JPH04365863A - Method for coating inside wall of metallic capillary - Google Patents

Method for coating inside wall of metallic capillary

Info

Publication number
JPH04365863A
JPH04365863A JP14348291A JP14348291A JPH04365863A JP H04365863 A JPH04365863 A JP H04365863A JP 14348291 A JP14348291 A JP 14348291A JP 14348291 A JP14348291 A JP 14348291A JP H04365863 A JPH04365863 A JP H04365863A
Authority
JP
Japan
Prior art keywords
capillary
wall
inside wall
film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14348291A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujiyama
寛 藤山
Kazuyuki Watanabe
渡邉 一行
Jinichiro Yamaguchi
山口 甚一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUTSUU KK
Original Assignee
TOUTSUU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUTSUU KK filed Critical TOUTSUU KK
Priority to JP14348291A priority Critical patent/JPH04365863A/en
Publication of JPH04365863A publication Critical patent/JPH04365863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film at a high speed on the inside wall of a metallic capillary by providing cylindrical targets constituting a hollow cathode equidistantly from the central axis and at equal intervals in the capillary. CONSTITUTION:A device or coating the inside surface of the metallic capillary 3 by a plasma magnetron sputtering method is arranged with plural cylindrical targets 2 equidistantly from the central axis in the capillary 3 and axially at the equal spacings from each other. Multihollow cathode type coaxial magnetron discharge is executed by impressing a DC voltage to these targets in the state where a magnetic field is generated in the perpendicular direction to the discharging electric field. High-density plasma is formed in the capillary in this way, by which the film is formed at a high speed on the inside wall of the capillary.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、広い分野にわたり構
造材料として利用されている金属細管に対し、耐食性,
耐摩耗性等の向上を目的とした保護膜を同管内壁に、密
着性よく被覆する方法に関する。
[Industrial Application Field] This invention provides corrosion resistance,
This invention relates to a method of coating the inner wall of a pipe with a protective film with good adhesion for the purpose of improving wear resistance.

【0002】0002

【従来の技術】従来の管内壁の被覆方法としては、例え
ば図2に示すような方法がある。(特開昭62−180
069号公報参照)図2において、図中21が内壁を被
覆される管、22が棒状ターゲット、23が磁場発生用
コイル、24が同管21と棒状ターゲット22との間に
電界を付与するための電源である。
2. Description of the Related Art As a conventional method for coating the inner wall of a pipe, there is a method as shown in FIG. 2, for example. (Unexamined Japanese Patent Publication No. 62-180
(Refer to Publication No. 069) In FIG. 2, 21 is a tube whose inner wall is coated, 22 is a rod-shaped target, 23 is a coil for generating a magnetic field, and 24 is for applying an electric field between the tube 21 and the rod-shaped target 22. It is the power source.

【0003】この方法は、良好な膜を得るための圧力条
件を10−2Torr台として、放電電界に垂直な方向
に磁界を印加した状態で、管内の棒状ターゲットと管の
内壁との間(放電空間)にグロー放電を発生させてスパ
ッタリングにより管内壁を被覆する方法(同軸マグネト
ロンスパッタリング)である。
[0003] In this method, the pressure condition for obtaining a good film is set to 10-2 Torr, and a magnetic field is applied in a direction perpendicular to the discharge electric field. This is a method (coaxial magnetron sputtering) in which glow discharge is generated in a space (coaxial magnetron sputtering) and the inner wall of the tube is coated by sputtering.

【0004】0004

【発明が解決しようとする課題】この方法を用いて細管
(例えば内径20mm以下)の内壁を被覆する場合、棒
状ターゲットの直径にもよるが、放電空間が非常にせま
くなってしまう。このせまい放電空間で、安定したグロ
ー放電を持続させるためには、放電電圧にもよるが1〜
10−1Torr程度の真空度が必要となる。しかしこ
の真空度では、イオン及びスパッタ粒子がガス分子に衝
突してエネルギーを失い良好なスパッタリング成膜はで
きない。
[Problems to be Solved by the Invention] When this method is used to coat the inner wall of a thin tube (with an inner diameter of 20 mm or less, for example), the discharge space becomes extremely narrow, depending on the diameter of the rod-shaped target. In order to maintain stable glow discharge in this narrow discharge space, it is necessary to
A degree of vacuum of about 10 −1 Torr is required. However, at this degree of vacuum, ions and sputtered particles collide with gas molecules and lose energy, making it impossible to form a good sputtered film.

【0005】また良好なスパッタリング成膜のために圧
力条件を10−2Torr台の高真空領域とした場合に
は、放電のための初期電子が、管の内壁へロスするため
グロー放電を安定に持続させることはできない。
[0005] Furthermore, when the pressure condition is set to a high vacuum region of 10-2 Torr for good sputtering film formation, the initial electrons for discharge are lost to the inner wall of the tube, making it difficult to sustain glow discharge stably. I can't let you.

【0006】従って、従来の方法では放電空間のせまい
細管内壁のスパッタリングによる被覆はできないという
問題があった。
[0006] Therefore, in the conventional method, there was a problem in that the inner wall of the narrow tube in the discharge space could not be coated by sputtering.

【0007】この発明は、このような従来の問題点に着
目してなされたもので、10−2Torr台の高真空領
域で細管内部の非常にせまい放電空間中に安定したグロ
ー放電を維持させ、細管内壁のスパッタリングによる被
覆を可能にすることを目的とする。
[0007] The present invention was made by focusing on such conventional problems, and maintains a stable glow discharge in a very narrow discharge space inside a thin tube in a high vacuum region of 10-2 Torr. The purpose is to enable coating of the inner wall of a capillary by sputtering.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は金属細管内壁の被覆方法では、放電電界に
垂直な方向に磁界を印加した状態で、細管内部の中心軸
より等距離でしかも互いに等間隔の軸上に配置した数本
の円筒状ターゲットに、直流(DC)を印加していわゆ
るホロー陰極放電を実現するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for coating the inner wall of a metal capillary, in which a magnetic field is applied in a direction perpendicular to the discharge electric field, and the inner wall of the metal capillary is coated at an equal distance from the central axis inside the capillary. Furthermore, a so-called hollow cathode discharge is realized by applying direct current (DC) to several cylindrical targets arranged on axes at equal intervals.

【0009】[0009]

【作用】以上のような構成としたこの発明の金属細管内
壁の被覆方法にあっては、磁場
[Operation] In the method of coating the inner wall of a metal capillary tube of the present invention configured as described above, the magnetic field is

【外1】 性ガス分子との衝突回数を増加させ、中性ガス分子の電
離を促進させる効果が得られる。(マグネトロン効果)
[Example 1] The effect of increasing the number of collisions with neutral gas molecules and promoting the ionization of neutral gas molecules can be obtained. (Magnetron effect)

【0010】また、数本の円筒状ターゲット(陰極)を
管の中心軸より等距離でしかも互いに等間隔の軸上に配
置することにより、陰極の表面に形成されるシース電界
により電子を反射させ、陰極近傍に電子を閉じこめるこ
とができる。この結果、電子と中性ガスとの衝突回数と
放電電流を増加させる効果が得られる。(ホロー陰極放
電効果)
[0010] Furthermore, by arranging several cylindrical targets (cathode) on axes equidistant from the central axis of the tube and equally spaced from each other, electrons are reflected by the sheath electric field formed on the surface of the cathode. , electrons can be confined near the cathode. As a result, the effect of increasing the number of collisions between electrons and neutral gas and the discharge current can be obtained. (Hollow cathode discharge effect)

【0011】したがって、この両方の効果を同時に実現
する本発明では、高真空下(10−2Torr台)で、
非常に放電空間のせまい細管内部に、安定したグロー放
電で高密度プラズマを維持することができる。
Therefore, in the present invention, which achieves both of these effects at the same time, under high vacuum (10-2 Torr level),
High-density plasma can be maintained with stable glow discharge inside a narrow tube with a very narrow discharge space.

【0012】0012

【実施例】以下、この発明を図面に基づいて説明する。 図1は、この発明の一実施例を示す図である。1は真空
容器、2は複数の円筒状ターゲット、3は内面を被覆す
るための管状基板、4は同管3と複数の円筒状ターゲッ
ト2との間に電界を付与するための電源、5は磁場発生
コイル、6は磁場用電源、7はガス導入口、8は真空計
、9は排気口、10は真空ポンプである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the drawings. FIG. 1 is a diagram showing an embodiment of the present invention. 1 is a vacuum container, 2 is a plurality of cylindrical targets, 3 is a tubular substrate for coating the inner surface, 4 is a power source for applying an electric field between the tube 3 and the plurality of cylindrical targets 2, and 5 is a A magnetic field generating coil, 6 a power source for the magnetic field, 7 a gas inlet, 8 a vacuum gauge, 9 an exhaust port, and 10 a vacuum pump.

【0013】この実施例では、直径4mmのチタン円筒
を円筒状ターゲット2として管状基板3の中心軸上より
等距離でしかも互いに等間隔の軸上に4本配置した。管
状基板3は、直径20mm、長さ200mmの金属管を
使用した。なお、この際の各円筒状ターゲット2と管状
基板3の内壁との最短距離は4mmとした。このような
電極の構成で、管状基板3の内壁に窒化チタン(TiN
)の成膜を行った。
In this embodiment, four titanium cylinders each having a diameter of 4 mm were arranged as cylindrical targets 2 on axes equidistant from the central axis of the tubular substrate 3 and equally spaced from each other. As the tubular substrate 3, a metal tube with a diameter of 20 mm and a length of 200 mm was used. Note that the shortest distance between each cylindrical target 2 and the inner wall of the tubular substrate 3 at this time was 4 mm. With such an electrode configuration, titanium nitride (TiN) is coated on the inner wall of the tubular substrate 3.
) was deposited.

【0014】はじめに、真空容器1を排気口9より真空
ポンプ10を駆動させ十分排気を行った。次に、ガス導
入口7より図示しないガスボンベよりアルゴンと窒素の
混合ガスを導入し、真空容器1の中の真空度を5×10
−2Torrとした。なお、その際の真空度は、真空計
8にて計測した。磁場用電源6より磁場発生コイル5に
電力を供給して、放電電界に垂直な方向に磁界を発生さ
せた。 その際の磁界の強さは、300ガウス程度とした。
First, the vacuum container 1 was sufficiently evacuated by driving the vacuum pump 10 through the exhaust port 9. Next, a mixed gas of argon and nitrogen is introduced from a gas cylinder (not shown) through the gas inlet 7, and the degree of vacuum in the vacuum container 1 is increased to 5×10.
-2 Torr. Note that the degree of vacuum at that time was measured using a vacuum gauge 8. Power was supplied from the magnetic field power source 6 to the magnetic field generating coil 5 to generate a magnetic field in a direction perpendicular to the discharge electric field. The strength of the magnetic field at that time was about 300 Gauss.

【0015】その状態で、電源4より数本の円筒状ター
ゲット2と管状基板3との間に直流電圧を印加したとこ
ろ、管状基板3との放電空間内に非常に高密度のプラズ
マを発生させることができた。この時の放電電流を計測
したところ放電を終了させるまで、高い値で安定してい
た。
In this state, when a DC voltage is applied between several cylindrical targets 2 and the tubular substrate 3 from the power source 4, a very high density plasma is generated in the discharge space between the tubular substrate 3. I was able to do that. When the discharge current was measured at this time, it remained stable at a high value until the discharge was terminated.

【0016】その結果、細管の内壁には、黄金色を呈し
た窒化チタンの膜を被覆することができた。更に、マグ
ネトロン効果とホロー陰極放電効果との相乗効果により
成膜圧力を高真空領域としたために密着性の良好な膜で
あった。また、成膜中の放電電流も高い値を示すため、
100オングストローム/秒の非常に早い速度の成膜が
可能であった。
As a result, the inner wall of the thin tube could be coated with a titanium nitride film that had a golden color. Furthermore, due to the synergistic effect of the magnetron effect and the hollow cathode discharge effect, the film forming pressure was set in a high vacuum range, resulting in a film with good adhesion. In addition, since the discharge current during film formation also shows a high value,
It was possible to form a film at a very high speed of 100 angstroms/second.

【0017】すなわち、本方法において高真空下で放電
空間のせまい細管の内壁に、安定かつ大電流のグロー放
電を発生させてスパッタリングによる成膜を可能とした
That is, in this method, a stable and large-current glow discharge is generated on the inner wall of a narrow tube in a discharge space under high vacuum, thereby making it possible to form a film by sputtering.

【0018】[0018]

【発明の効果】以上説明した通り、この発明によれば、
広い分野で気体及び液体の輸送等の構造材料として、使
用されている金属細管に対し、その内壁へ耐食性や耐摩
耗性といった機能をもつ保護膜を、高速かつ強固に被覆
することができる。
[Effect of the invention] As explained above, according to this invention,
The inner walls of metal tubes, which are used as structural materials for transporting gases and liquids in a wide range of fields, can be coated quickly and firmly with a protective film that has corrosion and abrasion resistance functions.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明方法を実施する装置の一実施例を示
す概略説明図。
FIG. 1 is a schematic explanatory diagram showing an embodiment of an apparatus for carrying out the method of the present invention.

【図2】  従来の方法を用いる装置の概略を示す説明
図。
FIG. 2 is an explanatory diagram schematically showing an apparatus using a conventional method.

【符号の説明】[Explanation of symbols]

2    円筒状ターゲット 3    管状基板(金属細管) 2 Cylindrical target 3 Tubular substrate (metal thin tube)

【外2】[Outside 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  グロー放電プラズマを用いて、スパッ
タリングにより金属細管内壁を被覆する方法において、
高真空中に設置した上記細管内部に、その中心軸から等
距離でしかも互いに等間隔の軸上に配置してホロー陰極
を構成する数本の円筒状ターゲットを設け、放電電界に
垂直な方向に磁場を印加することを特徴とする金属細管
内壁の被覆方法。
Claim 1: A method for coating the inner wall of a metal capillary tube by sputtering using glow discharge plasma, comprising:
Inside the thin tube set up in a high vacuum, several cylindrical targets forming a hollow cathode are placed on axes equidistant from the central axis and equally spaced from each other, and are placed in a direction perpendicular to the discharge electric field. A method for coating the inner wall of a metal capillary tube, the method comprising applying a magnetic field.
JP14348291A 1991-06-14 1991-06-14 Method for coating inside wall of metallic capillary Pending JPH04365863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14348291A JPH04365863A (en) 1991-06-14 1991-06-14 Method for coating inside wall of metallic capillary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14348291A JPH04365863A (en) 1991-06-14 1991-06-14 Method for coating inside wall of metallic capillary

Publications (1)

Publication Number Publication Date
JPH04365863A true JPH04365863A (en) 1992-12-17

Family

ID=15339733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14348291A Pending JPH04365863A (en) 1991-06-14 1991-06-14 Method for coating inside wall of metallic capillary

Country Status (1)

Country Link
JP (1) JPH04365863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090562A (en) * 2013-02-06 2013-05-08 济南道生一新能源科技有限公司 Flat-plate heat pipe solar collector
CN114921762A (en) * 2022-05-20 2022-08-19 北京佳锐恒盛新材料科技有限公司 Method for electric arc alloy powder sputtering metallurgy fusion coating in long and thin metal tube
CN114921762B (en) * 2022-05-20 2024-06-07 北京佳锐鸿科技发展有限责任公司 Arc alloy powder sputtering metallurgy fusion coating method in long and thin metal tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340646A (en) * 1976-05-08 1978-04-13 Nippon Ionon Kk Method of arranging articles to be treated by high voltage glow discharge
JPS6037188A (en) * 1983-08-10 1985-02-26 Agency Of Ind Science & Technol Gas laser oscillator
JPS62180069A (en) * 1986-02-05 1987-08-07 Kobe Steel Ltd Method for coating inside surface of pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340646A (en) * 1976-05-08 1978-04-13 Nippon Ionon Kk Method of arranging articles to be treated by high voltage glow discharge
JPS6037188A (en) * 1983-08-10 1985-02-26 Agency Of Ind Science & Technol Gas laser oscillator
JPS62180069A (en) * 1986-02-05 1987-08-07 Kobe Steel Ltd Method for coating inside surface of pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090562A (en) * 2013-02-06 2013-05-08 济南道生一新能源科技有限公司 Flat-plate heat pipe solar collector
CN114921762A (en) * 2022-05-20 2022-08-19 北京佳锐恒盛新材料科技有限公司 Method for electric arc alloy powder sputtering metallurgy fusion coating in long and thin metal tube
CN114921762B (en) * 2022-05-20 2024-06-07 北京佳锐鸿科技发展有限责任公司 Arc alloy powder sputtering metallurgy fusion coating method in long and thin metal tube

Similar Documents

Publication Publication Date Title
US7327089B2 (en) Beam plasma source
US4179351A (en) Cylindrical magnetron sputtering source
AU664995B2 (en) Method and apparatus for linear magnetron sputtering
JPH05263223A (en) Method for coating body to be coated having inner part and device therefor
JP5306198B2 (en) Electrical insulation film deposition method
US6171454B1 (en) Method for coating surfaces using a facility having sputter electrodes
EP1640474B1 (en) Thin film forming device
EP1273028A2 (en) Method and apparatus for magnetron sputtering
KR20070012275A (en) Device for improving plasma activity in pvd-reactors
JP2002206167A (en) Plasma coating apparatus, and plasma coating method
Fujiyama Inner coating of long-narrow tube by plasma sputtering
US3728246A (en) Device for applying thin films to articles
JPH04365863A (en) Method for coating inside wall of metallic capillary
US4243505A (en) Magnetic field generator for use in sputtering apparatus
Glocker et al. Recent developments in inverted cylindrical magnetron sputtering
Uchikawa et al. Titanium coating of the inner of a 1 m long narrow tube by double-ended anode coaxial magnetron-pulsed plasmas
US6223686B1 (en) Apparatus for forming a thin film by plasma chemical vapor deposition
RU2173911C2 (en) Production of electric-arc plasma in curvilinear plasma guide and application of coating on supporting structure
KR20160146597A (en) Sputtering apparatus for forming nano-structure
KR20080098826A (en) Method for forming coating layer on inner wall of pipe through hollow cathode discharge deposition
JPH06136544A (en) Plasma treatment device
US6060131A (en) Method of forming a thin film by plasma chemical vapor deposition
Sugimoto et al. Extended anode effect in coaxial magnetron pulsed plasmas for coating the inside surface of narrow tubes
Walkowicz et al. Pulsed-plasma assisted magnetron methods of depositing TiN coatings
JPS59226175A (en) Device and method for treating cylinder inside wall by electric glow discharge