JPH0436726B2 - - Google Patents

Info

Publication number
JPH0436726B2
JPH0436726B2 JP61205883A JP20588386A JPH0436726B2 JP H0436726 B2 JPH0436726 B2 JP H0436726B2 JP 61205883 A JP61205883 A JP 61205883A JP 20588386 A JP20588386 A JP 20588386A JP H0436726 B2 JPH0436726 B2 JP H0436726B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
reaction
introduction pipe
shower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61205883A
Other languages
Japanese (ja)
Other versions
JPS6362528A (en
Inventor
Masaru Wakatabe
Kenichi Fujimori
Osamu Ogino
Mitsuru Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd, Yamanashi Electronics Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP61205883A priority Critical patent/JPS6362528A/en
Publication of JPS6362528A publication Critical patent/JPS6362528A/en
Publication of JPH0436726B2 publication Critical patent/JPH0436726B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の利用分野) 本発明は自燃性ガス特にシランガスを多量に含
む有害性排気ガスを、安全かつ連続的しかも安価
なランニングコストで処理できる排気ガス処理装
置に関するものである。 (従来技術とその問題点) 半導体製造プロセスにおいては、近年真空反応
室内に化学的反応性ガスを吹込み、制御された条
件下で基板上に固相合金膜を析出する所謂CVD
(chemical Vaper Deposition)プロセスが仕込
まれたり、基板材質と同類の結晶性をもつエピタ
キシヤル層を形成するプロセスとかの堆積プロセ
ス、その他基板材料の一部を意図的に喰刻するエ
ツチングプロセスの内、低圧真空中に喰刻反応性
ガスを導入してなるプロセスなど、要するにガス
を基板上に導いて所定の反応エネルギを加えて所
望のガス相の反応を行わせるプロセスが必須のも
のとなつている。 ところでかかるガス相におけるCVDやエツチ
ング処理などの多くは、第1表に示すような化学
的に活性のガスとか、人体に有害なガスを単独ま
たは複数種組合わせて導入して行われる場合が多
い。また例えばエツチングガスとして使用される
CF4、NF3、SF2などのように、通常の条件下に
おいては安全であつても、反応室内で反応エネル
ギに曝らされて一部が熱分解して活性ラジカルに
なると、F2、HFなどの有害ガスと化して反応室
外に排出されるガスが使用される場合もある。 従つて以上のような反応プロセスを経て排出さ
れる有害ガスは、その濃度を法令で定める基準値
以下になるように処理したのち、大気中などに排
出されることが強く要求される。そこでその手段
として例えば化学吸着法による除去処理、燃
焼法による酸化物処理、中和処理、希釈処理
法などが開発されている。このうち化学吸着法
は、モルキユラーシーブのような吸着剤層に排出
ガスを通過させることにより有害ガス分子を吸着
させるものであり、吸着剤の最高吸着能力に達し
たとき、ただちに新しい吸着層に切換えて処理す
る。
(Field of Application of the Invention) The present invention relates to an exhaust gas treatment device that can safely and continuously treat harmful exhaust gas containing a large amount of combustible gas, particularly silane gas, at low running costs. (Prior art and its problems) In recent years, in the semiconductor manufacturing process, so-called CVD, in which a chemically reactive gas is blown into a vacuum reaction chamber and a solid phase alloy film is deposited on a substrate under controlled conditions, has been introduced.
(chemical vapor deposition) process, a deposition process such as a process to form an epitaxial layer with the same crystallinity as the substrate material, and an etching process that intentionally etches a part of the substrate material. Processes such as those in which a reactive gas is introduced into a low-pressure vacuum, in other words, a process in which the gas is introduced onto a substrate and a predetermined reaction energy is applied to carry out a desired gas phase reaction, has become essential. . By the way, many of the CVD and etching processes in the gas phase are often carried out by introducing chemically active gases or gases harmful to the human body, either singly or in combination, as shown in Table 1. . It is also used as an etching gas, for example.
Even if they are safe under normal conditions, such as CF 4 , NF 3 , SF 2 , etc., when exposed to reaction energy in the reaction chamber, some of them thermally decompose into active radicals, resulting in F 2 , In some cases, gases that are converted into harmful gases such as HF and discharged outside the reaction chamber are used. Therefore, it is strongly required that the harmful gases discharged through the reaction process described above be treated so that their concentration is below the standard value set by law before being discharged into the atmosphere. Therefore, methods such as removal treatment using chemisorption, oxide treatment using combustion, neutralization, and dilution have been developed as means for this purpose. Among these methods, the chemical adsorption method adsorbs harmful gas molecules by passing exhaust gas through an adsorbent layer such as a molecular sieve, and when the maximum adsorption capacity of the adsorbent is reached, a new adsorption layer is immediately added. Switch to and process.

【表】 ** 自:自燃性 可:可燃性 不:
不燃性 支:支燃性
そして有害ガスを吸着した吸着層は、吸着ガス
を脱離させ再生することにより再利用されるが、
この方法では脱離した有害ガスは、吸着法以外の
処理方法で最終的に再処理する必要がある。従つ
て処理コストが高いことと、処理有害ガス量が比
較的小量に限定される短所をもつことから、小規
模な実験室規模に適応するものであつて工業的方
法とは云えない。 また燃焼法は反応室から排出されるガスに多量
の空気を吹込みながら、例えばプロパンガスをパ
イロツト着火源として用いるとか、プロパンガス
と混合して着火させて強制燃焼させたり、更には
排出ガス中に自然性ガス例えばシリコンエピタキ
シヤルCVDプロセスやアモルフアスシリコン
CVDプロセスのように、反応室側から多量のシ
ランガス(SiH4、Si2H6、Si3H8、SiH2Cl2
SiHCl3など)を含むガスが排出される場合、例
えばSiH4が含有される場合には、空気の混合に
より燃焼させて、第2表の番号〔1〕の反応によ
り有害ガスの大部分を安定な酸化物SiO2に変化
物に変える方法であつて、大量の排気ガスを最も
安全確実に処理できる方法として多く用いられて
いる。 しかしこの方法のような排出ガスの酸化物が微
少な固体粉末となつて析出される系では、処理を
続けるうちに例えば第1図のように反応室aから
の排出ガスを燃焼室bに導くガス導入管cの燃焼
用開口dを含む或る長さに亘る内壁面に酸化物粉
末eが次第に堆積し、遂には排出ガスが導入管c
内を多量に酸化物粉末により埋めつくして閉塞状
態とする。このため反応室内のガス圧力を高め
て、予期せぬ重大事故につながり兼ねない危険性
を基本的にもつている。なおfは高周波電源、g
は反応ガス供給用シリンダ、hは真空ポンプであ
る。従つて燃焼法による排ガス処理装置において
は、生成される固体粉末を如何にして燃焼口や燃
焼室内に堆積させないか、或いは如何にうまく除
去できるかが処理装置としての信頼性を決める重
要な因子となつている。 また中和処理法は反応室から導かれた有害ガス
を含む排気ガスを、NaOH、kOHなどを含むア
ルカ
[Table] ** Self: Self-flammable Possible: Flammable Not:
Nonflammability Support: Combustion support The adsorption layer that adsorbs harmful gases is reused by desorbing the adsorbed gas and regenerating it.
In this method, the desorbed harmful gas must be finally reprocessed by a treatment method other than the adsorption method. Therefore, since the processing cost is high and the amount of harmful gas to be processed is limited to a relatively small amount, this method is suitable for small-scale laboratories and cannot be called an industrial method. In addition, the combustion method involves blowing a large amount of air into the gas exhausted from the reaction chamber, for example, using propane gas as a pilot ignition source, mixing it with propane gas and igniting it for forced combustion, and then During natural gas e.g. silicon epitaxial CVD process or amorphous silicon
As in the CVD process, a large amount of silane gas (SiH 4 , Si 2 H 6 , Si 3 H 8 , SiH 2 Cl 2 ,
For example, if a gas containing SiHCl 3 (e.g. SiHCl 3) is emitted, if it contains SiH 4 , it is combusted by mixing with air, and most of the harmful gas is stabilized by the reaction in number [1] in Table 2. This is a method of converting the oxide SiO 2 into a modified substance, and is often used as the safest and most reliable way to treat large amounts of exhaust gas. However, in a system such as this method in which the oxides of the exhaust gas are precipitated as fine solid powder, as the treatment continues, the exhaust gas from the reaction chamber a is guided to the combustion chamber b, as shown in Figure 1. Oxide powder e gradually accumulates on the inner wall surface of the gas introduction pipe c over a certain length including the combustion opening d, and finally the exhaust gas flows into the introduction pipe c.
The interior is completely filled with a large amount of oxide powder to create a closed state. For this reason, there is a fundamental danger that the gas pressure within the reaction chamber may increase, leading to an unexpected serious accident. Note that f is a high frequency power supply, and g
is a reaction gas supply cylinder, and h is a vacuum pump. Therefore, in exhaust gas treatment equipment using the combustion method, how to prevent the generated solid powder from accumulating in the combustion port or combustion chamber, or how well to remove it is an important factor that determines the reliability of the treatment equipment. It's summery. In addition, the neutralization treatment method converts exhaust gas containing harmful gases led from the reaction chamber into alkali containing NaOH, kOH, etc.

【表】【table】

【表】 リ性水溶液のシヤワーやアルカリ性水溶液の膜に
多数回潜らせたりして、排気ガスとよく混合して
急速水流として激しく乱流混合させるジエツト洗
滌と呼ばれる方法により、排気ガスとアルカリ性
加水分解水溶液とを充分混合させる。そして例え
ば第3表のように排気ガス中に含まれる有害ガス
を、加水分解反応により水溶性物質に変えたり、
水中に浮遊するスラツジに変える。
[Table] Exhaust gas and alkaline hydrolysis are performed using a method called jet cleaning, in which the exhaust gas is thoroughly mixed with the exhaust gas by showering with aqueous lysate solution or submerged in a film of alkaline aqueous solution many times, and then mixed with rapid water flow in a violently turbulent flow. Mix thoroughly with the aqueous solution. For example, as shown in Table 3, harmful gases contained in exhaust gas are converted into water-soluble substances through hydrolysis reactions,
Turns into sludge floating in water.

【表】 しかるのちそれらを含む排水を沈澱槽、酸アル
カリ中和槽、CaCO3混入槽、固液分離処理を経
て、最終排水中の有害物質が規定値以下となるよ
うにして工業排水として流す。またCaCO3に沈
澱固形物を混合する形態で分離された汚泥は、工
業廃棄物として専門業者による最終処理がなされ
るもので、この中和法による処理は前記した有害
ガスの除害設備としてばかりでなく、一般排気ガ
スの最終段、工業排出水の最終段として使用され
ているものである。しかもこの方法は既設の工業
排水処理設備に接続できることから、反応装置に
付属させる設備を小規模にすることができるため
通常広く用いられる。 しかし一方この中和法は、反応室から排気され
るガス中の有害物質と、加水分解処理するための
アルカリ性水溶液との接触反応のみでしか、化学
反応による除害反応が起きないため、高濃度のガ
スを長時間連続的に規定値以下に処理するには難
がある。 また希釈法は小量の有害物質を含む発生源に対
して、多量の不活性N2ガスや空気または水を混
合する。そして規定値以下の濃度に希釈して排出
する方法であり、それ自身除害反応を持たない装
置であつて、以上述べた各方法による装置は、排
気ガスの性質、量、排気環境などに応じて単独ま
たは組合わせ使用される。 例えば前記したシリコンエピタキシヤルCVD
プロセスやアモルフアスシリコンCVDプロセス
のように、反応室側から多量のシランガスを含む
ガスが排気される場合、即ち第1表のように殆ど
が自燃性を示し、空気と混合するだけで燃焼して
無害のSiO2粉末化し、またアルカリ性水溶液と
よく加水分解反応して無害化されるシランガスの
場合には、燃焼法による装置と、これによつて無
害化にされずに残つた有害シランガスを、アルカ
リ性水溶液により中和する装置との組合わせが使
用される。 (発明の目的) 本発明は空気と反応して固体微粉末を生成する
ガスを含む排気ガス、特に自燃性ガスであるシラ
ンガスを含む排気ガスを、前記した従来装置のよ
うに生成微粉末により燃焼口や燃焼室内が閉塞さ
れることがないようにして、安全確実かつ安価な
ランニングコストで、高濃度の有害ガスを長時間
連続的に除害できる処理設備を提供するにある。
次に図面を用いてその詳細を説明する。 (問題点を解決するための本発明の手段と作用) 本発明の特徴とするところは次の点にある。そ
の一つは反応室からの排気ガスを、燃焼室内に導
くために設けられるガス導入管の先端開口部か
ら、生成固体微粉末が沈着するおそれが考えられ
る長さまたはそれ以上に亘つて、管璧に洗滌水の
シヤワー吹出口を多数設ける。そして処理中ここ
から洗滌水を流し続けることにより、固体微粉末
が管の内壁面などに沈着しないように洗い流すよ
うにしたことを特徴とするものである。また第2
には必要に応じて洗滌水に代わりに、シランガス
と加水分解反応するアルカリ性水溶液を用いるこ
とにより、燃焼による有害ガスの無害化と併行し
て、更に無害化が行われるようにしたことを特徴
とするものである。次に本発明を実施例によつて
具体的に説明する。 第2図は本発明の一実施例図、第3図はその要
部説明図である。図において1は反応室であつ
て、ここには反応エネルギ供給用の高周波電源2
と、反応ガス供給用のシリンダ3および真空ポン
プ系4などが接続され、例えばCVD法によるシ
リコンの堆積処理が行われる。5は排気ガスの導
入管であつて、その真空ポンプ4との接続部4a
には希釈ガス導入部6を有し、接続部における空
気との接触にもとづくシランガスの着火燃焼が防
止される。また排気ガス導入管5の開口先端5a
から、生成固体微粉末が沈着するおそれのある長
さl例えば50cmの長さに亘つては、第3図に示す
ような内壁を貫通する多数のシヤワー吹出口7a
と、両端閉塞の外壁管を備えた2重管構造のシヤ
ワー吹出部7を有する。そして洗滌水または洗滌
用アルカリ性水溶液の供給管7bを介して、図示
しない水源または図中※印で示すように、後記ア
ルカリ性水溶液の循環ポンプ12から供給される
洗滌液により、排気ガス導入管5の内壁面が全周
に亘つて絶えず洗われるように形成される。8は
燃焼室を兼ねるシヤワー洗滌室、9はその一側面
に設けられた燃焼用空気の取入口、10は空気取
入れ量の調節用ダンパであつて、上記排気ガス導
入管5はシヤワー洗滌室8に対して傾斜を持ち、
かつ周辺に空気取入口9が形成されるようにシヤ
ワー洗滌室8内に固定される。そして上記傾斜に
よりシヤワー吹出口7aを介して排気ガス導入管
5の内壁面に吹出された洗滌水が、真空ポンプ
4、更には反応室1内に逆流するのを防止する。
また排気ガス導入管5の先端開口部5aがシヤワ
ー洗滌室8の中央部にまで突出するように取付け
ると共に、例えばシヤワー洗滌室8と外気との圧
力差が約0.5Kg/cm2以上になるように、後記する
ブロアーポンプ20の排気能力を選定し、またダ
ンパ10を調節して空気取入れ量を調整する。そ
して排気ガス導入管5内の圧力が、シヤワー洗滌
室8内のそれに対して約0.3Kg/cm2程度以上の差
圧を持ちうるようにされる。また排気ガス導入管
5の先端開口部5aを、シヤワー洗滌室8の中央
部に位置させることにより、排気ガス導入管5か
らの未処理排気ガスがよくシヤワー洗滌液によつ
て洗われるようにした状態の下で、シランガス例
えばSiH4の燃焼による第2表の〔1〕の反応が
行われるようにする。 11はシヤワー洗滌室の下部に設けられたアル
カリ性水溶液のタンク、12はその循環ポンプ、
13はシヤワーノズルであつて、シヤワーノズル
13による洗滌処理用の水溶液と、排気ガス導入
管5の内壁面を洗滌した液が入るタンク11内の
PH度は、PH計14により常に管理される。15は
ダクト、16はガス洗滌充填塔、17はその下部
に設けられたアルカリ性水溶液のタンク、18は
その循環ポンプ、19はシヤワーノズル、20は
ブロアーポンプ、21は排気口であつて、タンク
17内の水溶液のPH度はPH計22によつて常に管
理される。 そして前記した燃焼反応によつても処理しきれ
なかつた未反応の有害シランガスを、シヤワー洗
滌室8およびガス洗滌充填塔16において、シヤ
ワーノズル13および19からのアルカリ性シヤ
ワー洗滌液例えばNaOHと接触させることによ
り例えばSiH4ガスを第3表の〔3〕に示す加水
分解反応により水溶性の物質として、タンク11
および17内に送つて別途処理される汚泥とし、
処理空気を排気口21から大気中に排出する。 (発明の効果) 以上のように構成された実施例装置において
は、真空ポンプ4により反応室1内から排気され
た自燃性をもつシランガスを多量に含むガスに、
真空ポンプ4と排気ガス導入管5との接続部にお
いて着火せず、シヤワー吹出口7aを設けた2重
管部7(第3図参照)において、始めて空気取入
口9から多量の空気と接触して燃焼が開始される
ように量が調節された、不活性N2ガスが希釈ガ
ス導入部6により混合されて排気ガス導入管5内
に送りこまれる。一方前記した排気ガス導入管5
内とシヤワー洗滌室8内の差圧関係から、空気取
入口9から一部の空気は排気ガス導入管5の先端
開口部5aから真空ポンプ4側に例えば20〜30cm
逆流する。 従つて排気された自燃性をもつシランガスが例
えばSiH4の場合には、排気ガス導入管5の開口
端5aを含む2重管構造部7内における空気との
接触により自然着火して前記第2表1の反応式で
表される反応が起こる。従つてこれを放置したと
きには開口端5a付近の排気ガス導入管5の内壁
面には粉末上のSiO2が付着する。特に反応室1
側から多量にシランガスが流されるシリコンエピ
タキシヤルCVDプロセスや、アモルフアスシリ
コンCVDプロセスでは多量のSiO2粉末が沈着し、
遂には排気ガス導入管5の開口端5aの断面を閉
塞させる状態となつて、前記したように反応室1
の反応ガス圧力を上昇させたり、真空ポンプ4の
背圧を上昇させて排気能力を低下させたりする危
険極まりない結果を招く。 しかし本発明においては前記したように、排気
ガス導入管5の先端開口端5aから約50cmの長
さ、即ちシヤワー洗滌室8からの空気の逆流長さ
分のシヤワー吹出口7aを備えた2重管構造部7
を設けて、排気ガス導入管5の内壁面にシランガ
スの排気中絶えず洗滌液を流し続けてシヤワー洗
滌する。このため燃焼反応により生成された
SiO2の微粉末を、管壁に付着する暇を与えるこ
となく流し去る。従つて2重管構造部7に設けた
シヤワー吹出口7aからの洗滌液の吹出量を適当
に選定することにより、SiO2のような酸化物の
固体がたとえ高濃度で連続的に生成される状態で
あつても、排気ガス導入管5の先端開口部5aの
断面の閉塞を確実に防止できる。このため閉塞に
よつて引き起される事故や不具合を全く危惧する
ことなく、有害排ガスを安全確実に処理できる。 また実施例装置のように燃焼反応による処理に
止まらず、加水分解反応により処理を組合せて処
理するようにし、しかも燃焼反応処理過程におけ
る前記2重管構造部7に使用されるシヤワー洗滌
液として、加水分解反応処理に使用されている循
環ポンプ12によるアルカリ性水溶液を利用すれ
ば、ランニングコスト上の負担増を生じたり、処
理装置や管理の複雑化を招いたりすることなく効
率よく、有害ガスを化学的に最も安定した無害物
質化して安全確実に処理できる。
[Table] The wastewater containing these substances is then passed through a sedimentation tank, an acid-alkali neutralization tank, a CaCO 3 mixing tank, and a solid-liquid separation process to ensure that the hazardous substances in the final wastewater are below the specified value before being discharged as industrial wastewater. . In addition, sludge separated by mixing precipitated solids with CaCO 3 is treated as industrial waste by a specialist company, and treatment using this neutralization method is only used as the above-mentioned harmful gas abatement equipment. Rather, it is used as the final stage for general exhaust gas and industrial waste water. Moreover, since this method can be connected to existing industrial wastewater treatment equipment, it is possible to reduce the scale of the equipment attached to the reaction apparatus, so it is usually widely used. However, with this neutralization method, the chemical reaction that eliminates the harmful substances occurs only through contact reaction between the harmful substances in the gas exhausted from the reaction chamber and the alkaline aqueous solution used for hydrolysis treatment. It is difficult to continuously treat this gas to below the specified value for a long period of time. The dilution method mixes a source containing a small amount of harmful substances with a large amount of inert N2 gas, air, or water. This method dilutes the concentration to below the specified value and then discharges it, and it is a device that does not itself have a detoxification reaction.The devices using each of the above methods vary depending on the nature, amount, exhaust environment, etc. of the exhaust gas. used alone or in combination. For example, the silicon epitaxial CVD mentioned above
When gas containing a large amount of silane gas is exhausted from the reaction chamber side, such as in the process or amorphous silicon CVD process, most of the gas is self-combustible, as shown in Table 1, and can be combusted simply by mixing with air. In the case of silane gas, which is made into harmless SiO 2 powder and rendered harmless by a good hydrolysis reaction with an alkaline aqueous solution, a combustion method is used, and the remaining harmful silane gas that has not been rendered harmless is converted into an alkaline aqueous solution. A combination with a device for neutralizing with an aqueous solution is used. (Object of the Invention) The present invention aims to combust exhaust gas containing a gas that reacts with air to produce solid fine powder, particularly exhaust gas containing silane gas, which is a self-combustible gas, using the produced fine powder as in the conventional apparatus described above. To provide a treatment facility capable of continuously removing high concentration harmful gases for a long period of time safely, reliably, and at low running cost without clogging the mouth or combustion chamber.
Next, the details will be explained using the drawings. (Means and effects of the present invention for solving the problems) The present invention is characterized by the following points. One is to extend the length of the pipe from the opening at the end of the gas introduction pipe, which is provided to guide the exhaust gas from the reaction chamber into the combustion chamber, over a length or longer where there is a possibility that the produced solid fine powder may be deposited. A large number of shower outlets for washing water are installed in the wall. By continuing to flow washing water from here during the treatment, the fine solid powder is washed away to prevent it from depositing on the inner wall surface of the tube. Also the second
is characterized in that by using an alkaline aqueous solution that undergoes a hydrolysis reaction with silane gas instead of washing water as necessary, the harmful gas caused by combustion is rendered harmless and further rendered harmless. It is something to do. Next, the present invention will be specifically explained using examples. FIG. 2 is a diagram showing an embodiment of the present invention, and FIG. 3 is an explanatory diagram of the main part thereof. In the figure, 1 is a reaction chamber, and there is a high-frequency power supply 2 for supplying reaction energy.
A cylinder 3 for supplying a reaction gas, a vacuum pump system 4, and the like are connected, and silicon deposition processing is performed by, for example, a CVD method. 5 is an exhaust gas introduction pipe, and its connection part 4a with the vacuum pump 4
has a dilution gas introduction section 6, which prevents ignition and combustion of silane gas due to contact with air at the connection section. Also, the opening end 5a of the exhaust gas introduction pipe 5
For example, over a length of 50 cm over which the produced solid fine powder may be deposited, a large number of shower outlets 7a penetrating the inner wall as shown in FIG.
and a shower outlet 7 having a double pipe structure with outer wall pipes closed at both ends. Then, through the supply pipe 7b of washing water or an alkaline aqueous solution for washing, the exhaust gas introduction pipe 5 is supplied with the washing liquid supplied from a water source (not shown) or from the alkaline aqueous solution circulation pump 12 (described later) as indicated by a * mark in the figure. The inner wall surface is formed so that it can be constantly washed all around. 8 is a shower cleaning chamber which also serves as a combustion chamber, 9 is a combustion air intake provided on one side thereof, 10 is a damper for adjusting the amount of air intake, and the exhaust gas introduction pipe 5 is connected to the shower cleaning chamber 8. has an inclination to
It is fixed within the shower cleaning chamber 8 so that an air intake port 9 is formed around the periphery. The above-mentioned inclination prevents the cleaning water blown onto the inner wall surface of the exhaust gas introduction pipe 5 through the shower outlet 7a from flowing back into the vacuum pump 4 and further into the reaction chamber 1.
Also, the exhaust gas introduction pipe 5 is installed so that the tip opening 5a protrudes into the center of the shower cleaning chamber 8, and the pressure difference between the shower cleaning chamber 8 and the outside air is, for example, about 0.5 kg/cm 2 or more. Next, select the exhaust capacity of the blower pump 20, which will be described later, and adjust the damper 10 to adjust the amount of air intake. The pressure inside the exhaust gas introduction pipe 5 is made to have a pressure difference of about 0.3 kg/cm 2 or more with respect to that inside the shower cleaning chamber 8. Further, by locating the tip opening 5a of the exhaust gas introduction pipe 5 in the center of the shower cleaning chamber 8, untreated exhaust gas from the exhaust gas introduction pipe 5 can be thoroughly washed with the shower cleaning liquid. The conditions are such that the reaction in Table 2 [1] by combustion of silane gas, for example SiH 4 , takes place. 11 is an alkaline aqueous solution tank installed at the bottom of the shower cleaning chamber, 12 is its circulation pump,
Reference numeral 13 denotes a shower nozzle, which is in a tank 11 containing an aqueous solution for cleaning by the shower nozzle 13 and a liquid for cleaning the inner wall surface of the exhaust gas introduction pipe 5.
The PH degree is always controlled by a PH meter 14. 15 is a duct, 16 is a gas cleaning packed tower, 17 is an alkaline aqueous solution tank provided at the bottom thereof, 18 is its circulation pump, 19 is a shower nozzle, 20 is a blower pump, 21 is an exhaust port, and tank 17 The PH level of the aqueous solution inside is constantly controlled by a PH meter 22. Then, the unreacted harmful silane gas that has not been completely treated by the combustion reaction described above is brought into contact with alkaline shower cleaning liquid, such as NaOH, from the shower nozzles 13 and 19 in the shower cleaning chamber 8 and the gas cleaning packed tower 16. For example, SiH 4 gas is converted into a water-soluble substance by the hydrolysis reaction shown in [3] of Table 3, and the tank 11 is
and sludge to be sent to 17 and treated separately,
The treated air is discharged into the atmosphere from the exhaust port 21. (Effects of the Invention) In the apparatus of the embodiment configured as described above, the gas containing a large amount of self-combustible silane gas is evacuated from the reaction chamber 1 by the vacuum pump 4.
The fire did not ignite at the connection between the vacuum pump 4 and the exhaust gas inlet pipe 5, and it came into contact with a large amount of air from the air intake port 9 for the first time in the double pipe section 7 (see Figure 3) where the shower outlet 7a was provided. Inert N 2 gas, the amount of which is adjusted so that combustion is started, is mixed by the dilution gas introduction section 6 and sent into the exhaust gas introduction pipe 5. On the other hand, the exhaust gas introduction pipe 5 mentioned above
Due to the differential pressure between the inside of the shower cleaning chamber 8 and the inside of the shower cleaning chamber 8, some of the air from the air intake port 9 is transferred from the tip opening 5a of the exhaust gas introduction pipe 5 to the vacuum pump 4 side by 20 to 30 cm, for example.
flow backwards. Therefore, if the exhausted self-combustible silane gas is, for example, SiH 4 , it will spontaneously ignite upon contact with the air in the double pipe structure 7 including the open end 5a of the exhaust gas introduction pipe 5 and cause the second gas to ignite. The reaction represented by the reaction formula in Table 1 occurs. Therefore, if this is left as it is, powdered SiO 2 will adhere to the inner wall surface of the exhaust gas introduction pipe 5 near the open end 5a. Especially reaction chamber 1
In the silicon epitaxial CVD process where a large amount of silane gas is flowed from the side, and the amorphous silicon CVD process, a large amount of SiO 2 powder is deposited.
Finally, the cross section of the open end 5a of the exhaust gas introduction pipe 5 is closed, and the reaction chamber 1 is closed as described above.
This results in extremely dangerous consequences such as increasing the pressure of the reaction gas in the vacuum pump 4 or increasing the back pressure of the vacuum pump 4 and reducing the exhaust capacity. However, in the present invention, as described above, the double shower outlet 7a is provided with a length of approximately 50 cm from the open end 5a of the exhaust gas introduction pipe 5, that is, the length of the backflow of air from the shower cleaning chamber 8. Pipe structure part 7
is provided, and the cleaning liquid is continuously flowed onto the inner wall surface of the exhaust gas introduction pipe 5 while the silane gas is being exhausted, thereby performing shower cleaning. For this reason, the combustion reaction produced
The fine SiO 2 powder is washed away without giving it time to adhere to the tube wall. Therefore, by appropriately selecting the amount of cleaning liquid blown out from the shower outlet 7a provided in the double pipe structure 7, oxide solids such as SiO 2 can be continuously generated even at high concentrations. Even in this state, the cross section of the tip opening 5a of the exhaust gas introduction pipe 5 can be reliably prevented from being blocked. Therefore, harmful exhaust gas can be safely and reliably treated without any fear of accidents or problems caused by blockage. In addition, the treatment is not limited to the combustion reaction as in the embodiment apparatus, but the treatment is performed in combination with the hydrolysis reaction, and as a shower cleaning liquid used in the double pipe structure 7 in the combustion reaction treatment process, By using the alkaline aqueous solution produced by the circulation pump 12 used for hydrolysis reaction treatment, harmful gases can be efficiently chemically removed without increasing running costs or complicating treatment equipment and management. It can be processed safely and reliably by turning it into the most stable and harmless substance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の説明図、第2図および第3
図は本発明の一実施装置例図およびその要部の説
明図である。
Figure 1 is an explanatory diagram of the conventional device, Figures 2 and 3
The figure is an example of an apparatus for implementing the present invention and an explanatory diagram of its essential parts.

Claims (1)

【特許請求の範囲】 1 自然性有毒ガスを含む排気ガスを、排気ガス
導入管により燃焼室に運んで空気と混合させるこ
とにより燃焼させて酸化物として処理する排気ガ
ス処理装置において、上記排気ガス導入管の先端
開口部から酸化物の沈着のおそれのある長さに亘
つて内壁面に洗滌液のシヤワー吹出し部を設け、
これにより上記酸化物の沈着を連続的に防ぐよう
にしたことを特徴とする排気ガス処理装置。 2 特許請求の範囲第1項において、シヤワー吹
出し部の洗滌液として有害ガス成分を加水分解し
て無害物として変化させるアルカリ性水溶液を用
いることを特徴とする排気ガス処理装置。
[Scope of Claims] 1. An exhaust gas treatment device that transports exhaust gas containing naturally occurring toxic gases to a combustion chamber through an exhaust gas introduction pipe, mixes it with air, and burns it to treat it as an oxide. A shower outlet for cleaning liquid is provided on the inner wall surface from the tip opening of the introduction pipe to a length where oxides may be deposited.
An exhaust gas treatment device characterized in that the deposition of the oxides is thereby continuously prevented. 2. An exhaust gas treatment device according to claim 1, characterized in that an alkaline aqueous solution that hydrolyzes harmful gas components and converts them into harmless substances is used as the cleaning liquid for the shower outlet.
JP61205883A 1986-09-03 1986-09-03 Discharge gas treating device Granted JPS6362528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205883A JPS6362528A (en) 1986-09-03 1986-09-03 Discharge gas treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205883A JPS6362528A (en) 1986-09-03 1986-09-03 Discharge gas treating device

Publications (2)

Publication Number Publication Date
JPS6362528A JPS6362528A (en) 1988-03-18
JPH0436726B2 true JPH0436726B2 (en) 1992-06-17

Family

ID=16514305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205883A Granted JPS6362528A (en) 1986-09-03 1986-09-03 Discharge gas treating device

Country Status (1)

Country Link
JP (1) JPS6362528A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154334A (en) * 1991-12-11 1993-06-22 Fujitsu Ltd Exhaust pump device of semiconductor manufacturing apparatus
DE4320044A1 (en) * 1993-06-17 1994-12-22 Das Duennschicht Anlagen Sys Process and device for cleaning exhaust gases
TW342436B (en) * 1996-08-14 1998-10-11 Nippon Oxygen Co Ltd Combustion type harm removal apparatus (1)
US5955037A (en) 1996-12-31 1999-09-21 Atmi Ecosys Corporation Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
WO2000032299A1 (en) * 1998-12-01 2000-06-08 Ebara Corporation Exhaust gas treating device
JP2002166126A (en) * 2000-12-04 2002-06-11 Sumitomo Seika Chem Co Ltd Combustion exhaust gas treatment apparatus
GB0505852D0 (en) * 2005-03-22 2005-04-27 Boc Group Plc Method of treating a gas stream
JP4755526B2 (en) * 2006-04-20 2011-08-24 田島応用化工株式会社 Waterproof material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193522U (en) * 1983-06-08 1984-12-22 日本電気株式会社 Waste gas cleaning treatment equipment

Also Published As

Publication number Publication date
JPS6362528A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
TWI434729B (en) Method and apparatus for the removal of fluorine from a gas stream
US7972582B2 (en) Method and apparatus for treating exhaust gas
JP2007203290A (en) Method for treating exhaust gas
JPH0436726B2 (en)
US20030219361A1 (en) Apparatus and method for pretreating effluent gases in a wet environment
TWI671114B (en) Exhaust pressure decompression device
KR101097240B1 (en) Method and apparatus for treating exhaust gas
JP5112231B2 (en) Processing apparatus and processing method
US7220396B2 (en) Processes for treating halogen-containing gases
JP5165861B2 (en) Perfluoride processing method and processing apparatus
JP2003021315A (en) Device and method for detoxifying exhaust gas
KR102129719B1 (en) Decompression device for exhaust gas
WO2000043106A1 (en) A method and apparatus for oxidation of nitric oxide using irradiated oxidizing compounds
JP2000271429A (en) Waste gas treating method and treating device
JP2003329233A (en) Exhaust gas processing device
JPS60118216A (en) Exhaust gas treating apparatus
JP2013044479A (en) Method for purifying exhaust gas containing silicon chloride compound
JP2005218911A (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2000058464A (en) Exhaust gas processing method and device
JPH0710334B2 (en) NF3 Exhaust gas treatment method and device
JPH1099635A (en) Exhaust gas treatment for cvd device and exhaust gas treating device
KR20040016051A (en) Waste-water treatment system and method
JPH0623220A (en) Dry type harm-removing device
JP2006122863A (en) Treating method and apparatus of exhaust gas
JP2001149964A (en) Water treating method