JPH04365940A - Intake amount control device for engine - Google Patents

Intake amount control device for engine

Info

Publication number
JPH04365940A
JPH04365940A JP16943691A JP16943691A JPH04365940A JP H04365940 A JPH04365940 A JP H04365940A JP 16943691 A JP16943691 A JP 16943691A JP 16943691 A JP16943691 A JP 16943691A JP H04365940 A JPH04365940 A JP H04365940A
Authority
JP
Japan
Prior art keywords
engine
intake
negative pressure
amount
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16943691A
Other languages
Japanese (ja)
Inventor
Toshio Takeda
武田 俊雄
Mitako Horie
堀江 美多子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP16943691A priority Critical patent/JPH04365940A/en
Publication of JPH04365940A publication Critical patent/JPH04365940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent abrupt starting of rotation of an engine and engine stall by controlling a bypass area variable means of a throttle valve in an intake passage based on a controlling rate in respect to an engine operation condition, and particularly by performing correction in such a manner that the smaller an intake negative pressure is, the larger the controlling rate is. CONSTITUTION:A bypass passage 6 which bypasses a throttle valve 3 is arranged on an intake passage 2 of an engine main body 5. A bypass area variable means 7 composed of ISCV is arranged on the bypass passage 6. The bypass area variable means 7 is, when the engine is at least idly operated, controlled by means of an ECU based on a controlling rate in respect to an engine operation condition, such as an engine speed NE or an intake amount QE. In this case, a signal in respect to an intake negative pressure (boost) from a boost sensor 11 is input to the ECU 8. The smaller the intake negative pressure is, the larger the above controlling rate is. A valve opening characteristic of the ISCV is adjusted according to the intake negative pressure, and an accurate intake amount is secured, accordingly.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、エンジンの吸入空気量
制御装置に関し、アイドルスピードコントロールバルブ
により吸入空気量を制御するようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine intake air amount control device, which controls the intake air amount using an idle speed control valve.

【0002】0002

【従来の技術】アイドルスピードコントロール(ISC
)はエンジンのアイドル回転数がその目標回転数になる
ように制御することにより、燃料経済性向上、経時変化
によるアイドル回転数のずれ補正、エアコン使用時のア
イドルアップなどを行なうものである。
[Prior art] Idle speed control (ISC)
) controls the engine's idle speed to match its target speed, thereby improving fuel economy, correcting deviations in the idle speed due to changes over time, and increasing the idle when the air conditioner is in use.

【0003】ここで、ISCの構成を図1を参考にして
説明すると、エアフローメータ1を通過した空気は、ア
イドル時には閉状態となっているスロットル弁3の隙間
とバイパス通路6を介して一旦サージタンク4に入り、
その後エンジン5に供給される。バイパス通路6を通過
する空気量は、アイドルスピードコントロール弁(IS
CV)7の開度により調整される。エンジンコントロー
ルユニット(ECU)8は、現実のエンジン回転数と目
標回転数とを比較し、その差に応じて目標回転数となる
ように制御量を決め、ISCV7の開度を駆動制御する
[0003] Here, the configuration of the ISC will be explained with reference to FIG. 1. The air that has passed through the air flow meter 1 is temporarily surged through the bypass passage 6 and the gap between the throttle valve 3, which is closed at idle. Enter tank 4,
After that, it is supplied to the engine 5. The amount of air passing through the bypass passage 6 is controlled by the idle speed control valve (IS
It is adjusted by the opening degree of CV)7. The engine control unit (ECU) 8 compares the actual engine rotation speed and the target rotation speed, determines a control amount to achieve the target rotation speed according to the difference, and drives and controls the opening degree of the ISCV 7.

【0004】つまり、エンジン5のアイドリングを一定
にするための制御が上記ISCV7により行なわれるも
ので、エアコンやオルタネータ等の電気負荷が投入され
るとエンジン5にそれだけ負荷が加わり回転数が低下す
るため、吸入空気量を増やさなければ目標回転数を維持
できない。従って、ISCV制御が不十分な場合、電気
負荷がONされた直後にはエンジン回転数が大きく低下
して不快なエンジン振動を発生し易い。
In other words, control to keep the idling of the engine 5 constant is carried out by the ISCV 7, and when an electrical load such as an air conditioner or an alternator is turned on, the load is applied to the engine 5 and the rotational speed decreases. , the target rotation speed cannot be maintained unless the amount of intake air is increased. Therefore, if ISCV control is insufficient, the engine speed will drop significantly immediately after the electric load is turned on, and unpleasant engine vibrations will likely occur.

【0005】そのため、特開平2−70954号公報に
記載されているように、アイドル時に電気負荷がON,
OFFされた直後における実際のエンジン回転数が目標
回転数より急に低下し或は上昇するという過渡的変化状
態の場合には、急激な回転数変化に対応して敏感に補正
できる微分制御(D制御)を実行する一方過渡的変化で
ない状態のときは偏差量に応じて補正する比例制御(P
制御)を実行するなどの補正演算を行なう。そして、こ
れに基づきISCVを一定量だけ開くことにより、エン
ジン回転数が目標回転数から大きく外れないようにした
アイドルスピードコントロールバルブの制御方法が提案
されている。
[0005] Therefore, as described in Japanese Patent Application Laid-Open No. 2-70954, when the electric load is turned on and
In the case of a transient state of change in which the actual engine speed immediately after being turned off suddenly drops or rises from the target speed, differential control (D Proportional control (P control) is carried out, while when there is no transient change, the proportional control (P
perform correction calculations such as execution of control). Based on this, an idle speed control valve control method has been proposed in which the engine speed does not deviate significantly from the target speed by opening the ISCV by a certain amount.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記従来技
術のように、エンジンのアイドル時に電気負荷がONさ
れてISCVが一定量開かれても、吸気負圧(ブースト
)の変化により弁の開度と吸入空気量とは比例しないた
め必ずしも要求される吸入空気量が得られない。つまり
、吸気負圧に応じたISCVの開度調整が行なわれない
ので、負圧が急変すると弁の開き過ぎや閉じ過ぎを生じ
る。その結果、同一回転制御において、負圧が大きい場
合は吸入空気量が急増して回転が急上昇し、また負圧が
小さい場合は吸入空気量が少なく回転が上昇しないため
エアコン等がONされるとエンストを起こすなどの不具
合を生じる。
[Problems to be Solved by the Invention] However, as in the prior art described above, even if the electrical load is turned on when the engine is idling and the ISCV is opened by a certain amount, the opening of the valve changes due to changes in the intake negative pressure (boost). Since the amount of intake air and the amount of intake air are not proportional to each other, the required amount of intake air cannot necessarily be obtained. In other words, since the opening degree of the ISCV is not adjusted according to the intake negative pressure, a sudden change in the negative pressure causes the valve to open or close too much. As a result, in the same rotation control, if the negative pressure is large, the amount of intake air will rapidly increase and the rotation will rise sharply, and if the negative pressure is small, the amount of intake air will be small and the rotation will not increase, so when the air conditioner etc. is turned on. This may cause problems such as engine stalling.

【0007】本発明は、上記従来技術に鑑み、吸気負圧
に応じてISCVの開弁特性を調整し正確な吸入空気量
を供給することにより、エンジン回転の急激な立ち上り
やエンストの防止を図ったエンジンの吸入空気量制御装
置を提供することを目的とする。
In view of the above-mentioned prior art, the present invention aims to prevent a sudden rise in engine rotation and engine stalling by adjusting the valve opening characteristics of the ISCV according to the intake negative pressure and supplying an accurate amount of intake air. The purpose of the present invention is to provide an intake air amount control device for an engine.

【0008】[0008]

【課題を解決するための手段】本発明は、少なくともア
イドル時に、エンジンの運転状態に基づいた制御量によ
りバイパス面積可変手段を制御するエンジンの吸入空気
量制御装置において、吸気負圧に関する信号に基づき吸
気負圧が小さい程上記制御量を大きく補正する制御量補
正手段を備えた点を、その要旨とする。
[Means for Solving the Problems] The present invention provides an intake air amount control device for an engine that controls a bypass area variable means using a control amount based on the operating state of the engine, at least when idling, based on a signal related to intake negative pressure. The gist thereof is that a control amount correction means is provided which corrects the control amount to a greater extent as the intake negative pressure is smaller.

【0009】[0009]

【実施例】図1は本発明装置の構成図、符号1はエアフ
ローメータ、2は吸気通路、3はスロットルバルブ、4
はサージタンク、5はエンジン本体である。また、上記
吸気通路2にはスロットルバルブ3をバイパスするバイ
パス通路6が配設され、このバイパス通路6には通路の
開口面積を可変するためのソレノイドで作動するいわゆ
るアイドルスピードコントロール弁(ISCV)からな
るバイパス面積可変手段7が設けられている。8はエン
ジンコントロールユニット(ECU)で、実際のエンジ
ン回転数NE,エンジン吸入質量流量QE 等の入力信
号に基づいて上記バイパス面積可変手段7への出力を行
なう。9は冷却水の温度センサー、10は燃料噴射弁、
11はブーストセンサー、12は排気通路である。
[Example] Fig. 1 is a configuration diagram of the device of the present invention, where numeral 1 is an air flow meter, 2 is an intake passage, 3 is a throttle valve, and 4 is an air flow meter.
5 is the surge tank, and 5 is the engine body. The intake passage 2 is also provided with a bypass passage 6 that bypasses the throttle valve 3, and the bypass passage 6 has a so-called idle speed control valve (ISCV) operated by a solenoid for varying the opening area of the passage. A bypass area variable means 7 is provided. Reference numeral 8 denotes an engine control unit (ECU) which outputs to the bypass area variable means 7 based on input signals such as the actual engine speed NE and engine intake mass flow rate QE. 9 is a cooling water temperature sensor, 10 is a fuel injection valve,
11 is a boost sensor, and 12 is an exhaust passage.

【0010】次に、本発明装置の作動を図2に示すフロ
ーチャートに基づいて説明する。まず、ステップS1で
実際のエンジン回転数NE とエンジン吸入質量流量Q
Eが検出され、次のステップS2では上記NE とQE
 に基づいて充填効率CEが算出される。
Next, the operation of the apparatus of the present invention will be explained based on the flowchart shown in FIG. First, in step S1, the actual engine speed NE and engine intake mass flow rate Q
E is detected, and in the next step S2, the above NE and QE
Filling efficiency CE is calculated based on.

【0011】ステップS3で冷却水温THWが読み込ま
れた後、ステップS4では上記THWを基に吸入空気量
を求めるための1つの要素のゲインベースGbが算出さ
れ、次のステップS5で目標回転数No が算出される
After the cooling water temperature THW is read in step S3, a gain base Gb, which is one element for determining the intake air amount, is calculated based on the THW in step S4, and the target rotation speed No. is calculated in step S5. is calculated.

【0012】ステップS6では、アイドルスピードコン
トール(ISC)のフィードバック(F/B)の有無が
判定され、YESの場合はステップS7に進みフィード
バックゲインGFBが上記No とNE との差を基に
算出される。即ちGFBはエンジン回転数が低下すれば
吸入空気量を増やし、回転数が上昇すると空気量を減少
するというISC作動を行なうための一つの制御量であ
る。 一方NOの場合はステップS8に進みGFBは零とされ
る。
[0012] In step S6, it is determined whether there is feedback (F/B) of the idle speed control (ISC), and if YES, the process proceeds to step S7, where the feedback gain GFB is calculated based on the difference between No and NE. Ru. That is, GFB is one of the control variables for performing the ISC operation, which increases the amount of intake air when the engine speed decreases and decreases the air amount when the engine speed increases. On the other hand, in the case of NO, the process advances to step S8 and GFB is set to zero.

【0013】次のステップS9では、エアコン等の負荷
の投入の有無が判定され、YESの場合はステップS1
0に進み負荷ゲインGLが算出され、一方NOの場合は
ステップS11に進みGLは零とされる。
[0013] In the next step S9, it is determined whether or not the load of the air conditioner etc. is turned on, and if YES, the process proceeds to step S1.
The process proceeds to step S11, where the load gain GL is calculated, and if NO, the process proceeds to step S11, where GL is set to zero.

【0014】次のステップS12では、上記3つの制御
量Gb , GFB, GLの和が算出され一つの制御
量であるゲインGAが求められる。次のステップS13
で吸気温THAが読み込まれ、これを基にステップS1
4で吸気温補正係数CTHAが算出される。これは温度
により空気密度が変化するため吸入空気量の補正をする
必要から設定されたものである。
In the next step S12, the sum of the three control amounts Gb, GFB, and GL is calculated to obtain a gain GA, which is one control amount. Next step S13
The intake air temperature THA is read in step S1 based on this.
In step 4, the intake temperature correction coefficient CTHA is calculated. This was set because it was necessary to correct the amount of intake air since the air density changes depending on the temperature.

【0015】ステップS15では、実際に必要な吸入空
気量QAが上記GA,CTHAの積により算出され、次
のステップS16で単位時間当りにおけるアイドルスピ
ードコントール弁の開弁時間TIISCが上記QA,C
Eを基に算出される。
In step S15, the actually required intake air amount QA is calculated by the product of the above GA and CTHA, and in the next step S16, the opening time TIISC of the idle speed control valve per unit time is calculated by the product of the above QA and CTHA.
Calculated based on E.

【0016】そして、ステップS17では、上記ECU
8のバイパス面積可変手段7に対するその開弁時間を出
力するために必要な制御量であるデューティ・レシオD
/Rが、一定の駆動周期に対する上記TIISCの比と
して算出される。最後にステップS18において、上記
のように算出されたD/Rに基づいてバイパス面積可変
手段7へのDUTY駆動が行なわれる。つまり、アイド
ルスピードコントロール弁(ISCV)のON,OFF
作動が負荷変動において適正に行なわれ、エンジンへの
実際に必要な吸入空気量QAが正確に供給されることに
なる。
[0016] Then, in step S17, the ECU
duty ratio D, which is a control amount necessary to output the valve opening time to the bypass area variable means 7 of 8;
/R is calculated as the ratio of TIISC to a constant drive period. Finally, in step S18, DUTY drive to the bypass area variable means 7 is performed based on the D/R calculated as described above. In other words, the ON/OFF of the idle speed control valve (ISCV)
The operation will be performed properly under load fluctuations, and the actually required intake air amount QA to the engine will be accurately supplied.

【0017】ここで、図3に示すグラフにより、負圧の
大小による上記デューティ・レシオD/Rに対応する吸
入空気量QAの変化および充填効率CEの変化について
説明する。
Now, with reference to the graph shown in FIG. 3, changes in the intake air amount QA and filling efficiency CE corresponding to the duty ratio D/R will be explained depending on the magnitude of the negative pressure.

【0018】すなわち、同じD/Rにおいて負圧の大き
い例えば−500mmHgの場合の吸入空気量QAの増
加率は負圧の小さい例えば−200mmHgの場合のQ
Aの増加率よりも大きくなるように制御される。従って
同じ吸入空気量を得るには負圧が小さい程ISCVの開
弁時間を長くする必要がある。これに対し前記した如く
従来技術は負圧を考慮しないオープン制御が行なわれる
ため、負圧が小さい時にエアコン等の負荷が投入される
と必要な空気量が吸入されずエンストを起こすという不
具合を生じた。
That is, for the same D/R, the rate of increase in the intake air amount QA when the negative pressure is high, for example -500 mmHg, is the same as when the negative pressure is low, for example -200 mmHg.
The rate of increase is controlled to be greater than the rate of increase of A. Therefore, in order to obtain the same amount of intake air, the smaller the negative pressure is, the longer the ISCV opening time needs to be. On the other hand, as mentioned above, the conventional technology performs open control without taking negative pressure into consideration, so if a load such as an air conditioner is turned on when the negative pressure is low, the necessary amount of air is not sucked in and the engine stalls. Ta.

【0019】また、充填効率CEも負圧の大小に対応し
て変化し、負圧が大きい程CEは小さく、負圧が小さい
程CEは大きくなるように制御される。
The filling efficiency CE also changes depending on the magnitude of the negative pressure, and is controlled so that the larger the negative pressure is, the smaller the CE is, and the smaller the negative pressure is, the larger the CE is.

【0020】そして、上記のように負圧を考慮して得ら
れた吸入空気量QA及び充填効率CEは図2のフローチ
ャートにおけるステップS16の関係式に算入されてT
IISCが算出される。
The intake air amount QA and the filling efficiency CE obtained by considering the negative pressure as described above are included in the relational expression in step S16 in the flowchart of FIG.
IISC is calculated.

【0021】次に、図4に示すブロック線図により本発
明装置の各構成手段同士の対応関係について説明する。
Next, the correspondence between the constituent means of the apparatus of the present invention will be explained with reference to the block diagram shown in FIG.

【0022】ブロックB1の制御量算出手段は前記EC
U8であり、これにはブロックB2の運転状態検出手段
であるエンジン回転数NE を検出するタコメータや冷
却水の温度センサー9等からの各種の信号が入力される
The control amount calculation means of block B1 is the EC
U8 receives various signals from a tachometer that detects the engine rotational speed NE, a cooling water temperature sensor 9, etc., which is the operating state detection means of block B2.

【0023】次にブロックB3の制御量補正手段は同じ
くECU8であり、これにはブロックB4の吸気負圧検
出手段からの信号即ち上記充填効率CEを求めるための
各種計測器からの信号が入力される。この充填効率CE
を求める具体的方法は次のように2通りある。
Next, the control amount correction means of block B3 is also the ECU 8, into which signals from the intake negative pressure detection means of block B4, that is, signals from various measuring instruments for determining the above-mentioned filling efficiency CE are input. Ru. This filling efficiency CE
There are two specific methods to find the following.

【0024】即ち、エアフローメータ1により得られた
吸入空気量QAとエンジン回転数NE とからCEを間
接的に求める方法と、図1に鎖線で示すブーストセンサ
ー11により負圧を測定しその値から図3で説明したよ
うにCEを直接求める方法がある。つまり、上記制御量
補正手段は吸気負圧に関する信号に基づき、吸気負圧が
小さい程制御量CEを大きく補正するものである。
That is, CE is indirectly determined from the intake air amount QA obtained by the air flow meter 1 and the engine speed NE, and the negative pressure is measured by the boost sensor 11 shown by the chain line in FIG. As explained in FIG. 3, there is a method to directly obtain CE. In other words, the control amount correction means corrects the control amount CE to a greater extent as the intake negative pressure is smaller, based on a signal related to the intake negative pressure.

【0025】次のブロックB5は上記バイパス面積可変
手段7であり、これは上記制御量補正手段からの出力に
より、バイパス通路6の開口面積が吸気負圧を考慮した
上記各種制御量に基づいて開閉制御される。従って、こ
の手段7はアイドル時にエアコン等の電気負荷が投入さ
れた場合にも正確に吸入空気量をエンジン本体1に供給
することが可能となる。
The next block B5 is the bypass area variable means 7, which uses the output from the control amount correction means to open and close the opening area of the bypass passage 6 based on the various control amounts taking into account the intake negative pressure. controlled. Therefore, this means 7 can accurately supply the amount of intake air to the engine body 1 even when an electric load such as an air conditioner is turned on during idling.

【0026】[0026]

【発明の効果】以上のように本発明によれば、エンジン
への吸入空気量の変化により生ずる吸気負圧の変化に伴
う同一制御量当りの空気量変化の変動にかかわらず空気
量変化を一定とすることが出来るため、エンジンの回転
落ちや吹け残りを防止することが出来る。また、エアコ
ンや発電機等の負荷が投入された時に発生するエンジン
の回転落ちを防止することが出来る。
As described above, according to the present invention, the change in air amount can be kept constant regardless of the change in air amount per same control amount due to the change in intake negative pressure caused by the change in the amount of air taken into the engine. Therefore, it is possible to prevent the engine from slowing down or running out of steam. Furthermore, it is possible to prevent the engine from slowing down, which occurs when a load such as an air conditioner or a generator is applied.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明装置の構成図である。FIG. 1 is a configuration diagram of an apparatus of the present invention.

【図2】本発明の作動を示すフローチャートである。FIG. 2 is a flowchart showing the operation of the present invention.

【図3】デューティ・レシオD/Rと吸入空気量QAと
の特性を示すグラフである。
FIG. 3 is a graph showing characteristics of duty ratio D/R and intake air amount QA.

【図4】本発明の構成を示すブロック線図である。FIG. 4 is a block diagram showing the configuration of the present invention.

【符号の説明】[Explanation of symbols]

2  吸気通路 3  スロットルバルブ 5  エンジン本体 6  バイパス通路 7  バイパス面積可変手段 8  エンジンコントロールユニット 2 Intake passage 3 Throttle valve 5 Engine body 6 Bypass passage 7 Bypass area variable means 8 Engine control unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  吸気通路のスロットルバルブをバイパ
スするバイパス通路に、該バイパス通路の開口面積を可
変するバイパス面積可変手段を設け、少なくともアイド
ル時に、エンジンの運転状態に基づいた制御量により上
記バイパス面積可変手段を制御するようにしたエンジン
の吸入空気量制御装置において、吸気負圧に関する信号
に基づき吸気負圧が小さい程上記制御量を大きく補正す
る制御量補正手段を備えたことを特徴とするエンジンの
吸入空気量制御装置。
1. A bypass area variable means for varying the opening area of the bypass passage is provided in a bypass passage that bypasses a throttle valve of the intake passage, and the bypass area is adjusted by a control amount based on the operating state of the engine at least during idle. An intake air amount control device for an engine configured to control a variable means, characterized by comprising a control amount correction means for correcting the control amount to a larger extent as the intake negative pressure is smaller, based on a signal related to the intake negative pressure. intake air amount control device.
【請求項2】  エンジンに負荷が投入された時、吸入
空気量が増量されることを特徴とする請求項1記載のエ
ンジンの吸入空気量制御装置。
2. The engine intake air amount control device according to claim 1, wherein the intake air amount is increased when a load is applied to the engine.
JP16943691A 1991-06-13 1991-06-13 Intake amount control device for engine Pending JPH04365940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16943691A JPH04365940A (en) 1991-06-13 1991-06-13 Intake amount control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16943691A JPH04365940A (en) 1991-06-13 1991-06-13 Intake amount control device for engine

Publications (1)

Publication Number Publication Date
JPH04365940A true JPH04365940A (en) 1992-12-17

Family

ID=15886570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16943691A Pending JPH04365940A (en) 1991-06-13 1991-06-13 Intake amount control device for engine

Country Status (1)

Country Link
JP (1) JPH04365940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174134A (en) * 2000-09-29 2002-06-21 Mazda Motor Corp Engine control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174134A (en) * 2000-09-29 2002-06-21 Mazda Motor Corp Engine control device

Similar Documents

Publication Publication Date Title
US20150113983A1 (en) Control device and control method for internal combustion engine
JPH0797928A (en) Boost pressure controller of engine provided with supercharger
JP3154038B2 (en) Apparatus for estimating intake pressure of internal combustion engine and fuel supply apparatus
JPH02305342A (en) Idling engine speed controller
JPH07247884A (en) Idling control method
JPS60216045A (en) Intake-air amount controller for internal-combustion engine
JPH04365940A (en) Intake amount control device for engine
JPH0230949A (en) Duty solenoid control device
JPH05272387A (en) Control of idle rotation speed
JPS59115444A (en) Electronic control of linear solenoid type idle speed control valve for engine equipped with supercharger
JP2832296B2 (en) Duty solenoid control device
JPS59115445A (en) Electronic control for linear solenoid type idle-speed control valve of engine equipped with supercharger
JPH0455234Y2 (en)
JP3193099B2 (en) Engine idle speed control device
JP2558153Y2 (en) Auxiliary air flow control device for internal combustion engine
JPH01305146A (en) Air fuel ratio learning controller of internal combustion engine
JPH01294933A (en) Auxiliary air control device for internal combustion engine
JPH08165948A (en) Revolution speed control device for engine
JPS6047834A (en) Apparatus for controlling idling-operation control valve used in electronic fuel injection means
JPH07189773A (en) Fuel supply control device for internal combustion engine having supercharger
JPH0763099A (en) Idle rotational speed controller of engine
JPS601341A (en) Method of controlling air-fuel ratio in internal-combustion engine
JP2004019478A (en) Rotation speed control method of internal combustion engine
JPS59168220A (en) Method of controlling quantity of intake air for internal-combustion engine with supercharger
JPH08291763A (en) Operation control device for internal combustion engine