冷却する手法として、
ASGCを強制空冷する手法や、ASGCを水、油等の
冷媒により冷却する手法が種々提案された。
[0005] Therefore, as a method for cooling ASGC,
Various methods have been proposed, including forced air cooling of ASGCs and methods of cooling ASGCs with refrigerants such as water and oil.

【0006】しかし、強制空冷では冷却効率が著しく悪
いため、設備上等の観点で不適当である。他方、冷媒冷
却では、最も簡単なASGC構造の場合、プライマリー
コイルとスクリーンコイルとが一筆書き可能なように直
列に接続されていることに着目し、コイル巻きする導線
としてホロー導線(導線の中心にストロー状に穴をあけ
ておくもの)を使い、このホロー導線に冷媒を流す手法
を適用することができると考えられた。しかし、ASG
Cでのコイル巻きのパターンは複雑であるため、冷媒圧
をかなり高くしないとホロー導線に冷媒が流れず、実用
的でなかった。
[0006] However, forced air cooling has extremely poor cooling efficiency and is therefore inappropriate from the standpoint of equipment. On the other hand, for refrigerant cooling, we focused on the fact that in the simplest ASGC structure, the primary coil and the screen coil are connected in series so that they can be written in one stroke. It was thought that it would be possible to apply a method of flowing refrigerant through this hollow conductor using a straw-shaped hole (with holes drilled in it). However, ASG
Since the coil winding pattern in C was complicated, the refrigerant pressure would have to be raised considerably to prevent the refrigerant from flowing through the hollow conductor, making it impractical.

【0007】また、別の冷媒冷却では、プライマリーコ
イルとスクリーンコイルとの間に冷却パイプを配置し、
この冷却パイプの周囲とプライマリーコイル及びスクリ
ーンコイルの壁面との間に樹脂を含浸させた冷却構造を
ASGCに施すものである。この場合、冷却パイプに冷
媒を流すことを容易に行える。
[0007] In another refrigerant cooling method, a cooling pipe is arranged between the primary coil and the screen coil,
The ASGC is provided with a cooling structure in which resin is impregnated between the periphery of the cooling pipe and the wall surfaces of the primary coil and screen coil. In this case, the refrigerant can be easily flowed through the cooling pipe.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
冷却構造のASGCに施した場合においては、コイルと
冷却パイプとの間に熱伝導率の低い樹脂(銅の場合の熱
伝導率が0.941cal/s/cm2 /(oc/c
m)であるのに対し、熱伝導率が最も高い高密度ポリエ
チレンでも12.4×10−4cal /s/cm2 
/(oc/cm)しかない)が介在するため、冷却効率
が悪い。従って、撮影時間が長い従来型のMRI装置に
は有用であるが、EPIには適用することができないと
いう不具合があった。
[Problems to be Solved by the Invention] However, when applied to an ASGC with a conventional cooling structure, a resin with low thermal conductivity (copper has a thermal conductivity of 0.941 cal) is used between the coil and the cooling pipe. /s/cm2 /(oc/c
m), whereas even high-density polyethylene, which has the highest thermal conductivity, has a thermal conductivity of 12.4 x 10-4 cal/s/cm2.
/(oc/cm)), the cooling efficiency is poor. Therefore, although it is useful for conventional MRI apparatuses that take a long imaging time, it cannot be applied to EPI.

【0009】本発明は、係る課題に着目してなされたも
ので、その目的とするところは、冷却効率の高い冷却構
造とされたASGCを有するMRI装置を提供すること
にある。
[0009] The present invention has been made in view of this problem, and its object is to provide an MRI apparatus having an ASGC having a cooling structure with high cooling efficiency.

【0010】0010

【課題を解決するための手段】本発明は、上記の目的を
達成するため、プライマリーコイルとスクリーンコイル
との間に間隙を設け、その間隙に冷却パイプを配置する
とともに不活性ガスを充填してなるASGCを、具備す
ることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a gap between the primary coil and the screen coil, arranges a cooling pipe in the gap, and fills the gap with inert gas. It is characterized by comprising an ASGC.

【0011】[0011]

【作用】本発明によるMRI装置の構成であれば、AS
GCは、冷却パイプの周囲とプライマリーコイル及びス
クリーンコイルの壁面との間に不活性液体を充填されて
いるため、コイルから冷却パイプ内の冷媒までの熱伝導
率が高く冷却効率が高い。
[Operation] With the configuration of the MRI apparatus according to the present invention, AS
In the GC, an inert liquid is filled between the periphery of the cooling pipe and the wall surfaces of the primary coil and the screen coil, so the thermal conductivity from the coil to the refrigerant in the cooling pipe is high and the cooling efficiency is high.

【0012】0012

【実施例】図1は本発明が適用されたMRI装置におけ
る第1実施例のASGC1の概略を示す斜視図、図2は
そのASGC1の横断面構造を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view schematically showing an ASGC 1 according to a first embodiment of an MRI apparatus to which the present invention is applied, and FIG. 2 is a diagram showing a cross-sectional structure of the ASGC 1.

【0013】この第1実施例のASGC1は、図1及び
図2に示すように、プライマリーコイル2とスクリーン
コイル3との間に間隙を設け、その間隙にプライマリー
コイル2の外周面に沿ってスパイラル状に冷却パイプ4
を巻回配置するとともに、不活性液体5を充填している
As shown in FIGS. 1 and 2, the ASGC 1 of the first embodiment provides a gap between the primary coil 2 and the screen coil 3, and a spiral coil is formed in the gap along the outer peripheral surface of the primary coil 2. cooling pipe 4
are arranged in a wound manner and are filled with an inert liquid 5.

【0014】そして、図2に示すように、プライマリー
コイル2は、巻枠6と導線7とからなる。他方、スクリ
ーンコイル3は、巻枠8と導線9とからなる。この各コ
イルの導線7,9は一筆書き可能なように直列に接続さ
れている。
As shown in FIG. 2, the primary coil 2 consists of a winding frame 6 and a conducting wire 7. On the other hand, the screen coil 3 consists of a winding frame 8 and a conducting wire 9. The conductive wires 7 and 9 of each coil are connected in series so that writing can be done with one stroke.

【0015】冷却パイプ4には、冷媒として水又は油が
流れる。その冷媒による冷熱伝達される不活性液体5に
よってプライマリーコイル2及びスクリーンコイル3の
導線7,9が冷却される。そして、不活性液体5には、
CF4 やパーフロロカーボン液の如く熱伝達特性が優
れた液体を用いることから、従来の冷却構造でコイル間
に介在させた樹脂を用いる場合と比較して、大幅に冷却
効率が向上される。
Water or oil flows through the cooling pipe 4 as a refrigerant. The conductive wires 7 and 9 of the primary coil 2 and the screen coil 3 are cooled by the inert liquid 5 to which cold heat is transferred by the refrigerant. And in the inert liquid 5,
Since a liquid with excellent heat transfer properties such as CF4 or perfluorocarbon liquid is used, the cooling efficiency is greatly improved compared to the conventional cooling structure using resin interposed between the coils.

【0016】しかし、プライマリーコイル2及びスクリ
ーンコイル3の各導線7,9の発熱により図2に矢印で
示す如く不活性液体5が自然対流し、暖められた不活性
液体5がASGC1の鉛直方向上方側へ集中してしまう
。そのため、不活性液体5は、冷却パイプ4と熱交換す
る部分が減ってしまい、冷却効率を更に向上させること
ができない。また、プライマリーコイル2とスクリーン
コイル3との間を機械的固定する部分がないため、AS
GC1の動作時の屈曲に起因する騒音が生じやすくなり
、騒音回避の観点で不利である。これを改良したのが図
3から図5を用いて以下説明する第2実施例のASGC
10である。
However, due to the heat generated by the conductors 7 and 9 of the primary coil 2 and the screen coil 3, natural convection occurs in the inert liquid 5 as shown by the arrows in FIG. Concentrate on the side. Therefore, the portion of the inert liquid 5 that exchanges heat with the cooling pipe 4 is reduced, making it impossible to further improve the cooling efficiency. In addition, since there is no part to mechanically fix the primary coil 2 and the screen coil 3, the AS
Noise due to bending during operation of the GC 1 is likely to occur, which is disadvantageous from the viewpoint of noise avoidance. This is improved by the ASGC of the second embodiment, which will be explained below using FIGS. 3 to 5.
It is 10.

【0017】図3は本発明が適用されたMRI装置にお
ける第2実施例のASGC10の概略を示す斜視図、図
4はそのASGC10の縦断面構造を示す図、図5はそ
のASGC10の横断面構造を示す図である。なお、図
3から図5中、図1及び図2と同一符号で示す部分は対
応する部分を示している。
FIG. 3 is a perspective view schematically showing an ASGC 10 of a second embodiment in an MRI apparatus to which the present invention is applied, FIG. 4 is a diagram showing a vertical cross-sectional structure of the ASGC 10, and FIG. 5 is a cross-sectional view of the ASGC 10. FIG. Note that in FIGS. 3 to 5, parts indicated by the same reference numerals as in FIGS. 1 and 2 indicate corresponding parts.

【0018】この第2実施例のASGC10は、図3及
び図5に示すようにプライマリーコイル2とスクリーン
コイル3との間隙を、コイル間の固定を兼ねた仕切り部
材11により複数に区分し、この各区分された間隙にそ
れぞれの鉛直方向上方側となる位置関係で冷却パイプ4
を一筆書き可能なように配管し、図4に示す如くASG
C10の一端側において冷媒を供給及び回収するように
配置するとともに、各区分された間隙には不活性液体5
を充填している。
As shown in FIGS. 3 and 5, the ASGC 10 of the second embodiment divides the gap between the primary coil 2 and the screen coil 3 into a plurality of sections by a partition member 11 which also serves to fix the coils. Cooling pipes 4 are positioned vertically upward in each divided gap.
The piping is arranged so that it can be written with a single stroke, and the ASG
The refrigerant is arranged to be supplied and recovered at one end side of the C10, and an inert liquid 5 is provided in each divided gap.
is filled with.

【0019】このような構成において、ASGC10の
各コイルの導線7,9で発熱した熱は、不活性液体5に
直接伝達される。熱によって不活性液体5は自然対流を
起こす。これにより暖められた不活性液体は各区分され
た間隙内で鉛直方向上方側へ集まってくる。この上方側
には冷却パイプ4が配管されているため、暖められた不
活性液体5の熱が冷却パイプ4内を流れる冷媒へ移動す
る。そして、冷媒は流れているため、ASGC10の外
部へ運ばれ、MRI装置のシールドルーム外に設置され
た熱交換器(不図示)に冷却される。冷却された冷媒は
ASGC10の冷却パイプ4に導かれ再循環する。
In this configuration, the heat generated by the conductors 7 and 9 of each coil of the ASGC 10 is directly transferred to the inert liquid 5. The heat causes natural convection in the inert liquid 5. The inert liquid thus warmed gathers upward in the vertical direction within each divided gap. Since the cooling pipe 4 is installed above this, the heat of the warmed inert liquid 5 is transferred to the refrigerant flowing inside the cooling pipe 4. Since the refrigerant is flowing, it is carried outside the ASGC 10 and is cooled by a heat exchanger (not shown) installed outside the shield room of the MRI apparatus. The cooled refrigerant is guided to the cooling pipe 4 of the ASGC 10 and recirculated.

【0020】以上のプロセスにより、ASGC10のプ
ライマリーコイル2及びスクリーンコイル3の各導線7
,9で発熱した熱は効率良く除かれる。また不活性液体
を使うため電気絶縁性が低下することがない。また仕切
り部材11によりプライマリーコイル2及びスクリーン
コイル3の間隙が複数に区分した機械的な構造であるか
ら、そのプライマリーコイル2及びスクリーンコイル3
の機械的固定を損うことがない。
Through the above process, each conductor 7 of the primary coil 2 and screen coil 3 of the ASGC 10 is
, 9 is efficiently removed. Furthermore, since an inert liquid is used, electrical insulation properties do not deteriorate. Moreover, since the mechanical structure is such that the gap between the primary coil 2 and the screen coil 3 is divided into a plurality of parts by the partition member 11, the primary coil 2 and the screen coil 3
does not impair mechanical fixation.

【0021】この第2実施例のASGC10は、図6の
ようにマグネットアッセンブリ20の傾斜磁場コイルと
して用いられる。なお、図6中、21は静磁場空間を形
成するためのマグネット、22はシムコイル、23は送
信コイル、24は受信コイルである。そして、マグネッ
ト21による静磁場空間の中に配置された被検体Pに対
し、送信コイル23を励超パルスを印加するとともに、
ASGC10から各傾斜磁場を印加して被検体Pからの
MR信号受信コイル24で受信し、このMR信号の収集
データを基にMR画像を構成することになる。この際、
MIR装置がEPIであっても、第2実施例のASGC
10は、冷却効率が従来のASGCと比較して大幅に向
上されているため、連続使用することができる。
The ASGC 10 of this second embodiment is used as a gradient magnetic field coil of a magnet assembly 20 as shown in FIG. In FIG. 6, 21 is a magnet for forming a static magnetic field space, 22 is a shim coil, 23 is a transmitting coil, and 24 is a receiving coil. Then, an excitation pulse is applied to the transmitting coil 23 to the subject P placed in the static magnetic field space created by the magnet 21, and
Each gradient magnetic field is applied from the ASGC 10, and the MR signal from the subject P is received by the receiving coil 24, and an MR image is constructed based on the collected data of this MR signal. On this occasion,
Even if the MIR device is an EPI, the ASGC of the second embodiment
10 can be used continuously because its cooling efficiency is significantly improved compared to conventional ASGC.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、A
SGCの導線と冷却パイプ間の絶縁性を損うことなく、
高効率に熱伝導が達されるので、ASGCに対し高効率
の冷却が可能となる。これによりEPIでASGCを連
続使用できるようになる。
[Effects of the Invention] As explained above, according to the present invention, A
without compromising the insulation between the SGC conductor and the cooling pipe.
Since highly efficient heat conduction is achieved, highly efficient cooling of the ASGC is possible. This allows EPI to use ASGC continuously.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明が適用されたMRI装置における第1実
施例のASGCの概略を示す斜視図である。
FIG. 1 is a perspective view schematically showing an ASGC of a first embodiment in an MRI apparatus to which the present invention is applied.

【図2】図1に示したASGCの横断面構造を示す図で
ある。
FIG. 2 is a diagram showing a cross-sectional structure of the ASGC shown in FIG. 1.

【図3】本発明が適用されたMRI装置における第2実
施例のASGCの概略を示す斜視図である。
FIG. 3 is a perspective view schematically showing an ASGC of a second embodiment in an MRI apparatus to which the present invention is applied.

【図4】図3に示したASGCの縦断面構造を示す図で
ある。
FIG. 4 is a diagram showing a vertical cross-sectional structure of the ASGC shown in FIG. 3;

【図5】図3に示したASGCの横断面構造を示す図で
ある。
FIG. 5 is a diagram showing a cross-sectional structure of the ASGC shown in FIG. 3;

【図6】MRI装置にASGCを設けた概略構成を示す
図である。
FIG. 6 is a diagram showing a schematic configuration in which an MRI apparatus is provided with an ASGC.

【符号の説明】[Explanation of symbols]

1  ASGC 2  プライマリーコイル 3  スクリーンコイル 4  冷却パイプ 5  不活性液体 6  巻枠 7  導線 8  巻枠 9  導線 10  ASGC 11  仕切り部材 1 ASGC 2 Primary coil 3 Screen coil 4 Cooling pipe 5 Inert liquid 6 Winding frame 7 Conductor wire 8 Winding frame 9 Conductor wire 10 ASGC 11 Partition member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  プライマリーコイルとスクリーンコイ
ルとの間に間隙を設け、その間隙に冷却パイプを配置す
るとともに不活性液体を充填してなる自己シールド型傾
斜磁場コイルを、具備することを特徴とする磁気共鳴イ
メージング装置。
[Claim 1] A self-shielded gradient magnetic field coil comprising a gap provided between a primary coil and a screen coil, a cooling pipe disposed in the gap, and filled with an inert liquid. Magnetic resonance imaging device.
【請求項2】  前記自己シールド型傾斜磁場コイルは
、前記不活性液体を自然対流で均一な温度分布にし得る
位置関係で前記間隙内に冷却パイプを配置したことを特
徴とする請求項1記載の磁気共鳴メージング装置。
2. The self-shielded gradient magnetic field coil has a cooling pipe disposed within the gap in a positional relationship that allows uniform temperature distribution of the inert liquid by natural convection. Magnetic resonance imaging device.
【請求項3】  前記自己シールド型傾斜磁場コイルは
、前記間隙を複数に区分した横断面形状にし、その各区
分毎に冷却パイプを配置するとともに不活性液体を充填
してなることを特徴とする請求項1又は請求項2記載の
磁気共鳴イメージング装置。
3. The self-shielded gradient magnetic field coil is characterized in that the gap has a cross-sectional shape divided into a plurality of sections, and each section is provided with a cooling pipe and filled with an inert liquid. The magnetic resonance imaging apparatus according to claim 1 or claim 2.
JP3141800A 1991-06-13 1991-06-13 Magnetoresonance imaging device Pending JPH04367650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141800A JPH04367650A (en) 1991-06-13 1991-06-13 Magnetoresonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141800A JPH04367650A (en) 1991-06-13 1991-06-13 Magnetoresonance imaging device

Publications (1)

Publication Number Publication Date
JPH04367650A true JPH04367650A (en) 1992-12-18

Family

ID=15300431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141800A Pending JPH04367650A (en) 1991-06-13 1991-06-13 Magnetoresonance imaging device

Country Status (1)

Country Link
JP (1) JPH04367650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1026751C2 (en) * 2003-08-14 2007-04-20 Ge Med Sys Global Tech Co Llc Method and device for directly cooling transverse gradient coil plates with hollow wound conductor.
JP2010046495A (en) * 2009-09-04 2010-03-04 Toshiba Corp Method of designing gradient magnetic field coil for mri
WO2014133186A1 (en) * 2013-03-01 2014-09-04 株式会社東芝 Magnetic resonance imaging device and gradient magnetic field coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1026751C2 (en) * 2003-08-14 2007-04-20 Ge Med Sys Global Tech Co Llc Method and device for directly cooling transverse gradient coil plates with hollow wound conductor.
JP2010046495A (en) * 2009-09-04 2010-03-04 Toshiba Corp Method of designing gradient magnetic field coil for mri
WO2014133186A1 (en) * 2013-03-01 2014-09-04 株式会社東芝 Magnetic resonance imaging device and gradient magnetic field coil
JP2014193324A (en) * 2013-03-01 2014-10-09 Toshiba Corp Magnetic resonance imaging apparatus and gradient magnetic field coil
US10067202B2 (en) 2013-03-01 2018-09-04 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and gradient coil

Similar Documents

Publication Publication Date Title
JP5226930B2 (en) Thermal management device and manufacturing method thereof
CN1763558B (en) Gradient bore cooling for providing RF shield in magnetic resonant imaging equipment
US5936502A (en) Magnet coils for MRI
US6995562B2 (en) Conduction cooled passively-shielded MRI magnet
US7135863B2 (en) Thermal management system and method for MRI gradient coil
US20090108969A1 (en) Apparatus and method for transcranial and nerve magnetic stimulation
JP2017535058A (en) A receiving device for receiving a magnetic field and producing electrical energy by magnetic induction, in particular used by a vehicle
JP2008194449A (en) Gradient magnetic field coil unit, gantry for mri apparatus, and mri apparatus
CN101019036A (en) Magnetic resonance imaging system with iron-assisted magnetic field gradient system
US7250766B2 (en) Gradient coil apparatus for magnetic resonance imaging system
JPS60189204A (en) Cooler for magnet system
JP7232197B2 (en) Cooling of gradient coils in magnetic resonance imaging systems
Natukunda et al. Approaches in cooling of resistive coil-based low-field Magnetic Resonance Imaging (MRI) systems for application in low resource settings
CN110476074B (en) Cooling gradient coils of a magnetic resonance imaging system
US9182466B2 (en) Gradient coil arrangement and production method
JPH04367650A (en) Magnetoresonance imaging device
JPS6197806A (en) Cooling device of magnetic part used in nmr picture device
JP2008028146A (en) Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus
CN216119762U (en) Magnetic resonance system
JP2011131009A (en) Magnetic resonance imaging apparatus
JPH10155765A (en) Close structured magnetic resonance imaging magnet
JP2609346B2 (en) Gradient magnetic field coil device
JP2001149337A (en) Magnetic resonance imaging device
EP3788391A1 (en) Gradient shield coil with meandering winding for a magnetic resonance imaging apparatus
JPS62261105A (en) Magnet for nmr-ct