JPH04366781A - Device for detecting life of battery - Google Patents

Device for detecting life of battery

Info

Publication number
JPH04366781A
JPH04366781A JP3167587A JP16758791A JPH04366781A JP H04366781 A JPH04366781 A JP H04366781A JP 3167587 A JP3167587 A JP 3167587A JP 16758791 A JP16758791 A JP 16758791A JP H04366781 A JPH04366781 A JP H04366781A
Authority
JP
Japan
Prior art keywords
battery
circuit
voltage
charging
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3167587A
Other languages
Japanese (ja)
Inventor
Shunei Saito
斉藤 俊英
Satoru Kusaka
哲 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3167587A priority Critical patent/JPH04366781A/en
Publication of JPH04366781A publication Critical patent/JPH04366781A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To perform detection to see whether or not a battery can be used normally after charging is completed. CONSTITUTION:A pulse generating circuit 1 supplies pulses of short time to a constant current circuit 2 in response to signals which are generated from a charge control circuit 3a when charging is completed. The constant current circuit 2 passes a relatively large current from a battery 4 and changes in battery voltage as measured before and after the current flows are detected by a peak value detecting circuit 5 and, if larger than a predetermined value, this detected value is detected by a voltage comparison circuit 6 so as to judge the life of the battery.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えばポータブルコン
ピュータ、ポータブルテレビジョン装置に用いられる電
池の寿命を検出する、電池寿命検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery life detection device for detecting the life of a battery used in, for example, a portable computer or a portable television set.

【0002】0002

【従来の技術】一般に、充電可能な電池は無限に使用で
きるわけではなく、寿命がくると充電を行なっても使用
できなくなる。この電池の寿命は従来、電池がオープン
またはショート状態にあるか否かを検出して判断してい
た。
2. Description of the Related Art Generally, rechargeable batteries cannot be used indefinitely, and when their lifespan reaches the end, they cannot be used even if they are charged. Conventionally, the lifespan of a battery has been determined by detecting whether the battery is open or short-circuited.

【0003】0003

【発明が解決しようとする課題】しかしながら電池は過
充電状態が異常に長く継続したとき、あるいは充放電回
数が所定回数を越えたときに、充電完了によってその電
池を使用し始めると、最初は使用可能でも、電池の使用
可能時間よりもはるかに短い時間で使用できなくなる。 すなわち本来の使用可能時間よりもはるかに短い時間し
か使用できなるなる。従来はこのような状態を検出する
手段がなかったので、充電完了後に使用を開始し、使用
可能時間が極端に短いときは寿命が尽きたと判断するし
かないという課題があった。
[Problem to be Solved by the Invention] However, when a battery is overcharged for an abnormally long time or when the number of charging and discharging exceeds a predetermined number of times, when the battery is started to be used after charging is completed, the battery becomes unusable at first. Even if it is possible, the battery will become unusable in a much shorter time than the battery can be used for. In other words, the device can only be used for a much shorter time than the original usable time. Conventionally, there was no means to detect such a state, so there was a problem in that the only option was to start using the battery after charging was completed, and if the usable time was extremely short, it was necessary to determine that the battery had reached the end of its life.

【0004】本発明はこのような状況に鑑みてなされた
もので、充電完了後にその電池が正常に使用できるか否
かを検出する装置を提供するものである。
The present invention has been made in view of the above situation, and provides a device for detecting whether or not a battery can be used normally after charging is completed.

【0005】[0005]

【課題を解決するための手段】このような課題を解決す
るために本発明の電池寿命検出装置は、充電終了時に電
池から所定の電流を流す電流回路と、電流が流れる前と
後の電池電圧を保持するピーク値検出回路と、ピーク値
検出回路の出力電圧差が所定値以上のとき出力信号を発
生する電圧比較回路とで構成したものである。
[Means for Solving the Problems] In order to solve such problems, the battery life detection device of the present invention includes a current circuit that flows a predetermined current from the battery at the end of charging, and a battery voltage that detects the battery voltage before and after the current flows. , and a voltage comparison circuit that generates an output signal when the output voltage difference of the peak value detection circuit is equal to or greater than a predetermined value.

【0006】[0006]

【作用】上記構成の電池寿命検出装置においては、充電
終了時に比較的大きな電流を流し、その電流が流れる前
と後の電池電圧の変化によって電池の寿命を判定する。
[Operation] In the battery life detecting device constructed as described above, a relatively large current is passed at the end of charging, and the life of the battery is determined based on the change in battery voltage before and after the current flows.

【0007】[0007]

【実施例】図1は本発明を適用した電池寿命検出装置の
一実施例の構成を示すブロック図である。まず回路の概
略を説明すると、図1においてパルス発生回路1は図2
(c),(d)に示す制御信号が供給される度に例えば
70μSのパルスを発生し、定電流回路(負荷手段)2
はそのパルス発生回路1からパルス信号が供給される度
に電池4の負荷となり、後述するような比較的大きな電
流を流すようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the structure of an embodiment of a battery life detection device to which the present invention is applied. First, to explain the outline of the circuit, the pulse generation circuit 1 in FIG.
Each time the control signals shown in (c) and (d) are supplied, a pulse of, for example, 70 μS is generated, and the constant current circuit (load means) 2
Each time a pulse signal is supplied from the pulse generating circuit 1, it acts as a load on the battery 4, causing a relatively large current to flow therethrough as will be described later.

【0008】定電流回路2に電流が流れる前後における
、電池4の端子電圧の差がピーク値検出回路5によって
検出される。そしてその差の値がある程度以上大きけれ
ば電圧比較回路6によってそのことが検出され、その検
出信号がオア回路9を介してCPU10に入力され、L
CD11によって電池寿命の尽きたことが表示されるよ
うになっている。
A peak value detection circuit 5 detects the difference in the terminal voltage of the battery 4 before and after the current flows through the constant current circuit 2. If the value of the difference is larger than a certain level, it is detected by the voltage comparison circuit 6, and the detection signal is input to the CPU 10 via the OR circuit 9, and the L
The CD11 is designed to display that the battery life has run out.

【0009】また、過電流検出回路8によって過電流が
検出されたとき、オープン検出回路7によって電池のオ
ープン状態が検出されたときにも、その検出出力がオア
回路9、CPU10を介してLCD11によって電池寿
命の尽きたことが表示されるようになっている。
Furthermore, when an overcurrent is detected by the overcurrent detection circuit 8 and an open state of the battery is detected by the open detection circuit 7, the detection output is sent to the LCD 11 via the OR circuit 9 and the CPU 10. A message appears indicating that the battery life is running out.

【0010】つぎにこの装置の詳細な動作を説明する。 トランス12を介して供給されたAC100Vの商用電
源は、整流回路13によって整流され、DC−DCコン
バータ14によって所定の直流電圧に変換され、充電制
御回路3aに供給される。充電制御回路3aは充電開始
スタートスイッチ3cが図2(a)に示すように一瞬押
されると、図2(b)に示すように電池4の充電に必要
な時間だけ、充電電圧を発生し、それを過大電流検出回
路8を介して電池4に供給し、電池4の充電を行うよう
になっている。
Next, the detailed operation of this device will be explained. AC 100V commercial power supplied via the transformer 12 is rectified by the rectifier circuit 13, converted to a predetermined DC voltage by the DC-DC converter 14, and supplied to the charging control circuit 3a. When the charging start switch 3c is momentarily pressed as shown in FIG. 2(a), the charging control circuit 3a generates a charging voltage for the time required to charge the battery 4 as shown in FIG. 2(b). This is supplied to the battery 4 via the overcurrent detection circuit 8, and the battery 4 is charged.

【0011】充電制御回路3aはまた、図2(c)に示
すように、充電スタートスイッチ3cが押されたときと
、図2(d)に示すように充電終了時にパルス信号を発
生して、それがオア回路3bを介してパルス発生回路1
に供給されるようになっている。その信号はパルス発生
回路1のワンショットマルチバイブレータ1aに供給さ
れて、抵抗1bとコンデンサ1cによって継続時間(こ
の例では70μS)が決まるパルス信号を発生する。
The charging control circuit 3a also generates a pulse signal when the charging start switch 3c is pressed, as shown in FIG. 2(c), and at the end of charging, as shown in FIG. 2(d). It is connected to the pulse generating circuit 1 via the OR circuit 3b.
is being supplied to. The signal is supplied to a one-shot multivibrator 1a of a pulse generating circuit 1, which generates a pulse signal whose duration (70 μS in this example) is determined by a resistor 1b and a capacitor 1c.

【0012】ワンショットマルチバイブレータ1aから
パルスが発生している間、定電流回路2は電池4から比
較的大きな電流を流すように構成されている。この電流
は本来の装置動作のための電流ではなく、電池寿命を検
出するためだけの電流であって、しかも比較的大きな電
流であるので、電池に負担を与えないためにはできるだ
け短い時間だけ流すことが望ましい。このため、この例
ではワンショットマルチバイブレータ1aから発生する
パルス信号の継続時間は70μSに選び、その時間だけ
定電流回路2にパルスを供給している。
The constant current circuit 2 is configured to allow a relatively large current to flow from the battery 4 while a pulse is being generated from the one-shot multivibrator 1a. This current is not used for the actual operation of the device, but is used only to detect battery life, and since it is a relatively large current, it should be passed for as short a time as possible to avoid putting a burden on the battery. This is desirable. Therefore, in this example, the duration of the pulse signal generated from the one-shot multivibrator 1a is selected to be 70 μs, and the pulse is supplied to the constant current circuit 2 for that period.

【0013】定電流回路2は演算増幅器2aの非反転入
力端子にそのパルス信号が供給されるので、Hレベルの
信号を出力し、その信号は抵抗2bを介してトランジス
タ2cのベースに供給される。このためトランジスタ2
cはオン状態となり、抵抗2dを介して電流が流れるの
で、抵抗2dの両端に電圧が発生し、それが演算増幅器
2aの反転入力端子に供給される。
Since the pulse signal is supplied to the non-inverting input terminal of the operational amplifier 2a, the constant current circuit 2 outputs an H level signal, and this signal is supplied to the base of the transistor 2c via the resistor 2b. . Therefore, transistor 2
c is turned on and current flows through the resistor 2d, so a voltage is generated across the resistor 2d, which is supplied to the inverting input terminal of the operational amplifier 2a.

【0014】この結果、演算増幅器2aは反転入力端子
の電圧が非反転入力端子の電圧と同一となるような出力
を送出し、その状態で出力レベルは平衡する。したがっ
て、トランジスタ2cを流れる電流は抵抗2dによって
決まる定電流となる。すなわち、充電開始時と終了時に
、70μSだけ抵抗2dによって決まる定電流が電池4
から定電流回路2に流れ込む。
As a result, the operational amplifier 2a sends out an output such that the voltage at the inverting input terminal is the same as the voltage at the non-inverting input terminal, and in this state the output level is balanced. Therefore, the current flowing through the transistor 2c becomes a constant current determined by the resistor 2d. In other words, at the start and end of charging, the constant current determined by the resistor 2d for 70 μS is applied to the battery 4.
Flows into the constant current circuit 2 from there.

【0015】この電流は電池4の内部インピーダンス変
化を検出するためにはある程度大きい方がよい。しかし
、前述したように電池寿命の検出だけのために流れる電
流であり、装置本来の目的のために流れる電流ではない
ため、できるだけ少ない方がよい。したがって、最大値
は電池4に余り負担をかけない値、最小値は電池4の内
部インピーダンスを検出できる値とし、この範囲で決め
るようにしてる。
[0015] This current should be relatively large in order to detect changes in the internal impedance of the battery 4. However, as described above, the current flows only for detecting the battery life and is not the current flowing for the original purpose of the device, so it is better to keep it as small as possible. Therefore, the maximum value is a value that does not place much burden on the battery 4, and the minimum value is a value that allows the internal impedance of the battery 4 to be detected, and the value is determined within this range.

【0016】電池4から電流を取り出すと、その端子電
圧は内部インピーダンスに応じた変化を示し、この電圧
変化がピーク値検出回路5によって検出される。ニッケ
ルカドニウム電池は充電が完了した状態から使用を開始
すると、一般には図4に示すような端子電圧特性を示す
。すなわち、記号Aで示す区間は使用時間とともに端子
電圧は若干低下する。しかし記号Bで示すようにある時
点を過ぎて使用すると急激に端子電圧が低下する特性が
ある。これはある時点を越えて放電すると内部インピー
ダンスが急激に増加するからであり、電池4の内部イン
ピーダンス変化は区間Bになると急激に増加する。
When current is extracted from the battery 4, its terminal voltage changes in accordance with the internal impedance, and this voltage change is detected by the peak value detection circuit 5. When a nickel-cadmium battery starts to be used after being fully charged, it generally exhibits terminal voltage characteristics as shown in FIG. That is, in the section indicated by symbol A, the terminal voltage slightly decreases as the usage time increases. However, as shown by symbol B, when used after a certain point, the terminal voltage suddenly decreases. This is because the internal impedance increases rapidly when the battery 4 is discharged beyond a certain point, and the change in internal impedance of the battery 4 increases rapidly in section B.

【0017】また、区間A、Bのいずれの部分も電池4
から取り出す電流が小さい間、その値は異なるものの、
相応の電池端子電圧があるが、ある程度大きな電流が流
れるとその電圧は大きく低下する。しかし、その低下量
は図3に示すように2種類の状態がある。実線は図4の
区間Aの部分であり、充電された電荷が電池4に十分に
残っており、電池4の内部インピーダンスが小さいので
大きな電流が流れても電圧の低下量がある程度でおさま
っている。
[0017] Also, both sections A and B are connected to the battery 4.
While the current drawn from is small, although its value is different,
There is a corresponding battery terminal voltage, but when a certain amount of current flows, that voltage drops significantly. However, as shown in FIG. 3, there are two types of the amount of decrease. The solid line is section A in Figure 4, where sufficient charge remains in the battery 4 and the internal impedance of the battery 4 is small, so even if a large current flows, the voltage drop will be limited to a certain level. .

【0018】これに対して、図3に二点鎖線で示す区間
、すなわち図4の区間Bでは、電池4の内部インピーダ
ンスが大きくなり、大きな電流が流れたときの電圧降下
が大きくなっている。しかし、電池4が寿命に達してい
ないときは充電を行うことによって内部インピーダンス
を低下させることができる。すなわち電池4の寿命が尽
きていないとき、充電を行うことによって電池の内部イ
ンピーダンスを下げることができ、電池の内部インピー
ダンスは可逆的な値を示す。
On the other hand, in the section shown by the two-dot chain line in FIG. 3, ie, section B in FIG. 4, the internal impedance of the battery 4 becomes large, and the voltage drop when a large current flows becomes large. However, when the battery 4 has not reached the end of its life, the internal impedance can be lowered by charging. That is, when the battery 4 has not reached the end of its life, the internal impedance of the battery can be lowered by charging, and the internal impedance of the battery exhibits a reversible value.

【0019】ところが前述のように、異常に長い過充電
状態におかれた場合、あるいは充放電回数が所定値を越
えた場合は十分に充電を行っても電池内部インピーダン
スを低下させることはできない。すなわち非過逆的な状
態を示し、また端子電圧も規定電圧よりも低い状態にな
る。この状態は先に図4の区間Bにおける特性として示
した、図3の二点鎖線の特性と同一になる。
However, as described above, if the battery is left in an overcharged state for an abnormally long time, or if the number of charging and discharging times exceeds a predetermined value, the internal impedance of the battery cannot be lowered even if the battery is sufficiently charged. That is, a non-reversible state is exhibited, and the terminal voltage is also lower than the specified voltage. This state is the same as the characteristic indicated by the chain double-dashed line in FIG. 3, which was previously shown as the characteristic in section B in FIG.

【0020】すなわち電池4が異常に長い過充電状態に
おかれた場合、あるいは充放電回数が所定値を越えた場
合は、電池4が化学変化を起こし、内部インピーダンス
が非可逆的な状態になり、充電しても内部インピーダン
スを低くすることはできないので、図4の区間Bの状態
と同じ状態になり、比較的大きな電流を流すと電池4の
端子電圧が大きく落ち込んでしまう。
[0020] That is, if the battery 4 is left in an overcharged state for an abnormally long time, or if the number of times of charging and discharging exceeds a predetermined value, the battery 4 undergoes a chemical change and its internal impedance becomes irreversible. Even if it is charged, the internal impedance cannot be lowered, so the state will be the same as the state in section B of FIG. 4, and when a relatively large current is passed, the terminal voltage of the battery 4 will drop significantly.

【0021】図1のピーク値検出回路5はこの検出を行
う回路であり、電池4の端子電圧変化は演算増幅器5a
からなるバッファ回路と、ダイオード5b,5cを介し
て演算増幅器5d,5eの非反転端子に供給される。演
算増幅器5d、ダイオード5e、コンデンサ5fからな
るホールド回路では電圧が高いとき、すなわち定電流回
路2に電流が流れる前の電圧がホールドされる。演算増
幅器5g、ダイオード5h、コンデンサ5iからなるホ
ールド回路では電圧が低いとき、すなわち定電流回路2
に電流が流れたときの電圧がホールドされる。
The peak value detection circuit 5 in FIG. 1 is a circuit that performs this detection, and changes in the terminal voltage of the battery 4 are detected by an operational amplifier 5a.
The signal is supplied to the non-inverting terminals of operational amplifiers 5d and 5e via a buffer circuit consisting of diodes 5b and 5c. The hold circuit including the operational amplifier 5d, the diode 5e, and the capacitor 5f holds the voltage when the voltage is high, that is, before the current flows through the constant current circuit 2. In the hold circuit consisting of the operational amplifier 5g, the diode 5h, and the capacitor 5i, when the voltage is low, that is, the constant current circuit 2
The voltage when current flows through is held.

【0022】演算増幅器5dと5gにホールドされた電
圧は抵抗5j乃至抵抗5n、および演算増幅器5pから
なる差動増幅回路によってその差が求められる。この値
は図3において電圧が低下する前と後の電圧の差、すな
わち電池4から定電流回路2に電流が流れる前と後の電
池4の端子電圧の差である。この差は電池4が寿命に達
していない場合は図3で実線によって示すようにその値
は小さい。しかし、電池が寿命に達した場合は二点鎖線
で示すように大きくなる。
The difference between the voltages held in operational amplifiers 5d and 5g is determined by a differential amplification circuit consisting of resistors 5j to 5n and operational amplifier 5p. This value is the difference between the voltage before and after the voltage decreases in FIG. 3, that is, the difference between the terminal voltage of the battery 4 before and after the current flows from the battery 4 to the constant current circuit 2. This difference is small if the battery 4 has not reached the end of its life, as shown by the solid line in FIG. However, when the battery reaches the end of its life, it becomes larger as shown by the two-dot chain line.

【0023】この電圧差がツェナーダイオード6a、抵
抗6b、演算増幅器6cからなる電圧比較回路2に供給
される。このため、ツェナーダイオード6aのアバラン
シェ電圧を図3の実線で現される電圧変化よりも大きく
、二点鎖線で現される電圧変化よりも小さく設定してお
けば、寿命に達した電池の場合は電圧比較回路6からH
レベルの出力信号が送出される。この信号はオア回路9
を介してCPU10に入力され、CPU10はこの信号
が入力されたとき、LCD11を制御し、電池4が寿命
に達したことを表示する。
This voltage difference is supplied to a voltage comparison circuit 2 consisting of a Zener diode 6a, a resistor 6b, and an operational amplifier 6c. Therefore, if the avalanche voltage of the Zener diode 6a is set to be larger than the voltage change shown by the solid line in FIG. 3 and smaller than the voltage change shown by the two-dot chain line, the Voltage comparator circuit 6 to H
A level output signal is sent out. This signal is OR circuit 9
When this signal is input, the CPU 10 controls the LCD 11 to display that the battery 4 has reached the end of its life.

【0024】電池4が寿命に達したとき、内部インピー
ダンスが非可逆的に大きくなる状態の他に、ショートあ
るいはオープン状態になる場合もある。ショート状態に
なった場合は過大電流検出回路8からHレベルの信号が
出力される。このため、その信号がCPU10を介して
LCD11に供給され、電池が寿命に達したことを表示
する。
[0024] When the battery 4 reaches the end of its life, in addition to the state in which the internal impedance becomes irreversibly large, it may also become in a short-circuit or open state. When a short circuit occurs, the overcurrent detection circuit 8 outputs an H level signal. Therefore, the signal is supplied to the LCD 11 via the CPU 10 to display that the battery has reached the end of its life.

【0025】電池が寿命に達したときはこの他にオープ
ン状態になることもある。この場合は電池4から電流を
取り出すと電池4の端子電圧は0ボルトになってしまう
。したがって定電流回路2に電流が流れた時点でオープ
ン検出回路7によってそれを検出している。オープン検
出回路7はツェナーダイオード7a、抵抗7b、演算増
幅器7cから構成され、ツェナーダイオード7aのアバ
ランシェ電圧は電池4が正常な場合の端子電圧よりも低
く設定してある。
[0025] In addition to this, when the battery reaches the end of its life, it may become open. In this case, when current is extracted from the battery 4, the terminal voltage of the battery 4 becomes 0 volts. Therefore, when current flows through the constant current circuit 2, it is detected by the open detection circuit 7. The open detection circuit 7 includes a Zener diode 7a, a resistor 7b, and an operational amplifier 7c, and the avalanche voltage of the Zener diode 7a is set lower than the terminal voltage when the battery 4 is normal.

【0026】このため、電池4が正常の場合、オープン
検出回路7はLレベルの信号を出力するので、オア回路
9から出力信号が発生しない。しかし、電池4がオープ
ン状態になると、電流が流れたときに端子電圧が0ボル
トに低下するので、オープン検出回路7はHレベルの出
力信号を発生する。この信号はオア回路9およびCPU
10を介してLCD11に供給され、電池4が寿命に達
したことを表示する。
For this reason, when the battery 4 is normal, the open detection circuit 7 outputs an L level signal, so no output signal is generated from the OR circuit 9. However, when the battery 4 becomes open, the terminal voltage drops to 0 volts when current flows, so the open detection circuit 7 generates an H-level output signal. This signal is sent to the OR circuit 9 and the CPU.
10 to the LCD 11 to display that the battery 4 has reached the end of its life.

【0027】電池4がオープン状態になるのは充電状態
とは関係なく発生するので、どの状態で判定しても良い
。このため本発明では、充電スタートスイッチ3cがオ
ン状態となり、充電制御回路3aから図2(c)に示す
パルスが発生した時点で、図2(e)に示すようにワン
ショットマルチバイブレータ1aを動作させ、定電流回
路2に電流を流し、判定を行っている。
Since the battery 4 becomes open regardless of the state of charge, the determination may be made in any state. Therefore, in the present invention, when the charging start switch 3c is turned on and the pulse shown in FIG. 2(c) is generated from the charging control circuit 3a, the one-shot multivibrator 1a is operated as shown in FIG. 2(e). A current is caused to flow through the constant current circuit 2 to make a determination.

【0028】これに対して電池内部インピーダンスが非
可逆的に大きくなった場合は充電完了時点で判定する必
要がある。すなわち、充電完了直後に内部インピーダン
スの測定を行なうと、正常な電池であれば、すでに充電
が完了しているため内部インピーダンスは小さくなって
いる。しかしながら、寿命のきている電池の場合、充電
完了直後でもその内部インピーダンスは大きくなる。こ
のためこの検出は図2(d)に示すように、充電が終了
したことによって充電制御回路3aから発生するパルス
によってワンショットマルチバイブレータを駆動してい
る。
On the other hand, if the internal impedance of the battery becomes irreversibly large, it is necessary to make a determination at the time of completion of charging. That is, if the internal impedance is measured immediately after charging is completed, if the battery is normal, the internal impedance will be small because charging has already been completed. However, in the case of a battery that has reached the end of its lifespan, its internal impedance increases even immediately after charging is completed. Therefore, in this detection, as shown in FIG. 2(d), the one-shot multivibrator is driven by a pulse generated from the charging control circuit 3a upon completion of charging.

【0029】[0029]

【発明の効果】以上のように本発明の電池寿命検出装置
によれば、充電完了時に所定の電流を流し、その電流の
流れる前後の電池端子電圧の差が所定値を越えたとき出
力信号を発生するようにしたので、充電が終了すると直
ちに電池寿命を知ることができ、従来のように使用して
みなければわからない状態と異なり、事前に知ることが
できるので使用開始前に正常に使用できる電池と交換す
ることが可能になり、使用開始後電池を交換するような
ロス時間が発生しないという効果を有する。
As described above, according to the battery life detection device of the present invention, a predetermined current is applied when charging is completed, and an output signal is output when the difference between the battery terminal voltages before and after the current flows exceeds a predetermined value. Since this occurs, you can know the battery life immediately after charging is finished, and unlike the conventional situation where you can't know until you use it, you can know it in advance, so you can use it normally before you start using it. This makes it possible to replace the battery, which has the effect of eliminating the loss of time required to replace the battery after the start of use.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を適用して構成した装置の一実施例の構
成を示す回路図
FIG. 1 is a circuit diagram showing the configuration of an embodiment of a device constructed by applying the present invention.

【図2】図1の装置の動作を説明するタイミングチャー
[Figure 2] Timing chart explaining the operation of the device in Figure 1

【図3】電池内部インピーダンスが増加する前と後にお
けるピーク値検出回路で検出した検出電圧の変化を示す
グラフ
[Figure 3] Graph showing changes in detection voltage detected by the peak value detection circuit before and after the battery internal impedance increases

【図4】電池の使用時間対電池電圧の変化を示すグラフ
[Figure 4] Graph showing changes in battery voltage versus battery usage time

【符号の説明】[Explanation of symbols]

1  パルス発生回路 2  定電流回路 3a  充電制御回路 4  電池 5  ピーク値検出回路 6  電圧比較回路 7  オープン検出回路 8  過大電流検出回路 10  CPU 11  LCD 1 Pulse generation circuit 2 Constant current circuit 3a Charging control circuit 4 Battery 5 Peak value detection circuit 6 Voltage comparison circuit 7 Open detection circuit 8 Overcurrent detection circuit 10 CPU 11 LCD

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  充電終了時に電池から所定の電流を流
す電流回路と、前記電流が流れる前と後の電池電圧を保
持するピーク値検出回路と、前記ピーク値検出回路の出
力電圧差が所定値以上のとき出力信号を発生する電圧比
較回路とからなる電池寿命検出装置。
1. A current circuit that causes a predetermined current to flow from the battery at the end of charging, a peak value detection circuit that maintains the battery voltage before and after the current flows, and an output voltage difference between the peak value detection circuit and the battery voltage that is a predetermined value. A battery life detection device comprising a voltage comparator circuit that generates an output signal when the above conditions occur.
JP3167587A 1991-06-12 1991-06-12 Device for detecting life of battery Withdrawn JPH04366781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3167587A JPH04366781A (en) 1991-06-12 1991-06-12 Device for detecting life of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3167587A JPH04366781A (en) 1991-06-12 1991-06-12 Device for detecting life of battery

Publications (1)

Publication Number Publication Date
JPH04366781A true JPH04366781A (en) 1992-12-18

Family

ID=15852524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3167587A Withdrawn JPH04366781A (en) 1991-06-12 1991-06-12 Device for detecting life of battery

Country Status (1)

Country Link
JP (1) JPH04366781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490393B1 (en) * 1998-10-09 2005-09-02 삼성전자주식회사 System and method for automatic notification of battery replacement time

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490393B1 (en) * 1998-10-09 2005-09-02 삼성전자주식회사 System and method for automatic notification of battery replacement time

Similar Documents

Publication Publication Date Title
JP3210390B2 (en) Battery charging apparatus and charging method
KR100886041B1 (en) Charge and discharge controller
US20070030016A1 (en) Device and method for monitoring at least one energy reserve capacitor in a restraint system
JP4499966B2 (en) Secondary battery charging circuit
JPH06315233A (en) Battery charge control method
JP2000121710A (en) Battery control device for backup power supply and method for diagnosing deterioration of secondary battery
JPH06333604A (en) Electric equipment for judging type of pack battery
JP4091010B2 (en) Charge control device
JPH08304518A (en) Device for discriminating kind of battery
JPH04366781A (en) Device for detecting life of battery
JP3735738B2 (en) -ΔV detection circuit for rapid charging of nickel cadmium / nickel metal hydride battery
JP3539432B2 (en) Apparatus for determining remaining capacity of secondary battery and charging apparatus using the same
JPH0332327A (en) Charge control circuit
JPH07123604A (en) Charger for secondary battery
JP3601032B2 (en) Charge control device, charger, and battery pack
JP3175839B2 (en) Charging device and charging method
JPH04364489A (en) Residual capacity of battery detecting apparatus
JPS62173943A (en) Quick charging circuit
JPH0837735A (en) Device for charging battery pack of portable telephone set
JPH0865910A (en) Battery charger
JP2004301848A (en) Battery evaluation device
JP3082537B2 (en) Charger
JPH0591677A (en) Battery charger
JP2673217B2 (en) Battery voltage detector
JP2622851B2 (en) Rechargeable battery charger

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903